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ABSTRACT 

In this thesis, we learn about machine learning through a game called Noughts 

and Crosses (tic-tac-toe).  

Donald Michie has invented a machine called MENACE (Machine Educable 

Noughts and Crosses Engine) during 1961.  

In this thesis we try to understand how Michie has made just a pile of 

matchboxes to learn. And we will also learn about the learning ability of 

MENACE and how it differs from a human learning this game for the first time. 

We try to implement new methods of Machine learning to improve the 

efficiency of MENACE.  

We come across Q-learning method (one of the learning methods in 

Reinforcement learning), which could be applied in the noughts and crosses 

game. By varying the parameters, we finally achieve a process with better 

efficiency for the MENACE. 
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      CHAPTER 1 

 

   1.1 Introduction: 

Machine Learning is a widely used method in the world right now to deal 

with the challenges we face in daily life. We encounter uses of Machine 

learning in several ways like recommendation systems, language 

translation systems, speech recognition systems etc.  

 

As we all know machine learning is about a machine, learning to do some 

tasks(T) given to it by itself, using its experience(E). In this process of 

learning, machine tries to improve its performance(P) on tasks (T), using its 

experience(E), automatically without the need of being programmed by 

humans at every step.  

 

Machine learning can be broadly divided into 3 types: 

1) Supervised Learning 

2) Unsupervised Learning 

3) Reinforcement Learning (explained in later chapters) 

 

Now to get a better understanding on machine learning, let’s trace our 

history back to the origin of machine learning. Researchers have used 

methods similar to machine learning even before the word “Machine 

Learning” is coined. The journey of machine learning began simply with 

games, by making the machine learn through playing games. 

 

NOUGHTS AND CROSSES GAME: 

In this thesis, we will concentrate on a machine called “MENACE”. MENACE 

is created by Donald Michie in 1961. Donald Michie was a researcher from 

England, he had done commendable works in subjects related to Artificial 

Intelligence and Game Theory. 

 

MENACE stands for Machine Educable Noughts and Crosses Engine. As the 

name clearly suggests it is about a machine, learning to play Noughts and 

Crosses game against human.  

 



 

 

Now let’s briefly learn about how MENACE works before going into deep 

analysis about it. MENACE is a machine which plays tic-tac-toe game against 

human and learns by itself to not lose in the game. 

 

 

FIGURE 1:DONALD MICHIE PLAYING TIC-TAC-TOE GAME AGAINST PILE OF MATCHBOXES 

 

 

MENACE is actually built from a collection of matchboxes (304 accurately). As 

you can observe from the picture, matchboxes are all put together using an 

adhesive, so that they can stay intact throughout the game. Each of these 

matchboxes had a certain configuration drawn on them. These configurations 

correspond to the state of the game that MENACE is currently in. Each matchbox 

also has beads placed inside them. These beads are in nine different colours. 

Each colour corresponds to different positions on the board (3x3 table, where 

game is being played). 

 

 

 



 

 

Let’s see an example of how the game generally works. Since Donald Michie 

always made MENACE play the first move, we would also consider for this 

example that MENACE makes first move. First we have an empty board with 

nine empty squares. Let’s assume MENACE makes its first move at the position 

5, that is at the centre of the board with ‘O’. Now, Michie plays ‘X’ at any random 

position (here 2nd position). MENACE replies with ‘O’ at the position 8 (this 

position is decided by the colour of bead drawn), and so on the game continues. 

Michie wins the game by his 4th move, MENACE fails to defend against human 

on its first try. 
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TABLE 1:BOARD CONFIGURATIONS DRAWN ON MATCHBOXES 

 

MENACE’s moves are decided at each move by observing the current 

configuration of game which is being kept under track by Donald Michie. And 

then picking a random coloured bead from drawer of the match box which 

matches the said configuration. Based on the colour of the bead MENACE’s 

position is decided.  

 



 

 

The colours of the beads according to the original paper are as given: 

White Lilac Silver 

Black Gold Green 

Amber Red Pink 

TABLE 2:NINE DIFFERENT COLOURS OF BEADS REPRESENTING NINE DIFFERENT POSITIONS ON BOARD 

So Michie observes the colour from that particular matchbox and makes the 

move for the MENACE. One important thing to note is after a bead is removed, 

it is placed on the table in front of the matchbox drawn. 

How many beads does each matchbox contain?  

Each matchbox has number of beads corresponding to possible number of 

moves in the present state of the game. So if we consider for MENACE’s first 

move we have 36 beads (9 different colour beads x 4 beads for each possible 

move). Similarly, for MENACE’s second move (third move overall) we have 21 

beads. For MENACE’s third move (fifth move overall) we have 10 beads. For 

MENACE’s last move we have 3 beads for 3 possibilities. 

Donald Michie continues to play games against ‘MENACE’ until ‘MENACE’ learns 

to either win or draw.  

How did Michie make MENACE learn? 

We all know that moves made by MENACE are completely random. So let’s us 

consider a situation where MENACE lost to Michie (human). Then Michie 

removes the bead that was already drawn out from the match box during the 

game. We call this as Negative reinforcement. We are punishing the machine 

since it lost to human while playing that particular move. This way, the 

probability of machine playing that particular bead in its fourth move next time 

decreases. It avoids the move which could result in its loss. 

Now, if Machine draws with the human, then we reward it by adding one more 

bead of same colour along with the bead already drawn out. This is Positive 

reinforcement. Since that particular move earned machine a draw in the game, 

adding beads increases the probability of machine not losing. 

Similarly, if machine wins against human we reward it with additional 3 beads 

of the same colour along with the bead already drawn out. This is also Positive 



 

 

reinforcement. Since that particular move earned machine a win in the game, 

adding 3 additional beads increases the probability of it winning more. 

But since MENACE is playing against a human (Michie), it may not win even if 

takes certain precautions. But by following the above rules, and also by playing 

a lot of games, it will adapt to not lose. If MENACE plays this game against human 

for around 200 times, you will see that MENACE rarely loses as time pass by. 

 

 

FIGURE 2:ORIGINAL GRAPH OBTAINED BY DONALD MICHIE 

This is the original graph corresponding to the game tournament done by Donald 

Michie. The graph falls down by one unit when MENACE loses and rises by one 

unit when there is a draw and rises by 3 units when MENACE wins. You can 

observe that there is barely any drop in the graph as the number of games 

increases. Implies that the MENACE is slowly learning to not lose anymore. 

The slope of the graph shows the expertise of MENACE. 



 

 

 

FIGURE 3:IMPROVEMENT IN MENACE PERFORMANCE SHOWN THROUGH THE GRAPH AFTER PLAYING 100 GAMES 

After playing 100 games against MENACE, this is the final graph that I obtained. 

This graph is similar to the original graph done by Donald Michie. You can see 

that even though the game starts on the negative Y-axis, as the game progresses 

it continues to stay on positive side of the Y-axis. 

This indicates that MENACE’s chance of losing is less compared to its chance of 

either winning or drawing as it plays lots of games. 

 

 

 



 

 

1.2 STRUCTURE OF MENACE: 

While explaining the game before we assumed that MENACE is made up of 304 

matchboxes and proceeded with the game. Now let us try to understand why it 

has to be 304. If we go by common sense, the amount of match boxes to play 

Noughts and Crosses game would be very huge. And it would be difficult to 

construct it. So we use certain rules and assumptions, such that the structure of 

MENACE isn’t too complicated.  

For MENACE’s first move, there is only one matchbox required since there is just 

an empty board pattern on it. For its second move, we need 72 matchboxes (i.e 

9C1 * 8C1). Similarly for MENACE’s third move, we need 756 matchboxes. For 

MENACE’s fourth move, we need 1372 matchboxes. So to sum it up we will need 

2201 matchboxes. 

But if we observe carefully at the different possible layouts in the above 2201 

matchboxes, we can see that some deigns are essentially same.  

   

X O  

 X  
 

 

 X  

X O  

   

TABLE 3:BOARD CONFIGURATIONS DRAWN ON MATCHBOXES 

The above two layouts are essentially same, second one is obtained by rotating 

the first one clockwise. So if the move chosen by MENACE is wrong in first layout, 

it should be able to rectify its mistake if it ever encounters the second layout in 

a game. So to help MENACE learn more effectively, it will be best for us to 

consider some changes in board to be same.  

Donald Michie actually considered about eight different possibilities where we 

can find a similar layout. Like rotating the board clockwise by a quarter turn, by 

a half turn, by a three-fourth quarter turn, or the reflection of board on both 

vertical and horizontal axis, or the reflection against the two diagonal axes. It is 

okay for us to consider all the rotations and reflections of the board as same as 

one single layout, because all these positions essentially follow the same rules 

of a Noughts and Crosses game. 

So considering the above mentioned possibilities, now the number of 

matchboxes reduces to 304. That is for MENACE’s first move one match box, for 



 

 

MENACE’s second move 12 matchboxes, for MENACE’s third move 108 

matchboxes, and finally for MENACE’s fourth move 183 matchboxes. So in total 

Donald Michie used 304 matchboxes. 

Even though we made the structure a lot simpler by above assumptions, it would 

be difficult for the human to play the game now. Because now instead of directly 

spotting the layout, we have to search all the seven possible layouts (rotations 

and reflections) that are similar to the given layout. And we also have to relate 

the colour of bead to its correct position. Fortunately for us, this new burden of 

work is quite deterministic, and MENACE is also following strict rules with no 

possible space for ambiguity.  

 

1.3 LEARNING ABILITY OF MENACE: 

MENACE is learning what should be its action across the 304 different board 

configurations. MENACE will only get four moves to choose its action. And in its 

fifth move it can only make one action, which is left on the board. The possibility 

of MENACE making a winning move increases as the game progresses, due to 

the positive reinforcement (that is adding more beads which will result in 

winning). And similarly, the possibility of MENACE losing decreases due to 

negative reinforcement (that is removing the certain coloured bead which 

would result in losing).  

Now to understand the performance of MENACE, we are in need of a parameter. 

As the number of the beads is the only variable thing in this game, we will 

consider that the number of beads of same colour in a single matchbox as a 

parameter. Let us take an example: 

   

   

   

 

In this empty board, MENACE will make its first move. It will have 12 beads. That 

is four beads of three different colours. These three different colours represent, 

three different positions on board, centre of the board, middle of the edges or 

the corners. Since we consider all rotations and reflections on board as equal. 



 

 

And if we consider MENACE’s third move, each matchbox will have six beads. 

That is two beads of three different colours. These three different colours 

represent, again three possible positions on the board, one is a move in between 

the two X’s, or in the middle of the left over two edges, or in the corners.  

If we take the all kinds symmetric positions possible in the game with respect to 

these 304 matchboxes and differentiating the different moves from all the 

possible moves, we will find that there are total of 1720 beads. And 1087 

parameters representing these beads.  

To make learning easier for MENACE, Donald Michie made MENACE take the 

first move. Since we can observe that the first player in the tic-tac-toe game 

generally has an inherited bias to do better in game than the second player. 

MENACE usually plays uniformly randomly in all of its possible different moves 

against human. According to the research on tic-tac-toe games when two 

uniformly random players face each other, first player has a chance of 59% to 

win, and 13% chance to draw and 28% chance to lose. This clearly shows the 

bias towards the first player. 

To make MENACE learn well we should carefully pick the moves against it, 

because how well the MENACE learns definitely depends on the player it is 

against. The perfect proof for this is the fact that Donald Michie saying MENACE 

doing better after only 220 games. Whereas other players required more than 

that 220 games for MENACE to play well. So we can assume that to make 

MENACE learn better Michie might have used a deliberately planned moves 

against it rather than some vaguely random moves. Michie has also said in his 

research paper that while making a computer simulation against MENACE, he 

found that randomly played moves resulted in a slower learning.  

Even though MENACE can’t do as well as human, we can try our best to make it 

play well by making it play against different kinds of opponents. The only bad 

thing about this process is that MENACE tries to tune itself to the opponent.  

 

 

 

 

                       



 

 

CHAPTER 2 

2.1 MENACE AND MACHINE LEARNING: 

We can observe that the way MENACE learns is entirely different from how a 

human learns. Because when a human first starts learning Noughts and Crosses 

game the first thing human makes sure is to complete three O’s or three X’s in a 

row. If we see MENACE learning, it never tries to complete the row. 
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TABLE 4:BOARD CONFIGURATIONS DRAWN ON MATCHBOXES 

  

Now instead of completing the middle column this is what MENACE does in the 

computer simulation: 

 O X 

O O X 

   

  

  X 

O O X 

  X 

TABLE 5:BOARD CONFIGURATIONS DRAWN ON MATCHBOXES 

And thus resulting in MENACE losing against human. 

Also while playing the game human learns that if he can’t win, he can atleast 

block the machine from winning. He can do so by blocking three O’s or three X’s 

with his own move. But even then human has a possibility of losing if the 



 

 

opponent has two continuous O’s or X’s that need to be blocked. He can only 

block one move and opponent wins in his next move. 

These two above rules differs MENACE from human. The first rule is trying to get 

three continuous O’s or three continuous X’s. And the second rule is blocking 

the immediate win to opponent.  

So instead of MENACE playing randomly, if we manage to incorporate these two 

rules, we can see a huge improvement in MENACE learning. 

MENACE                            PLAYER A                 PLAYER B                 PLAYER C 

 RANDOM W:59%, D:13%,L:28% W:0%,D:24%,L:76% W:27%,D:19%,L:53% 

RANDOM
+TWO 
RULES 

 
W:86%,D:10%,L:4% 

 
W:0%,D:82%,L:18% 

 
W:51%,D:37%,L:13% 

TABLE 6:PERFORMANCE OF MENACE INCREASED AFTER ADDITION OF TWO NEW RULES 

What is the difference between human and MENACE’s ability? Why can’t 

MENACE use the two rules that human can while playing the game? 

It is because we as humans have some sense of geometrical positions on board, 

we know what three in a row or column or diagonal mean without even trying 

too hard. Whereas it is difficult for MENACE to get this point across. Because it 

can’t differentiate different geometrical positions. Even if it did learn for one 

particular matchbox, it can’t associate this with a matchbox with a slight change 

in configuration. It would be even harder for MENACE to understand vertical 

row, horizontal row and diagonal. Thankfully Michie helps MENACE understand 

geometrical configurations by making eight different possible rotations and 

reflections as one unique board position. But still at the end it is human (Michie) 

that is doing the thinking behind MENACE. 

From the above paragraphs, we can see that MENACE learning is not similar to 

human learning. It is a different type of learning called Machine Learning. The 

term Machine learning isn’t coined during the time MENACE was first created, 

it only came into light after MENACE’s creation. 

MENACE isn’t aware about the fact that it is playing a game. It doesn’t even 

know what the game is, it has its beads removed from matchbox by a human. 

And later based on positive or negative reinforcement the beads are either 

added back or removed. It is human (Michie), doing all the work. He is the one 

playing the tic-tac-toe game on the paper and he is the one deciding if the beads 



 

 

should be added or removed. And he decides if the MENACE won or lost or draw 

the game. MENACE doesn’t know that it is learning a game. It is simply following 

the instructions given to it by human. So MENACE is just a learning machine. 

This is the case with Machine learning nowadays too. This fact could either be a 

plus point or negative point. Humans are the ones who makes the sketch of the 

real world problem and implement it on the machine. Humans give the input 

data to machine, make it respond to it by giving instructions to its learning 

system, and finally manage to give the desired output. Even though MENACE 

was found a long time ago, its basic structure still resonates with the modern 

days Machine learning.  

We have said in the introduction part that the machine learning is divided into 

3 different types, namely 1) supervised learning 2) unsupervised learning 3) 

reinforcement learning. 

Which type do you think MENACE falls under? 

The answer is Reinforcement learning. Because MENACE has received the 

feedback only after it has completed its given task. MENACE is one of the few 

earliest examples of reinforcement learning. It is the one that introduced the 

concept of reinforcement learning to people.  

2.2 IMPLEMENTATION OF REINFORCEMENT LEARNING: 

In this game MENACE makes three to four moves, and all this moves are done 

one after another in a row. How far should the feedback be traced back to? 

According to the original game done by Donald Michie, he considered to apply 

all kinds of reinforcements (positive or negative) to all of its moves. Though it is 

still uncertain how Michie reached this conclusion. Giving reinforcement at the 

final move is understandable, since it is where the game result is decided. But 

giving the same reinforcements to earlier moves is a little uncertain. 

Let us first understand what reinforcement learning is.  

REINFORCEMENT LEARNING:  It is one of the methods implemented in Machine 

Learning. Reinforcement learning is trial and error type of learning. In other 

types of Machine learning, machine is usually presented with a large set of 

training data, and machine uses this training data to train itself. Whereas in 

reinforcement learning, machine isn’t presented with any prior data. 

Reinforcement agent decides what action to take at one particular situation by 

trying to maximise the immediate reward as much as possible. That is machine 



 

 

is learning here from its experience rather than the training data. Based on the 

output, reinforcement agent decides to either reward the machine or punish the 

machine.  

This way when the process is repeated the probability of machine making a 

mistake reduces. This is how the training through reinforcement learning goes. 

Let us see how we can compare reinforcement learning to MENACE’s learning. 

Reinforcement learning is mainly used when there are finite number of states 

present. Here in MENACE, the number of uniquely different matchbox 

configurations (304) are used to represent states in reinforcement learning. All 

these 304 matchboxes represent the possible board layouts when it is MENACE’s 

turn to play. For each of these 304 matchboxes (states), there are certain actions 

we need to take. These actions are represented by 9 different coloured beads, 

with each bead representing different possible move on the board. In 

reinforcement learning we have a policy which is the probability of action in its 

current state. Now applying this to MENACE, the policy would be total number 

of same colour beads in a matchbox to total number of beads in that same 

matchbox. And our goal is obviously to learn the policy which is best for MENACE 

at each state. And maximise it. It should also be noted that in MENACE it is 

difficult to return to back to the state once it has left, unlike in other games. 

Even under reinforcement learning there are many methods you can use like 

Neural networks, Deep learning network, etc. But among these methods only 

one meets our requirement. That is Q-learning method. Neural network and 

deep learning network are not ideal for MENACE because they use certain 

function to represent policies of all states together. In MENACE we know the 

exact state we are present at each part of the game. We spread the feedback 

for winning, losing or drawing in the game equally among all of the MENACE 

moves. Though this is what Michie implemented it may not be ideal. Because a 

losing move at the final state need not necessarily imply that all the moves 

before it are useless. So to tackle with this problem, we use a new kind of 

learning method called as Q-LEARNING for MENACE. 

In Q-learning, MENACE learns what the estimation of final reward is depending 

on its particular actions it has taken at each state. After learning about the 

approximate final reward, we then distribute the rewards among all moves. 

 

 



 

 

Outlook for MENACE: 

States: Board configuration on matchboxes, Actions: Number of beads of each 

different colour, Policy: Giving preference to the actions with most number of 

beads, Reward: Can be positive or negative based on the result of the game (win 

or lose or draw). And our goal would be to maximise the cumulative reward. 

  



 

 

                      CHAPTER 3 

3.1 RESULTS: 

Let us try to implement reinforcement learning mathematically. How well we 

are able to optimise the mathematical equations decides how fast and efficient 

our program works.  

Noughts and crosses game is obviously a sequential process. That is decisions at 

each state of the game are taken sequentially. Even though it is a sequential 

process it does reach an end with the MENACE either winning or losing or 

drawing in the game. Let us represent this outcome with a value.  

Since MENACE learns through its experience rather than on training data. We 

try to give the actions which resulted in the final outcome some feedback (i.e. 

reinforcement). As we already know the reinforcement or feedback will be 

positive if MENACE has won or managed to draw the game.  

What happens when we give some actions made by MENACE positive feedback? 

By giving positive feedback we are encouraging the MENACE to take the similar 

action the next time it encounters the same situation, since this action has given 

a positive result for MENACE. In the same way if some action has given a 

negative result, we give that action negative feedback so that it won’t be 

encouraged in the coming future.  

 

FIGURE 4:REINFORCEMENT LOOP FOR MENACE 

This reinforcement loop represents how MENACE works. Since MENACE starts 

the game, the boxes 1,3,5 represents the state of MENACE and the arrows 

coming out of boxes represents the moves that MENACE can make. Based on 

the outcome we alter the previous moves. We add the feedback (positive or 

negative) back to the loop.  



 

 

 

Reinforcement learning consists of a learning agent which decides what action 

we should take at any one particular state based on the policy. By choosing these 

actions, reinforcement learning agent makes sure to optimise the cumulative 

addition of all rewards at all possible states. That is agent doesn’t only think 

about optimising its next reward, but it thinks about the action which will benefit 

on a whole.  

Now implementing this to MENACE. For MENCAE ‘i’ is 304 i.e the number of 

match boxes. States Si represents various possible board configuration on 

matchboxes. Action is the number of beads of each of the nine different colours. 

The policy we decided to follow from the above paragraphs is to maximise this 

ratio (number of beads of a certain colour to the total number of beads present 

in the ‘i’th matchbox).  

MATHEMATICAL FORMULATION: 

Let us now put all our explanations above in a mathematical formula: 

States- Si belongs to S, ‘i’ belongs to (1,….,304), S is set of all possible board 

configurations. In other words, number of matchboxes 

Actions-Ai belongs to A, ‘i’ belongs to (1,….,304), A is set of all possible actions 

possible at a given state. In other words, number of beads of different colours. 

Policies-πi belongs to π, ‘i’ belongs to (1,….,304), π is mapped from set S to A. 

Policy is ratio of number of beads of a certain colour to the total number of 

beads present in the ‘i’th matchbox. 

Reward-function =R(Si,Ai), R is mapping SXA to real numbers. Reward is based 

on game won or lost. 

Michie followed this particular reinforcements in each case. If MENACE wins add 

3 more additional beads of same colour to the matchbox, if MENACE loses 

remove that bead of same colour from the matchbox, if MENACE draws the 

game return the bead of same colour to the matchbox. 

And we will also consider a state transition function. Let us call it K(Si,Ai). K is 

mapped from SXA to S( since it is transition between states).  

Now the reinforcement learning agent decides the Ai based on the πi. After the 

decided action by MENACE, reinforcement learning agent is put into a new state 



 

 

based on K(Si,Ai). And agent also gets feedback from the reinforcement loop as 

shown in the Figure 4. 

Now the reinforcement learning agent’s goal is to maximise the cumulative 

reward as a whole, by choosing the right actions. 

That is maximising  𝑅𝑖 =∑ 𝛾𝑗−𝑖𝑅𝑗∞
𝑗=𝑖 , the cumulative reward. 𝛾 belongs to [0,1] 

and is called discount factor. Cumulative reward is addition of all rewards from 

the current state to final state of the process. Here final state is when MENACE 

won or lost.  

While finding cumulative reward, we give weightage to all rewards based on the 

discount factor. Discount factor as the name suggests gives discount to the 

rewards which are far into the future.  

Now since we have decided to use Q-learning, we need to understand what 

value-based learning mean, since Q-learning is part of it. How do we measure 

value of each state? In value-based method, value of each state is found by 

averaging the cumulative scores of that particular state. Hence value of each 

state is directly proportional to its rewards.  

What we does in value based learning method is optimising value function with 

respect to the policies. Let V(S) be a value-function.  

𝑉π(𝑆𝑖)=∑ 𝐸π0[𝛾𝑗−𝑖(𝑅(𝑆𝑗, 𝐴𝑗)|𝑆𝑖]𝐼
𝑗=𝑖 , I=304 

E is expectation. Now we need to find a policy π which will help us maximise the 

expected cumulative rewards. This can be written in an equation as: 

𝑉∗(𝑆)=𝑚𝑎𝑥π𝐸[∑ [𝛾𝑖(𝑅(𝑆𝑖, 𝐴𝑖, 𝑆𝑖 + 1)|𝜋, 𝑆0 = 𝑆]𝐼
𝑖=0 ], I=304 

Now let’s find optimal Q-function based on the 𝑉∗(𝑆).  

Definition of optimal Q-function: we know that Q-function depends on both 

state and action.  

Q(S,A)= R(S,A)+ 𝛾𝑉∗(𝑆′), where S’=K(S,A) where K is state transition function. 

𝑉∗(𝑆) = 𝑚𝑎𝑥a𝑄(𝑆, 𝐴)  
Now combining the above two equations, we get : 

Q(S,A)= R(S,A)+ 𝛾𝑚𝑎𝑥a′𝑄(𝑆′, 𝐴′)       



 

 

That is Q-function of state S, depends on Reward for state S, for a given action 

A. And also on the discounted factor multiplied by maximum possible Q-

function for the next state S’ and a given action A’ 

Q-LEARNING METHOD 

Now that we got to know what is Q-function. Let us try to understand what Q-

learning is, and how we can use this in case of tic-tac-toe.  

States/Actions A1 A2 A3 A4 …… 

S1 Q(S1,A1) Q(S1,A2) Q(S1,A3) Q(S1,A4) …… 
S2 Q(S2,A1) Q(S2,A2) Q(S2,A3) Q(S2,A4) …… 

S3 Q(S3,A1) Q(S3,A2) Q(S3,A3) Q(S3,A4) …… 

S4 Q(S4,A1) Q(S4,A2) Q(S4,A3) Q(S4,A4) …… 
…… …… …… …… …… …… 

TABLE 7:Q-VALUES CORRESPONDING TO EACH STATE AND ACTION 

If we look at the table for each state and action, we have corresponding Q-

value. And this Q-value is important for us because it helps us decide if certain 

action at current state is good or bad. 

We need to iteratively update the Q-values present in the above table. This is 

how Q-learning updates the Q-values:  

𝑄𝑖+1(Si,Ai)=(1-α) 𝑄𝑖(Si,Ai)+ α(Ri+ 𝛾𝑚𝑎𝑥a𝑄𝑖(𝑆𝑖 + 1, 𝐴)) 

α is learning rate. α is a value between 0 and 1. If we look at the above 

equation carefully we can see that it is exponential moving average. 

Since Noughts and Crosses game is quite a simple process, we need not go as 

far as to use moving average (this will be useful larger data problems to get a 

certain stability). 

 

MENACE wins in the game. So assuming rewards for the game are +1 for 

winning, 0 for drawing and -1 for losing. We will now need to update the Q-

values. We can take any random value for α, but let us take 0.9.  

Assume all Q-values initially are zeroes. And now with the help of α and reward 

we will update the Q-values we have encountered during the course of the 

game.  
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TABLE 8: BOARD CONFIGURATIONS DRAWN ON MATCHBOXES 

In the above game MENACE is the one that plays O, whereas X is played by 

human. Since MENACE won at the end of the game, it gets a reward of +1, so 

Q-value is updated to 0(initial value)+0.9(learning rate)*(+1). That is Q-value of 

third move of MENACE (also final move) is updated to be 0.9.  

Now we can update Q-value of the previous step of the game by tracing our 

game back. The Q-value for the previous state would be 0(initial 

value)+0.9(learning rate)*0.9(maximum possible Q-value). Here we didn’t 

multiply with the reward since this move is not the final move. And we have 

also considered discount factor to be 1. That is Q-value for the second move of 

MENACE is now updated to be 0.81.  

Observe that we are updating the Q-values only at the positions on board 

where MENACE has made its move. 

Now doing similarly for the first move made by MENACE, Q-value for it would 

be 0+0.9*0.81. That is 0.729. 

Continue to repeat this process by playing as many games as possible. We can 

also play against different opponents.  



 

 

To make MENACE best at noughts and crosses games, we actually should train 

it against lots of players whose strategies could be either random moves or 

moves that are trained from learning agents. And also we can vary the values 

of learning rate, discount factor and observe the efficiency of MENACE. By 

making MENACE play more than 500 games, it slowly starts to improve.  

Finally by keeping table of performances of MENACE against all the variables 

mentioned above, and across thousands of games and tens of players, we can 

find one too many processes which improves MENACE efficiency. 

3.2 CONCLUSION: 

Donald Michie has introduced us to a new form of machine learning through 

noughts and crosses game. Though the learning method he has used for 

MENACE is quite efficient, it takes MENACE a long duration to improve in the 

game and it is also physically exhaustive to follow his method. Now with the 

improved technology and also with the new found knowledge of various types 

of machine learning, we are able to improve the MENACE ability. Machine 

learning has numerous applications in the real world. The applications of 

Machine Learning only seems to be increasing day-by- day. So it is fun to learn 

about the one of the basic starts to Machine learning through this project. 
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