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ABSTRACT  

 

Transformers have become popular in natural language processing. In this          

project we have explored the usage of language models for improving the            

performance of speech recognition models. 

 

We have observed that while not only improving over the baseline results, they             

can be used as better initializations which result in faster convergence. And also             

the idea of transfer learning where the learning that has been employed in the              

training of one model can be used in another has been used. 

 

Further work in this direction would be in the direction of pre trained encoder and               

decoder models with learnt initialisations to improve the speed and the training            

time. 
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                                                      ​CHAPTER 1  

 
                            INTRODUCTION  

 
 

Transformer encoder-decoder models [1] have become popular in natural language          
processing. The Transformer architecture allows to successfully train a deep stack of            
self-attention layers via residual connections [2] and layer normalization [3].  

 

The positional encodings [1], typically based on sinusoidal functions, are used to            
provide the self-attention with the sequence order information.  

 

Across various applications, systematic improvements have been reported over the          

standard, multi-layer long short-term memory (LSTM) recurrent neural network         

based models.  

 

While originally designed as an encoder-decoder architecture in machine translation,          

the encoder (e.g., [5]) and the decoder (e.g., [4]) components are also separately             

used in corresponding problems depending on whether the problem disposes the           

whole sequence for prediction or not. 

 

While similar analysis has been done in [6], they have only used RNN/LSTM             

language models, in this project we have exclusively used Transformer language           

models. 

 

These are the different ways in which we use the power of these language models               

(which are trained on similar or huge amounts of text): 

 



1. Shallow fusion [6] 

2. Using their outputs as Embeddings 

3. Look-ahead model [8] 

4. Initialising the Decoder part of ASR model with Lang Model weights. 

 

The positives and negatives of these approaches will be explored in further sections. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

                                                         ​CHAPTER 2 

 

TRANSFORMERS FOR LANGUAGE MODELLING  
 
  

The language model we consider is based on the decoder component of the             
Transformer architecture [1]. 

A layer is defined as a stack of two components :  

1. Self-attention  

2. Feed-forward modules. 

The autoregressive self-attention module in the “​l​”-th layer transforms the input            

z​t​(l​−​1)​ at position ​t​ as follows: 

 

  

Where Q,K,V, respectively denote query, key, value projection matrices,         

LayerNorm denotes layer normalization [3],SelfAttention denotes the scaled        

multi-head dot product self-attention [1], and W0 denotes the projection matrix for            

the residual connection [2]. 

 

The output ​y​l​t​ ​ ​ is then fed to the feed-forward module: 

 

 

 



Where Activation Is Rectifier[7]. The final model is built by stacking these layers             

multiple times.The input of the network consists of the sum of the token em-bedding              

(word or BPE in this work) and the sinusoidal position encoding as specified in [1].  

 

The output softmax layer gives the probability distribution for the next token. As             

shown in the equations above, ​h​(l)​t can be seen as states of the Transformer               

model2(whose size, as opposed to the RNN states, linearly grows along the position             

dimension). 

 

During inference, these states are stored to avoid redundant computation. During           

training, the computation along the position dimension is parallelized for speed-up. 

 

One of the powerful language models we used during our experimentation was the             

GPT-2[4]. It has been trained on a preliminary version of WebText which contains             

slightly over 8 million documents for a total of 40 GB of text. It has about 50,256                 

unique BPE, as a show of its might. 

 
 

 

 

 

 

 

 

  

 

 



 

     CHAPTER 3 

 

USING LANGUAGE MODELS IN SPEECH 
RECOGNITION 

 
 
As mentioned in Section 1, we will discuss all the methods that have been              
employed to use language models for Speech Recognition one by one. 

 

3.1 Shallow Fusion[6] : 

     The inference step of CTC/attention-based speech recognition is performed by          

output-label synchronous decoding with a beam search. During the decoding using           

beam search, rather than simply taking scores from the acoustic model we also             

consider scores from the LM.  

 

In the beam search process, the decoder computes a score of each partial hypothesis,              

which is defined as the log probability of the hypothesized character sequence. The             

joint score ​α(g)​ of each partial hypothesis ​h​ is computed by : 

                  

                                  

                                   

where ​g is an existing partial hypothesis, and ​c is a character label appended to g to                 

generate ​h, i.e., ​h = g · c​. The score for ​h is obtained as the addition of the original                    

score ​αatt(g)​ and the conditional log probability given by the language model. 

                                             

                       



 

3.1.1 FineTuning Language models: 

  While for the language models we trained from scratch we do not need any              

finetuning, for huge language models like GPT- 2 [4], it has been shown that it is                

useful to finetune the model first.  

Fine Tuning here refers to training the model for a few epochs on a smaller dataset                

with only altering the parameters of the final layers.  

Rather than training the model from scratch, we initialise the parameters of the             

model with GPT-2’s released parameters and start our training from there. When            

training on the new dataset, it only requires a few steps of training as the model                

already has a very good grip on the English language.  

The model will understand the nuances of the text that should be generated so as to                

mimic the given dataset with only a few steps of training. This is why it is called                 

Fine-tuning, we are fine-tuning the huge GPT-2 model to adhere to this small dataset              

and generate according to the patterns in the small dataset. 

 
 
 

3.1.2 Shallow Fusion with BPE mismatch: 

One issue we have faced when using huge language models is the mismatch in the               

BPE units (1000 : our model vs 50,256 (GPT-2)). We have dealt with this in two                

different ways: 

1. Without Finetuning ​: As the BPE’s of the bigger language model are generally             

a superset of the our model’s, we can simply select those BPE’s probabilities             

from the bigger model, normalize over them and give out a probability vector             

over those BPEs only. 



2. Finetuning: Fine tuning the last layer removed and adding our own linear            

layer for prediction. This linear layer will have the final softmax with the             

number of units of the acoustic model we have trained. 

 
 
 

3.1.3.Results for this method on the NPTEL dataset are as follows: 

 

 Word Error Rate (WER)  

 

Models WER 

Baseline : 1000 BPE    
Transformer 

13.9 

Six layer Transformer LM 13.5 

Without Fine tuning GPT-2 
15.1 (worse than   
baseline) 

Fine tuned GPT-2 13.4 

 
 

3.1.4 Inferences: 

    While adding a language model improves the WER relative by around (7-8%) and             

absolute by 1-2%, one of reasons according to our experimentation for no significant             

jump while using GPT-2 would be not using the power of >50,000 BPE. 

    With or without fine tuning, asking it to predict over a very small subset of               

BPE(~1,000) when it has significantly more predictive power might be the cause for             

the weak performance. For example, there would be many bigger BPEs in GPT-2’s             

units which are not used at all due to having a smaller set.  



Consider “cat” and “caterpillar”, normally GPT-2 has both of them in its BPE set              

now when we restrict it to smaller units, we are losing the power of bigger units.  

 

We look into the Look-Ahead method of combining, to mitigate this issue. 

 

 

 

 

3.2 Using LM outputs as Embeddings: 

     In this method we have used the outputs of the language models given the context               

as the starting point for the acoustic model’s decoder. As language models are             

trained to predict the next token this would help the decoder to learn faster. 

     

We have tried two approaches here : 

1. Freezing the language model layers 

2. Training the language model layers. 

 
 

 

 

3.2.1 Results : 

                    ​Word Error Rate (WER)  

     Model    WER 

Freezing LM layers  14.1 (worse than baseline) 

Training LM layers 13.8 

GPT2 Fine-Tuned 13.7 

 



   ​  

 

3.2.2 Inferences: 

One of the reasons that this did not work as we expected might be due to the decoder                  

not learning the identity function. Initially as the decoder will be initialised            

randomly, the final output (even though there are residual connections) might be            

very different from the initial input given by the language model. 

 

Future work in this would be in the direction of having less number of decoder               

layers (we used 6 till now it can be decreased to 3) and having a residual connection                 

directly to the output of the decoder. This would help the model perform at least as                

good as the language model. 

 

Also even in this case we aren’t using the power of all the BPEs, the representation a                 

smaller language model(with less BPE) learns for ‘​the’ ​can be a lot different from a               

bigger language model’s ‘​the’ ​representation. Due to the availability of lesser BPEs,            

the smaller model has to learn about each of the BPEs and it still might not represent                 

all the possibilities correctly, while this is not the case in the bigger BPE case.  

 

Even though the units are sub-words(BPEs) we have observed that most of them are              

complete words (in the case of GPT-2), so given enough text data to learn, this               

model will have to learn representations for words, it will resort to BPE learning              

only when it encounters a word it hasn’t seen. As BPEs are formed on the basis of                 

frequent occurrences, the probability of seeing a word which is unknown is less. 

  

3.3 Look-ahead model [8]: 

The look-ahead word-based RNN-LM enables us to decode with only a word-based            

RNN-LM in addition to the encoder decoder. This model predicts next characters            



using a look-ahead mechanism over the word probabilities given by the word-based            

LM. 

 

 

To compute look-ahead probabilities efficiently, they used a prefix tree          

representation as shown in Figure above. This example shows a vocabulary and its             

prefix tree representation. During decoding, each hypothesis holds a link to a node,             

which indicates where the hypothesis is arriving in the tree.  

 

Suppose a set of anticipated words at each node has already been obtained in              

advance. A look-ahead probability at node n can be computed as the sum of the               

word probabilities of all the anticipated words as : 

                       

where ​wset(n) denotes the set of anticipated words at node ​n​, and ​p​wlm​(w|ψ) is the               

original word probability given by the underlying word-based RNN-LM for          

word-level context ​ψ​. 
The character-based LM probability with the look-ahead mechanism is computed as: 

 

                      



 

Where ​F denotes a set of word end nodes(the nodes which denote the end of the                

word), ​n​g is the node that ​g has arrived, ​S = {<space>, <eos>}, ​ ​n​g·c ​is a succeeding                 

node of ​n​g ​determined by ​c​, ​ξ(​n​g​) ​is a set of succeeding nodes from ​n​g ​, and η is a                    

scaling factor for OOV word probabilities, which is a tunable parameter. 

 

The first case of equation above gives the word probability at a word end node,               

where ​p​wlm​(w​g​|ψ​g​) ​needs to be normalized by ​p ​la (n g |ψ ​g ​) ​to cancel the already                  

accumulated look-ahead probabilities. The second case computes the look-ahead         

probability when making a transition from node ​n ​g ​to ​n ​g·c . The third case gives the                  

OOV word probability, where character ​c is not accepted, which means the            

hypothesis is going to an OOV word. The last one handles the case that ​n g is null,                  

which means that the hypothesis is already out of the tree, and it returns 1 since the                 

OOV probability was already applied in the third case. In the above procedure, we              

assume that whenever the hypothesis is extended by the <space> label, the new             

hypothesis points to the root node of the tree. 

 

We have reproduced their results on the ​WSJ dataset, using a transformer acoustic             

model (basic units : characters) combined with a Word-RNNLM. 

 

                             ​Transformer Character model (WER)     

Model                              

                                         

   

 

Eval93    
Dev93 

Baseline char model 19.3 19 

with Word-LM 9.7 9.3 

 



As shown in the previous table, this idea has been very effective for many standard               

ASR tasks like WSJ and Librispeech reporting the state of the art results for end to                

end systems.  

 

We have explored using GPT-2 to replace the Word-LM in this idea. Because             

GPT-2 has BPEs and not words as basic units, some changes are to be made to make                 

use of the same idea.  

 

1. BPEs are sub-words or parts of words, we cannot apply the first condition             

because end of a valid BPE does not mean that we will encounter ‘<space>’              

token next. 

2. In the BPE method, we have tokens starting with the space token like this              

token. 

 “​_the ”(‘ _’ is used to denote ‘<space>’) and without the space token like              

“​the​”. 

So while building the prefix tree we have treated ‘<space>’ as a separate             

character. 

 

3.3.1 Future work : 

As this is one of the works that has been proved to work for various datasets, we                 

would want to extend this for any BPE to BPE kind of a matching so that we can                  

combine the power of huge language models to help acoustic models while retaining             

all of their basic units. 

 

 

 

 

 

 



3.4 Initialising the Decoder of ASR encoder decoder with Lang Model weights: 

 

One more approach we have tried is that we tried to initialise the decoder of the                

acoustic model with the language model’s weights as the decoder is essentially a             

Lang model getting some extra inputs (as cross attention) from the encoder. 

 

Everything except the cross attention will already be present in the language model,             

so we can simply initialise the cross attention modules randomly. 

 

3.4.1 Results: 

Given below is the WER after doing the above experiment on NPTEL dataset. 

                                                

                            Word Error Rate (WER)  

               

Model WER 

Loading LM as decoder  14.2 (worse than baseline) 

 

3.4.2. Future work : 

I believe that this would be one of the approaches that should be further explored               

because it introduces the idea of transfer learning to encoder-decoder networks.           

Which in turn would enable faster and better training of the networks. 

 

 

 

 

 

 



 

                                               ​CHAPTER 4 

 

CONCLUSION AND FUTURE WORK 
 
 

The main aim of this project was to understand the State of the Art work happening                
in NLP and try to use those ideas in ASR. As shown before, Language models have                
shown that they can be useful, but their actual potential can be unlocked only when               
we use their power completely. Like in the section 3.3. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

REFERENCES 
 

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. 
Polosukhin, “Attention is all you need,” in Proc. NIPS, Long Beach, CA, USA, Dec. 2017, pp. 
5998–6008. 

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in IEEE 
Conf. on Computer Vision and Patt. Recog. (CVPR), Las Vegas, NV, USA, June. 2016, pp. 
770–778. 
[3] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv preprint 
arXiv:1607.06450, 2016. 
[4] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language models are 
unsupervised multi task learners,”  
[Online] : ​https://blog.openai.com/better-language-models/​, 2019. 
[5] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pretraining of deep bidirectional 
transformers for language understanding,” in Proc. NAACL, Minneapolis, USA, Jun. 2019. 
[6] S. Toshniwal, A. Kannan, C.-C. Chiu, Y. Wu, T. N. Sainath, and K. Livescu, “A comparison of 
techniques for language model integration in encoder-decoder speech recognition,” in Proc. SLT, 
Athens, Greece, Dec. 2018. 
[7] V. Nair and G. E. Hinton, “Rectified linear units improve restricted Boltzmann machines,” in 
Proc. Int. Conf. on Machine Learning (ICML), Haifa, Israel, Jun. 2010, pp. 807–814. 
[8] Takaaki Hori, Jaejin Cho, Shinji Watanabe “END-TO-END SPEECH RECOGNITION WITH 
WORD-BASED RNN LANGUAGE MODELS”, Interspeech 2018. 
 
 

 

 

 

 

https://blog.openai.com/better-language-models/

