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ABSTRACT

KEYWORDS: mmWaves; Joint beam and channel tracking; Cramer Rao Lower

Bound

The severe path loss in mmWaves makes highly directional communication imperative.

The narrow beams produced require accurate beam alignment which can be realized

with high pilot overhead. However, doing this becomes a challenge for fast-moving

mobiles. In this report, we study a very efficient algorithm called Recursive Beam and

Channel Tracking, proposed in [1], to jointly track channel coefficient and beam direc-

tion at the receiver side in an mmWave system. We consider two scenarios: Static and

Dynamic. The algorithm can not only track the channel gain and beam direction in fad-

ing environments but also needs a low pilot overhead. Apart from this, it provides high

tracking accuracy: in static scenarios, the Mean Square Error converges to minimum

Cramer Rao Lower Bound, while in dynamic scenarios, it yields low tracking error

even at high angular velocities.We also study a training scheme, Directional Training,

proposed in [2], which is very effective for FDD massive MIMO.
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CHAPTER 1

INTRODUCTION

1.1 Prerequisite

The rising demand of high data rates cannot be met with the currently used spectrum of

frequencies below 6Ghz. This is because these frequency bands are heavily crowded.

Thus, 5G systems will rely on millimeter waves. The mmWaves belong to the frequency

of 3-300Ghz. However, the millimeter spectrum has its own set of problems. It is

a known fact that higher the frequency of a wave, lower is its range. The mmWave

channel faces severe path loss apart from other environmental obstacles. To counter

these issues, 5G uses technologies like small cells, massive MIMO and beamforming.

Beamforming: Beamforming is, essentially, a technique using which an antenna

sends/ receives a signal in a particular direction only. Beamforming not only increases

the efficiency of 5G connections but also prevents interference. When a base-station

receives a signal, it keeps track of the direction of arrival. Multiple antennas are kept

close together and their weights are adjusted in such a way that there is constructive

interference in the desired areas and destructive interference in the rest. Electromagnetic

waves combine by coherence and thus form a “beam” towards where the previous signal

came from. If the beam goes to unwanted locations, the phases collide and hence there

is destructive interference. Thus, during transmission, the signal is directed towards

a specific direction and while receiving a signal, sensors are calibrated such that the

antennae receive from a specific direction.

Cramer Rao Lower Bound: Cramer Rao Lower Bound is a lower bound on the

variance of any unbiased estimator of parameters which are deterministic in nature. For

a scalar parameter θ, CRLB is given by the reciprocal of Fisher Information I(θ), where:

I(θ) = E

[(
∂ ln(p(x, θ)

∂θ

)2]
(1.1)



So, the variance of any unbiased estimator θ̂ follows the below inequality:

var(θ̂) ≥ 1

I(θ)
. (1.2)

What is of interest to us is the extension of the above result to the case where a vector

parameter is estimated. Let the vector parameter be θ = [θ1θ2...θp]T . Here, CRLB of ith

element of the parameter is taken as [i,i] element of inverse of the Fisher information

matrix I(θ), where:

[I(θ)]ij = E

[(
∂ ln(p(x,θ)

∂θi

)(
∂ ln(p(x,θ)

∂θj

)]
(1.3)

CSIT in FDD massive MIMO: Massive MIMO is a crucial part of 5G systems. And

channel state information at the transmitter is needed to carry out transmit beamform-

ing needed by massive MIMO. Getting CSIR is easy because the receiver already knows

the pilot symbol sent by the transmitter. However, obtaining CSI at the transmitter is

difficult because transmitter does not know the received symbol. In uplink communica-

tion, BS is the receiver. Therefore, it knows the uplink channel. But it does not know the

downlink channel as it acts as the receiver. This is not an issue when we talk about time-

division duplexing mode. In TDD mode, BS can get the downlink channel information

by utilising uplink channel reciprocity. It just needs to conduct uplink transmission.

Whereas, frequency-division duplexing does not follow channel reciprocity. Hence,

when the terminals get to know the downlink channel, they send the information back

to BS through uplink feedback.

1.2 Objective and Significance

In this report, we study two problems. The first one is in chapter 2 and the next one is

in chapters 3 and after.

Because of high number of antennas, pilot overhead needed for uplink feedback in a

massive MIMO system is quite high. Thus, obtaining CSI at the transmitter for massive

MIMO in the FDD mode is considered to be a daunting task. Also, because FDD is

a widely used communication mode, this challenge becomes all the more significant.

There have been several works done for this challenge in the past, namely [3, 4, 5].
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But these works assume that the we know the long-term channel statistics while in the

real world, we may not know it. The work in [6] assumes small channel separation

between the uplink and downlink channels which again, may not be the case in the real

world. Therefore, in chapter 2, we study a method, Directional Training, proposed in

[2], to find downlink channel information for FDD massive MIMO. This method uses

instantenous CSI and does not need long-term statistics of the channel. It also works

with high frequency separation.

To deal with severe path loss, mmWave systems heavily rely on directional commu-

nication. However, the beams formed are narrow. Even a slight beam misalignment can

lead to considerable signal drop. The problem gets worse when the user is moving, i.e.

in a dynamic scenario. One also has to limit the number of pilots for tracking, which

gets tougher when the user is moving. Therefore, fast and efficient beam tracking strat-

egy is imperative for an mmWave network. The key challenge is to track a large number

of high-speed users and achieve high throughput along with low pilot overhead. A good

amount of work has been done in this area. The algorithms based on compressed sens-

ing used in [7, 8, 9], could work with low pilot overhead and achieved fast tracking

speed. But these algorithms could only function in static scenarios and thus would not

be suitable for high-mobility scenarios. The beam tracking algorithms used in [10, 11]

take the prior information to track the beams. Unlike compressed sensing based al-

gorithms, they can function in a dynamically changing environment. But they do not

optimize beamforming vectors. This is why the tracking accuracy is not up to the mark

in this case. The algorithm used in [12] optimizes the training beamforming vectors.

However, it presumes that the channel coefficient is known. But channel coefficient can

also be unknown in a real mmWave system. Therefore, in chapters 3 and after, we study

an algorithm proposed in [1] that can track both channel coefficient and beam direction

simultaneously in a high-mobility scenario and uses optimal beamforming vectors to

achieve high tracking accuracy and low pilot overhead.
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CHAPTER 2

DIRECTIONAL TRAINING

2.1 Angle-Based Channel Model

In this chapter, we characterize a received signal of wavelength λ incident on the BS at

an angle of (θ, ψ) as:

a(θ, ψ) =



1

ej
2π
λ
dsinθcosψ

.

.

.

ej
2π
λ
d((Mr−1)cosθ+(Mc−1)sinθcosψ)


(2.1)

where Mr is the number of rows and Mc is the number of columns in the plane array

used and d is the space between adjacent antennas.

A downlink channel can be represented both in angular domain and in antenna

space. We will look at how it can be represented in the angular domain. If an lth

signal leaves the array at the angle of departure (θdl, ψdl) then the downlink channel, a

total of Ld signals travel in, can be modeled as:

hDL =

Ld∑
l=1

βdlaλd(θdl, ψdl) (2.2)

where βdl represents the complex channel coefficient of the lth signal.

2.2 Dominant AoD set and Angle Correlation

In this section, we discuss two major results of a massive MIMO system in FDD mode.

These two results will be utilized in directional training.



2.2.1 Number of dominant AoDs

It is found that one needs only a limited number of AoDs to represent the downlink

channel, such angles can be called dominant AoDs. It is also found that the number

of dominant AoDs is far less than the number of antennas which is quite large. This

number also does not depend on the number of antennas. An intuitive explanation for

this is that the channel energy is concentrated in a limited number of AoDs.

2.2.2 Angle Correlation

The FDD mode does not follow channel reciprocity because uplink and downlink con-

nections are made at different frequencies and the difference between the center fre-

quencies are quite larger than the coherence bandwidth. However, it is found that at

the BS, AoAs are same in number and value as the AoDs. This is because the uplink

and downlink signals face almost the same scattering. Thus, if one estimates the uplink

angles one can use the same set of angles as the downlink angles.

2.3 Directional Training

This section outlines the main method used to estimate CSIT for downlink beamforming

in FDD massive MIMO. This technique is applied using the two results highlighted in

section 2.2. The following subsections discuss the step by step procedure for directional

training.

2.3.1 Uplink Training and Estimation of AoD set

To implement directional training, we first need the dominant AoDs. Note that this

number is very small, according to result 2.2.1. To get the AoDs we utilize the result

2.2.2 and calculate the uplink angles first which can be done by uplink training. Uplink

training involves the users sending pilot symbols to the BS. Thus, BS knows the angles

at which these signals arrive. The BS calculates these angles by applying a maximum

likelihood estimator to the uplink CSI it has. This estimated dominant AoA set is taken
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as the dominant AoD set. The estimation procedure of AoA set is outlined below. The

uplink channel of i-th subcarrier is represented by:

ĥi =
L∑
l=1

βilai(θl, ψl) + êi (2.3)

This equation can be rewritten as:

ĥi = Aibi + ei (2.4)

where Ai = [ai(θ1, ψ1), ai(θ2, ψ2)...ai(θL, ψL)] and bi = [βi1βi2...βiL]
T. This can be

written as:

ĥ = Rs + e (2.5)

with ĥ =



ĥ1

ĥ2

.

.

ĥI


, R =



A1 . . . 0

. . .

. . .

. . .

0 . . . AI


and s =



b1

.

.

.

bI


I is the total number of

subcarriers used. The optimization problem being solved is:

minimize
(θl,ψl,βil)

‖ĥ− R̂ŝ‖2 (2.6)

For a known R̂, equation 2.6 can be rewritten as:

minimize
(θl,ψl,βil)

‖ĥ− R̂R̂
†
ĥ‖2 (2.7)

Since problem (2.7) is a non-convex optimization problem, to find the global minimum

one needs a good initial point. 2D Unitary ESPRIT method is used to derive the initial

angles. To find the final AoA set, one uses the interior point method. The tool used for

the same is MATLAB fmincon.

2.3.2 Downlink Training and Feedback

Now that the BS has the dominant AoD set, pilot symbols are sent only in the direction

of these downlink angles. If there are K users, K beams are sent at the same time.
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If Lmax is the number of dominant AoDs, then the base station sends Lmax symbols.

The users estimate the downlink CSI and send the information back in the form of

feedback, estimated channel vector ĥtk. We need to obtain the channel coefficients

from this feedback.

2.3.3 Estimation of AoD Channel Coefficients

We cannot directly take ĥtk as the desired channel vector, bk because of inter-path and

inter-beam interference. Note that b̂k = [β̂k1, .., β̂kLk ]
T. BS gets the AoD channel

vector, bk through:
ˆ̂bk = (WTÂk)

−1ĥtk (2.8)

with

Âk = [a(θk1, ψk1), .., a(θkLk , ψkLk)] (2.9)

W =

[ K∑
k=1

a∗(θk1, ψk1), ..,
K∑
k=1

a∗(θkLmax , ψkLmax)
]

(2.10)

One needs the AoD set and the channel vector to get the downlink CSI. So, once BS

gets the channel vector, it can obtain the downlink CSI through:

ĥDLk = Âkb̂k (2.11)

2.4 Summary

In this chapter, we looked at the directional training scheme to acquire CSIT for transmit

beamforming in FDD massive MIMO. This method is inspired by two main results: One

is that the number of dominant downlink angles is quite small and is independent of the

antenna-size. And the second is that the uplink angles and downlink angles are highly

correlated. Since it uses very less number of training symbols, directional training

outperforms full training.
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CHAPTER 3

RECURSIVE BEAM AND CHANNEL TRACKING

3.1 Type of Beamforming used

Because of its short wavelength, mmWave network can employ a large number of an-

tenna elements in an array with a small factor. This provides enough link margin. How-

ever, the cost of AD/DA devices is high and mmWave RF chains consume significant

amount of energy [13]. Therefore, the number of RF chains should be very much lesser

than the number of antenna elements, which is why we use analog beamforming with

phased arrays in this work. In this beamforming technique, only one RF chain is avail-

able. Amplitude of the weights are constant and phases are different. So, when the

received signal is multiplied with the vector consisting of the weights (or the beam-

forming vector) to achieve beamforming, phase shifters serve the purpose.

3.2 System Model and Beamforming Implementation

The Fig. 3.1 shows the phased array antenna system used [1]. All the antenna elements,

M in total, are connected to one RF chain via phase shifters. Distance between each

adjacent pair of antennas is d. In a particular time slot n, if a signal with wavelength λ

arrives at an AoA θn, then a(xn)=[1, e
2πd
λ
xn , ..., e

2πd
λ

(M−1)xn ]H is called the steering vec-

tor of the received signal. xn,the sine of the AoA, is also called as the beam direction.

As we intend to track both channel coefficient(βn) and beam direction at the same time,

we send two pilot symbols per time slot. The steering vector multiplied with pilot sym-

bol affected by fading acts as the received signal vector. Each element of the received

signal vector gets delayed/advanced by the corresponding phase shifter. Combining the

output of the phase shifters gives the final received signal below:

yn,i = βnwH
n,ia(xn)s+ zn,i (3.1)



wn,i =
a(xn+δn,i)√

M
denotes the beamforming vector, s the pilot symbol sent and zn,i the

noise such that zn,i is an i.i.d. circularly symmetric complex Gaussian random variable

with variance σ2
0 .

Let yn = [yn,1, yn,2]
T, Wn = [wn,1,wn,2] and ψn = [βre

n , β
im
n , xn]

T. Then the condi-

tional pdf of yn is given as:

p(yn|ψn,Wn) =
1

π2σ4
0

e
−‖yn−sβnWH

na(xn)‖22
σ20 (3.2)

Figure 3.1: The System Model

3.3 The tracking method and Problem Formulation

In the first stage, the initial beam direction, xn is estimated such that it is within the

main lobe. Next, the tracking begins from this x̂0 to get more accurate beam direc-

tions. In each time slot n, the receiver chooses a beamforming matrix Wn on the ba-

sis of previously used beamforming matrices (W1, ...,Wn−1) and observation vectors

(y1, ..., yn−1). We obtain yn by applying Wn. We finally get the estimate of ψn by

making use of all the available observation vectors and beamforming matrices [13].

We intend to minimise the error in beam direction tracking and thus we minimise
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the MSE for the same. Below is the joint beam and channel tracking problem:

min E
[
(x̂n − xn)2

]
subject to E

[
β̂n
]
= βn, E

[
x̂n
]
= xn

(3.3)

This problem is not easy to solve optimally. To begin with, yn only gives us partial

information about the system. Furthermore, we need to optimize both ψn and Wn.

And, both the optimization problems are non-convex.

3.4 CRLB of Beam Tracking

In this section, we find the minimum CRLB of MSE in static scenarios, wherein channel

coefficient and beam direction both remain unchanged. This is how we write the CRLB

inequality for MSE:

E
[
(x̂n − xn)2

]
≥

[( n∑
i=1

I(ψ, Wi)
)−1]

3,3

(3.4)

Here, I(ψ, Wi) is the Fisher Information Matrix and is given by:

I(ψ, Wi) = E

[(
∂ log(p(yi|ψ,Wi)

∂ψ

)(
∂ log(p(yi|ψ,Wi)

∂ψT

)]
= 2|s|2

σ2
0


‖gi‖22 0 Re{gHi ei}

0 ‖gi‖22 Im{gHi ei}

Re{gHi ei} Im{gHi ei} ‖ei‖22

 (3.5)

in which gi= WH
i a(x) and ei=βWH

i
∂a(x)
∂x

. To minimize the CRLB, we need optimal

beamforming matrices,and by utilizing the linear additive property of Fisher Informa-

tion Matrix, we can conclude that all the optimal beamforming matrices are the same.

[( n∑
i=1

I(ψ,Wi)
)−1]

3,3

≥ min
W1,..,Wn

[( n∑
i=1

I(ψ,Wi)
)−1]

3,3

= min
Wi

1

n

[
I(ψ,Wi)−1

]
3,3

(3.6)

For any beamforming matrix Wi, the I(ψ, Wi) is as follows:

[
I(ψ,Wi)−1

]
3,3

=
σ2
0

2|sβ|2
‖gi‖22

‖gi‖22‖ei‖22 − |gHi ei|2
(3.7)
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To obtain the optimal W for which the CRLB is minimized, we need to use the nu-

merical method since the problem (2.6) is non-convex and makes it difficult to get an

analytical solution.This is what we get:

W∗ =
1√
M

[
a(x− δ∗), a(x+ δ∗)

]
(3.8)

in which δ∗ is very close to 2λ
3Md

as M →∞, and even at M ≥ 8.

3.5 Coarse Beam Sweeping

The coarse beam sweeping is carried out to get the initial estimates of beam direction

and channel coefficient. The method followed is orthogonal matching pursuit method

which ensures that initial beam direction estimate is within the main lobe range:

B(x0) =
(
x0 −

λ

Md
, x0 +

λ

Md

)
(3.9)

We take all possible directions using X = {1−M0

M0
, 3−M0

M0
, ..M0−1

M0
} and from this set we

choose the initial estimates x0 which is closest to the real x using equation 2.10. β0 is

calculated using x0.

x̂0 = arg max
xεX

|a(x̂)HW̃ỹ|, β̂0 = ˜[WH
a(x̂0)

]†ỹ (3.10)

3.6 Beam and Channel Tracking

In the previous sections, we got the minimum CRLB for a known x. But in a real sce-

nario, x is unknown and thus, we adjust beamforming matrices dynamically [13] The

first task is to choose beamforming vectors for the two symbols. To ensure that the

beamforming vector does not go out of the main lobe range, we keep it close to the pre-

viously estimated beam direction, where δ∗ acts as an offset. Below is the maximization

likelihood problem that we follow:

max
ψ̂n

{
max
Wn

n∑
i=1

E

[
log p(yi|ψ̂n,Wi)

∣∣∣∣∣ψ̂n,W1, ..,Wi, y1, .., yi−1

]}
(3.11)
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The inner layer is equivalent to minimizing the CRLB to get Wn. This gives:

wn,1 =
a(x̂n−1 − δ∗)√

M
,wn,2 =

a(x̂n−1 + δ∗)√
M

(3.12)

Then, we solve the outer layer using the stochastic Newton’s method and arrive at the

following equation:

ψ̂n = ψ̂n−1 + anI(ψ̂n−1,Wn)
−1∂ log(p(yn|ψ̂n−1,Wn)

∂ψ̂n−1
(3.13)

in which an is the step-size, and:

∂ log(p(yn|ψ̂n−1,Wn)

∂ψ̂n−1
= − 2

σ2
0


Re{sHĝH

n(yn − sβ̂n−1ĝn)}

Im{sHĝH
n(yn − sβ̂n−1ĝn)}

Re{sHêH
n(yn − sβ̂n−1ĝn)}

 (3.14)

where ĝn=WH
na(x̂n−1) and ên=β̂n−1WH

n
∂a(x)
∂x

∣∣∣∣
x=xn−1

Also, let ln=‖ĝn‖2‖ên‖2 and cn=ĝH
n ên Then, we arrive at our final tracking equation:

ψ̂n = ψ̂n−1 − k


l2n − Im{cn}2 Re{cn}Im{cn} −‖ĝn‖22 Re{cn}

Re{cn}Im{cn} l2n − Re{cn}2 −‖ĝn‖22 Im{cn}

−‖ĝn‖22 Re{cn} −‖ĝn‖22 Im{cn} ‖ĝn‖42




Re{sHĝH
n(yn − sβ̂n−1ĝn)}

Im{sHĝH
n(yn − sβ̂n−1ĝn)}

Re{sHêH
n(yn − sβ̂n−1ĝn)}

 (3.15)

where:

k =
an

‖sĝn‖22(l2n − |cn|2)
(3.16)

13





CHAPTER 4

SIMULATION

In this chapter, we give the framework for simulation and show the results of simula-

tions. The theory for the simulations has been explored in the preceding chapter. The

simulations are carried out for both static and dynamic scenarios. In both the cases,we

take M=32 and d=0.5λ. We set the pilot symbol as s=0.5+0.5j and transmit SNR as

5dB. Also, we take β as a Rayleigh fading coefficient.

4.1 Static Scenario

The step-size used in this case was 1/n, where n is the time slot. We took AoA as

0.We plot MSE over time by taking 1000 realizations.The MSE curve obtained from

the RBCT algorithm is shown in Fig. 4.1(a). As we can see, the MSE converges to the

minimum CRLB.

4.2 Dynamic Scenario

The step-size used in this case was 1. We take real AoA at a time slot n, θn = θn−1 +

δn−1ω, with θ0 = 0, δε{−1, 1} and ωε[0, 0.04]. δn is chosen in such a way that θn lies

between [−π
3
, π
3
]. The MSE over omega is calculated by averaging it over 1000 time-

slots.The curve is shown in Fig. 4.2(a). As we can see, the RBCT algorithm supports

high angular velocities. We also plot achievable rate over angular velocity. As per Fig.

4.2(b) , the RBCT algorithm achieves 83% of channel capacity at an angular velocity of

0.02 rad/time-slot. Thus,it can be said that the algorithm also supports high data rates.
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Figure 4.1: (a) Simulation result for Static Scenario: MSE vs. time-slot number
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CHAPTER 5

KEY RESULTS AND CONCLUSION

The mmWave network needs directional beamforming but is highly susceptible to sig-

nal drop because of narrower beams which gets more complicated as the value of ω

increases. We simulated the MSE performance of RBCT algorithm for static scenarios.

It was seen that the MSE curve achieves minimum CRLB as n increases. After this,

we calculated MSE and achieveable data rates for different angular velocities. In those

cases, we showed that the MSE is quite low for high angular velocities. Besides, the

achievable rate is also decent at high angular velocities. Therefore, we can say that

RBCT algorithm achieves low beam tracking error and high data rates along with low

pilot overhead.

In full training, symbols are sent in all directions. The overhead simply depends

on the number of antennas at the BS which is quite high for massive MIMO.However,

in directional training, symbols are sent in specific directions only and the overhead

depends on the number of AoDs used which is quite low. It costs 2Lmax symbols while

full training costs 2M symbols.Thus, directional training offers much lower overhead

than full training.





CHAPTER 6

FUTURE WORK

Beam and Channel Tracking has a lot of avenues to be tried and examined. When

we implemented the RBCT algorithm, we assumed that the channel coefficient and

beam direction vary independently. However this may not be the case in real mmWave

channels. The variation of channel coefficient and beam direction might be interrelated.

This could be taken into account in the work ahead. We also assumed transmitter and

receiver reciprocity and thus performed tracking only at the receiver. However, one can

try to track both at the transmitter and receiver. Also, we focused on tracking one path.

But jointly tracking multiple paths can also be considered in further research.
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