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Abstract

Transmitters have always been an integral of a wireless communication
systems. As the communication frequency band is increasing, there is a
rising demand for a wideband transmitter, flexible enough, to be used
over a wide frequency band. We have designed and simulated one such
flexible Tx, with operating frequency between 100MHz to 12GHz.
Typically, at block level, REF' Transmitter consists of an up-conversion
Mixer, LO-Buffer, Pre-PA and Power Amplifier(PA). The new topologies
were designed with an aim of improving Power and Area efficiency of
the existing chip. This eventually led to development of a new topology
called Power Mixer which has all the sub-blocks of transmitter merged
into a single unit.

The project also involved testing version 1 of the chip for which various
test boards were also designed. The test boards had the flexibility of
choosing the matching networks as per the need. For better accuracy in
measurements, de-embedding boards were also developed to extract the
power losses.

The boards developed were finally sent to the manufacturer for the

fabrication and testing.
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Abbreviations

RF': Radio Frequency

PA: Power Amplifier

BW: Bandwidth

BW of a mixer: Oscillation Frequency at which the conversion gain of the
mixer falls by 3dB.

BB: Baseband

Tx: Transmitter

Flo: Oscillation Frequency
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1 Introduction

1.1 Prior Work

Prior work on the design of the Wideband Transmitter is documented in the
thesis Wideband RF Transmitter in TSMC 65nm technology working
from 100MHz to 12GHz. The block level transmitter architecture is shown
in Fig. 1.

It consists of 2 separate Up-Conversion mixers and pre-PAs for I and Q signals
which are added up in the PA. Mixer uses a simple double-balanced passive
mixer topology followed by a CMOS pre-PA to drive the PA. PA consists of a
simple common source cascode amplifier topology where 1&Q signals are added
up using current addition technique. The output of the on-chip PA goes to the
matching network to drive 50ohms load.

There are also 2 LO-Buffers which are used to drive the Switching Mosfets in
the passive mixer. The LO-Buffer uses a simple resistive-load common source

pseudo-differential amplifier topology.

Flo

| FComponent [

I-Companent
izl » Up-Conversion | * pre.pA
Mixer

p s
m\rergmphher » OUTPUT

IQ-Adder

Q-Companent - _» Up-Conversion | » Pre-PA —»
Input Mixer

Flo
| Q-Component |

Figure 1: Tx Architecture 0
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1.2 Contribution to IC Design

Taking a note of the previous Tx architecture, we tried to minimise the number
of sub-blocks in the Tx architectures simultaneously improving gain and BW.
The sub-blocks(to be discussed in next few sections) were designed at circuit

level, based on the following topologies:

1.2.1 Topology 1:

Flo

|
\ I-FComponent (_'

h 4

I-Component .
|nEut — = Up-Conversion "

Mixer
Pre-PA
& = Power Amplifier = OUTPUT
1Q-Adder
Q-Component » Up-Conversion -
nput Mixer
Flo

| Q-Component |

Figure 2: Tx Architecture 1

The maximum output power that can be delivered by the PA in Architecture 0
was reduced because of the adder combined with PA as the current was getting
split for I1&Q components. This issue was addressed by moving the addition of
signals to the pre-PA stage. This would prevent the splitting of the PA current
for 2 different signals and net output power delivered can be increased.

Although this topology didn’t reduce the number of sub-blocks but it increased

the net output power delivered to the load.
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1.2.2 Topology 2:

\
Flo

| I-Component |

I-Component -

Input
Up—Copversion
Mger > Power Amplifier —* OUTPUT
1Q-Adder
Q-Component — g
Input

Flo

| Q-Component |

Figure 3: Tx Architecture 2

From the previous architecture, the adder can be moved from pre-PA stage to
the mixer stage. Since, the addition of 1&Q Signals is now happening in the
mixer itself, there is no specific need of a pre-PA in the Architecture other than
driving the high input capacitance of the PA.

If the input capacitance of the PA could be reduced and if the mixer could drive
higher load capacitance, then the pre-PA can be safely eliminated.

By modifying the mixer and PA accordingly, we had completely removed

pre-PA from the transmitter architecture.
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1.2.3 Topology 3

= _H\\
\._I
Flo
| I-Component |
\ .
- 72 P

—

‘

POWER MIXER
Up-Conversion

I-Component -
Input

Mixer —= OUTPUT
&
IQ-Adder
Q-Component [
Input
; i b 2 B '\_\\.
[ Flo

Q-Component |

74 4
e

Figure 4: Tx Architecture 3

This is the new Transmitter Architecture we had tried.

In this architecture, the output power of the mixer is comparable to that of a
standalone PA. This eliminates the need of an explicit PA in the transmitter
architecture. This high output power mixer has been referred to as Power
Mixer in this thesis. Along with the high power output, this mixer is also
capable of adding [&Q-Signals. Thus all the functional sub-blocks (mixer,
adder, PA) have been merged into a single unit called Power Mixer.

This way, the over-all Transmitter architecture consists of a Power Mixer and 2

pseudo-differential LO-Buffers.
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1.3 Contribution to IC Testing

We have also worked on testing the version 1 of the chip which was designed by

the scholar Kashyap V. Various PCB test boards were designed for this purpose.

1.4 Outline of the Thesis

In the next few section sections, we would be discussing about the sub-block
used in the Tx architecture. Each section (from Section-2 to Section-4) will
compare various circuit level architectures of the sub-blocks. We would be
discussing about the various issues and their solutions in the design. Section-2
deals with designing of pre-PA which will act as a buffer between the Mixer and
PA. Section-3 discusses about the various up-conversion Mixer designs.
Section-4 deals with merging all the sub-Blocks into one using called Power
Amplifier. This block is a standalone block capable of performing signal
up-conversion, addition and power amplification. Section-5 discusses about the
Test Board design methodology for chip testing. It discusses about the
Matching networks,power supply and test board schematics.

Last 2 sections, Section-6,7 has the concluding remarks and references used in

the project.
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2 Pre-PA

PA, due to it’s large size, cannot be connected to Mixer directly. The large
input capacitance of the PA makes it inevitable to have a low input capacitance
buffer between the Mixer and the PA. This low input capacitance buffer is
termed as pre-PA which acts as a low capacitance load at the output of the
Mixer. In our design, pre-PA has additional facility of 1Q-Signal adder. This

helps in implementing the Tx Topology-1 as discussed in the previous section.

2.1 Topology 1: Simple Common source Amplifier

Vdd

Vout

Vin o I

1

Vbias
Figure 5: Simple Pre-PA

It’s a simple Common source amplifier with resistive load. The design is meant
to drive load capacitance of 250fF. The load resistance is set to 27€) for a BW of
approximately 22GHz to get a flat gain over 100MHz -12GHz. For high gain,

the g,, of the nmos is set to 0.19S.
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Results:

£ 6

Figure 6: Pre-PA Gain vs Frequency

Observation: Observed gain is less than the calculated gain(14dB). It’s
because, due to the high current in the nmos, the value of rds is approximately
33€2. This reduces the effective load at the output and so the maximum gain of
the pre-PA falls down to 8.3dB. The BW has also reduced from 22GHz to
19GHz because of the capacitor Cy; at the drain of the mosfet.

A cascode device can be used to increase the over-all gain of the circuit.

o] : i

Vbias

Figure 7: Pre-PA with Cascode Device
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Result:

ACKesprase
LE

il e 2000

25 =
| ¥ F T T T TR R T i T T | DA R A T T T T AT R R R T T T T T
i 20 ah &0 L (1] 120 140 160 180 o L Ho 2060 &0 0.0
feq{GHz)

Figure 8: Pre-PA (with Cascode Device) Gain vs Frequency

The gain is now approximately 11.3dB, but the BW reduces to 14GHz. This is
because of the high drain capacitance due to the large cascode nmos.

The BW can be extended using Peaking Inductor in series with the load resistor.

vdd

=

Vout

VBias_c c,__l |:

o] % i

Vbias

Figure 9: Pre-PA with Cascode Device and Inductor Peaking
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The inductor value is calculated using the following formula:

R

[ ==
1.41

where 'R’ is the load resistance and 'C’ is the load capacitance. The BW

increases to about 1.8 times the BW without shunt peaking inductor:

1.8
2m RC

BWyew = 1.8BW =

For the given value of resistor and load capacitor, inductor of 140pH is used in
the circuit.

Results:

¥ /met?; ac dB200V) Tue Jul 23 12:19:08 2019 L

e e B s B A B e B R ]
..... 126 160 % ) £

Figure 10: Pre-PA (with Cascode Device & BW Extension

240

Inductor) Gain vs

Frequency

Major Drawback: The input capacitance of the pre-PA is around 565fF

which fails the main purpose of reducing the load on the mixer.
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2.2 Topology 2: Pre-PA with IQ-Signal Adder

Vdd

Vout

Vin_l || T vinae—] I
| I | |

Vbias Vbias
Figure 11: Pre-PA with I1Q-Signal Adder

The issue mentioned in the previous section was corrected by compromising on
the gain of the pre-PA. The size of the transconductor mosfet was reduced to
get lower the input capacitance.

The input transconductor mosfet was also split into two, one for each I & Q
signal. The output currents of the 2 transconductor mosfets are added up at the
source of the cascode nmos. This way, IQ-Signal adder was also integrated in
the pre-PA.

By reducing the transconductor sizes, the input capacitance of the pre-PA was
reduced to 65fF for each I & Q signal.

Using the calculations as discussed in the previous section, a peaking inductor

of 208pH was used for BW extension.
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Results:

/et ac dB2UVY:v /et

Hang

e e B0 a5

an

phaseDeglniappedvhey('sc Vo

Hang

ac degl V)

Man Jul 29 09:16:36 2019 L
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BW, 27GHz

etE)

a0 Al Bl wn 120 140 10 180 i 20 {3 =0 2 Rna A A0
fieq (GH

Figure 12: Pre-PA (With addgr) Magnitude plot

Adiing 1 ¢ cormpreaent

Fhas Additicn sinre the magnitude is the sime

Figure 13: Pre-PA (With a(ider) Phase plot

From the magnitude and phase plot, it can be seen that the output is amplified

sum of I & Q signals. Phase of input I-component and Q-component is 0 rad

and 7/2 rad. This pre-PA with adder can be used for topology-1 as discussed in

section-1.

22



3 Mixer

In this section we will be briefly discussing about the various active Mixer

topologies, their design procedures and pros & cons of the design.

3.1 Topology 1: Gilbert Cell

Vvdd

O RF_n RF_p o

& l
oo Jg o

Flon
| I
B = W—5—
Vbias BB_p Vbias BB_n

Figure 14: Gilbert Cell

For Tx Architecture 1, a simple double balanced gilbert cell mixer can be used
to up-convert the signal. As compared to a passive mixer, it provides a good
gain upfront. We get a reasonable gain of around 6.5dB at low frequency and
3db Bandwidth of around 16GHz. However, the gain is limited by the Resistor
size (which is limited by the BW) and the current in the transconductor (which
is limited by the size of the switching nmos). Increasing switching nmos size
makes the designing of LO-Buffer impossible because of the high gate
capacitance which causes the load resistance of the LO-Buffer to be very small.

This limits the overall performance of the mixer.
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Results:

11 dneb0L] b=1, LA R At =100 bt B2V Moo Aug 5 TRETS3 2009 1

&3

Figure 15: Gilbert Cell Conversion Gain vs Flo @ BB frequency=10KHz

(et niebodL] b=l 1)AC0A R i) h=L,00 hb_ome BZGKVAD Men Aug5 TRE415 2019 |
s
- a0
&5 ———
503
303
5
253
153
=
153
I T T T T T T T T T T T T T T T 1
[} (] 40 [ a0 1 120 140 160 bET ] 20 240 6.0 ¥ ann

Figure 16: Gilbert Cell Conversion Gain vs Flo @ BB frequency=99MHz

The issue of low gain can be solved by:

i Adding a current bleeder pmos to push extra current through the

transconductor via switching mosfets. This is not a preferred solution as the
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size of the switching nmos has to be increased which means higher

capacitance on the output nodes and also higher load capacitance for the LO

Buffer.

ii Add a current bleeder pmos to push extra current through the
transconductor by-passing the switching nmos. This would increase the gm
of the transconductor and in turn the conversion gain. Also, since the signal
at the drain of the transconductor is a Baseband/Low Frequency signal, the
extra capacitance will have negligible effect on the overall performance of the

circuit.

3.2 Topology 2: Glibert Cell with Current Bleeder

Voias p, | E % ) % ’ :I }m},’_p

F|opo_{; ;l_é_| |_0F|0P

Flon

| | I
]| T W= ,
Vbias BB_p Vbias BB.n

Figure 17: Gilber Cell with Current Bleeder

A current bleeder has been added to a Gilbert cell to increase the
trancsonductance of the transconductor mosfet for higher gain. It’s expected
that as the current through the pmos transconductor is increased, the
conversion gain of the mixer increases. However, it is observed that the increase

25



in conversion gain isn’t proportional to the increase in bleeder current (keeping
the over-drive voltage of the constant). This is due to the fact that as the
current in the transconductor increases, it’s rds starts falling and hence, lesser
signal current goes through the switch to the load. This can be corrected by
increasing the length of the transconductor keeping the over-drive voltage
constant (as channel length modulation is inversely proportional to the length
of the device). The increased capacitance at the drain of the transconductor
doesn’t effect the over-all performance of the circuit since the signal at that
node is of low frequency. Simultaneously, length of the pmos current bleeder
should also be increased to minimise the signal current leakage from rds of the
pmos. This way we were able to increase the conversion gain of the mixer to
around 19dB and BW of 18GHz.

Results: Load resistance =90(2, load capacitance = 65{F

Figure 18: Gilbert Cell with Current Bleeder: Conversion Gain vs Flo @ BB

frequency=10KHz
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Figure 19: Gilbert Cell with Current Bleeder: Conversion Gain vs Flo @ BB

frequency=99MHz

Till now we had use RF devices in the PDK which are well modelled for RF
signals. Since the signals seen by the transconductor nmos and bleeder pmos in
a BB Low frequency signal, we can replace these devices by an equivalent BB
devices as they allow longer mosfets. This improved the conversion further to
22dB with a BW of approximately 18GHz. This topology is well suited for the

Tx-Architecture 1 as discussed in section 1.2.1.
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Figure 20: Gilbert Cell with Current Bleeder & BB NMOS Device: Conversion

Gain vs Flo

3.3 Topology 3: Mixer With 1Q-Signal Adder

-
=
(=

%vbhg[ 3 ’ ]—\?bias p Ubiasij ]'ﬁbias I

0

Vlop_nl_{ ;__;W _J—mnop_ﬂ’bpﬁ{ _;m

Hewedl o P S o

Whizs Vabp | Vb | Vbbp_ 0 Vbon_0

Figure 21: Gilbert Cell with IQ-Adder and Current Bleeder

This topology consists two gilbert cell with current bleeder for I & Q

Components. The 2 signal currents are added up together and then fed to the

28
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load resistor thus merging adder into the mixer itself. The load resistance has
been reduced to 50€2 as the quiescent current in each resistor has doubled.

To remove the Pre-PA and drive PA directly from the mixer, the load resistance
was reduced further from 5082 to 27.5¢2. We could then drive higher load
capacitance (input capacitance of PA) without compromising on the BW.
Although this meant a compromise on the mixer conversion gain but we would
be able to implement the architecture 2 as discussed in section 1.2.2.

This simulation was done by sweeping Flo and measuring the conversion gain
over for various values of the load capacitance & keeping the Load resistor fixed.

Results: Load resistance = 27.5(2

Increasing Load Capacitor
T T T T T

—_— e
E | = r=27.5,c=130fF |Z
135 g
: ; " —r=21.5,c=180FF |
b =3 - S re275c200F |
: ~ = ‘ r=27.5,0=2800F |
1250 ‘ —re215,c=300F ||
X | zamewine 3
s 7
- 1
e T . e T e =
o [
Ao =
¢ 1oF E
‘T -
O 95|
: )
9. ';
85 |
g =
75
L
6.5 =
gl o bl ben b beedbecdbwnn b b bbb bl e b b b b b b b B L b L |

0 1 2 3 4 5 6 7 8 L] 10 11 12 13 14 15 16 17 18 19 20 21 2 23 24 25 26 27 28 2% 30
Flo (GHz) %10°

Figure 22: Mixer with 1Q-Adder: Conversion Gain vs Flo

Observations: As expected, the conversion gain remains constant and the BW
varies with the load capacitor values. The BW vs Load capacitance is

summarised in the table blow:
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Load Capacitance | 3dB BW
130fF 27GHz
180fF 22GHz
200fF 21GHz
280fF 17GHz

Issues:

i BW can be improved using BW extension technique (to be discussed in the

next section)
ii Low output referred 1-dB Compression point
3.4 Topology 4: Mixer with improved BW and 1-dB compression
point

vid

Lo RFp o

Vbia.E{E " :ll_\ibi as p vbias°j| I: ijiaSJﬁ

0

" T o™ o e

Vobp_| Vbbn | Vbbp_Q

Figure 23: Mixer with BW Extension Inductor: Conversion Gain vs Flo
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In this topology, a center-tapped shunt inductor has been added to the circuit.

The inductor value is calculated using the following formula:

_ R*C
141

where 'R’ is the load resistance and 'C’ is the load capacitance. The BW

increases to about 1.8 times the BW without shunt peaking inductor:

1.8

BW,.w = 1.8BW =
2m RC

So for R=27.5) , C=300fF, the inductance of the centre tapped inductor is
0.375nH.

This increases the BW from 17GHz to approximately 29GHz which can been
seen in the Results section below.

Results:

18 Comparing Gain with and without BW extension Inductor
T Y T T 5 5 G 3 [0 9 = = v = e 0 o 0 R T 50 SR 0 R R 0 B 0 L 5 2 2 I L 0 AR 5
k
- e | Without BW Extension|
18- - | —
T | With BW Extension

L/ = -~ 3.dB BW line

o 2 a 6 B8 10 12 14 16 18 20 22 24 26 28 10 12 kL] 36 L] a0
Flo (GHz) x10"

Figure 24: Conversion Gain vs Flo

Issue: The Output referred 1-dB compression point is -2dBm.
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The output referred 1-dB Compression point is limited by the small current
flowing in the switches. The input BB signal voltage limit equals 1;/g,, where
1, is the quiescent current through the switches and g, is the transconductance
of the transconductor nmos. The reduced over-all gain (because of the reduced
load resistor) thus reduces the maximum output power of the mixer.

This can be corrected by increasing the size of switching nmos and reducing the
size of current pmos to pump higher current through the switching branch. This
increases the Output Referred 1dB compression point but hurts the BW as the
capacitance at the output node has increased due to the increased drain
capacitance of the switching nmos. Since, we are designing Mixer to operate till
12GHz, fall in BW from 28GHz is acceptable.

The resulting conversion gain vs Flo plot is shown below:

Gain vs Flo
[ | | | | | | | | | | | [ | | | | | | | | | | | Feee—
| —

15,5 — |~ — 388 line |

Gain (dB)
—
~
w
[
|

9.5 —
9’_7_i___|_'_l_L_| EN S Y O N A A S s I S N S
0 1 2 3 4 3 6 7 ] 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 0

Flo (GHz) x10°

Figure 25: Conversion Gain vs Flo

The Output referred 1dB Compression Point of the mixer is 1.37dBm.
Parasitic Extraction:
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To get more accurate simulation results, the parasitic capacitance and
resistance were extracted and the model was used for simulation. The layout of
transconductor nmos, switching nmos and current bleeder pmos was done. The
parasitics thus extracted was used to model real mosfet which were then used in
the simulation. The switch nmos size and current through them were also
increased to get better 1dB compression point.

Result Post Parasitic Extraction:

The output referred 1dB compression improves to 2.04dBm

BW =19GHz, Load Capacitance = 300fF, Load Resistor= 27.52

peaking inductor value: 565pH (centre-tap symmetric inductor with 2 turns)

Gain vs Flo (Extracted + BW Extension)
(] 1 1 T 1T T 1

1?|
lﬁ.5i-
16 3

15.5 |
15 -

14.5— 3 -

T With BW Extension inductor

=
e
Wi

Without BW Extension inducion

=
(&
n

Voltage Gain (dB)
et [
P 1] W o B o gy
v -] w w w (=] w - w ~
T T I T T T S|
| |

B I I N S N ) IR S | | I (S (N ] S R
1 2 3 4 5 b 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Flo (Hz) %10°

~

Figure 26: Conversion Gain vs Flo (Parasitic Extracted)
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4 Power Mixer

Power Mixer is the term given to the mixer with high Output Referred 1dB
compression point. The high output power from this mixer eliminates the need
of a separate Power Amplifier.

This architecture thus combines Mixer, IQ-Adder and PA into a single unit and

is useful in implementing Tx-Architecture 3 as discussed in section-1.

4.1 Topology 1: Power Mixer

Off-chip Matching Network

Hee o

“ - o™ - e

Vien | Vion Q

Vhias Vbbp_| Vhias Vibn_| Vhias Vbop_0 Vhias Vbbn_}

Figuré 27: Power Mixer

This topology consists of double-balanced gilbert cell with current based signal
adder. The topology is similar to the Mixer discussed in Section 3.3 except, the
current bleeders have been removed. The switches and transconductor mosfets

are 2.5V devices, power supply (VDD) used is 2.5V and has an off-chip

matching network.
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The off-chip matching network consists of a High-Pass pi-match network, to

reduce the resistance from 50€2 to 12.5€2.

C
Drain of Switch nmos

> |
L1 L2 RI=500hm

Vdd - -
Figure 28: Matching Network

To get the values of the matching network, a python script! was developed to
generate L1, C and L2 values for the given quality and oscillation frequency.
Higher output power in the mixer is due to high current pumped through the
switching branch and the load. This is done by increasing the size of the
switching nmos and transconductor. The drain-bulk capacitance of the
switching nmos in absorbed by L1 in the matching network.

Layout of Transconductor and Switches was also done for parasitic extraction

which are shown below:

!Check appendices
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Figure 29: Power Mixer Transconductor Layout
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ks ki

Figure 30: Power Mixer Switch Layout

The round-table layout topology were used to get thicker metal traces for the
given area to sustain high current. Zipper layout topology was avoided as it
would have given higher capacitance at the Drain and Source of the mosfet due

to large trace widths.
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Results:

Gain vs Flo For Different Matching Network (Parasitic Extracted)
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Figure 31: Conversion Gain vs Flo
& Output Referred 1-dB Compression Point vs Flo (Parasitic Extracted)
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Figure 32: 1dB Compression Point vs Flo

38



Issues:

(i) Due to large size, the gate capacitance of the mixer switch is around 1pF
which means the LO Buffer has to drive a load of 2pF. In this case, the
load resistance of the LO-buffer is approximately 6.5¢) which is difficult to

achieve.

(ii) Reducing the gate capacitance by reducing switch size causes the gm of
the switching device to fall. This makes the voltage amplitude at the drain
of the transconductor to increase and thus reduces the output compression

point

4.2 Topology 2: Power Mixer with cascode NMOS

Vidd
T

Off-chip Matching Network

e o

) i

ol m e

Vlon Q

Vlopsl_{

]I_lb JW&I

Vhias Vbbp_| Vbias

Vion |

Vbias  vebpo Vbias Vbbn_Q

-Figure 33: Power Mixer with Cascode NMOS
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As discussed in the previous section, the high gate capacitance of the switching

nmos made it impossible to design a LO-Buffer. To reduce this gate

capacitance, we can use 1.2V nmos switching devices instead of 2.5V devices.

To get the higher voltage swing at the output, a shielding cascode mnmos is

used. It is a 2.5V device above the switching pairs and it’s peak source voltage

is kept less than 1.2V.

Voltage Biasing:

e The dc gate voltage of the switching nmos is kept at 0.6V. A sine wave

with amplitude of 0.6V is applied to it.

e The cascode gate voltage is set to: Viyswiten + Vyscascode

e Since, 2.5V nmos device can tolerate a maximum of 3V, the Vdd voltage is

set to (3 + ‘/gcascode - V;fh)/2

Explanation: The maximum Voltage at the drain of the cascode can be 3V

and minimum voltage can be Vjuscode — Vin to keep the nmos in saturation.

For maximum amplitude, Vdd has to be the mean of the maximum and

minimum voltages.

Device size and biasing:

Device Device Type Size Vov 14
(V; =0.6V) | (V, =0.6V)
Cascode 2.5V nch 5400um/280nm | 107.4mV 23.3mA
Switch 1.2V nch-lvt | 440um/60nm 556mV SmA
Transconductor | 1.2V nch-lvt | 1100um/300nm | 87.54mV 10mA
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Device

Gate Bias Voltage

Cascode
Gate Bias Voltage:

Switch

Transconductor

1.7V

0.6V

267mV

Vdd = 2.06V
Rload — 509
Power Consumed = 200mW

Results:

35 Gain vs Flo
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Figure 34: Power Mixer with Cascode: Gain vs Flo
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1dB Compression Point vs Flo

1db Compression Point (dBm)

10 | | | | | | | | | |
0 | 2 3 a ] 6 T 8 9 10 11 12
Flo (Hz} %10°

Figure 35: Power Mixer with Cascode: Output Power Compression vs Flo

It is observed that the gain and output power compression point reduces with
the increase in frequency. It’s because, part of the signal current is lost through
Cgap of the switching device. So, as the frequency of signal increases, the current

loss increases and the output power compression point and conversion gain falls.

4.3 LO-Buffer and Power Mixer

The LO-Buffer designed is a single stage common source amplifier with inductor
peaking(for higher BW). The output node was biased at 0.6V. This removes the
need of a coupling capacitor between the LO-Buffer and the Mixer. The devices
used are standard 1.2V devices. The V, of the buffer set to 1.2V with

peak-to-peak output swing 1.1V. To drive the Power Mixer till 12GHz, the load
resistance is set to 25(2 and the peaking inductor has an inductance of 120pH. A
CMOS NOT gate wasn’t used as LO-Buffers due to BW constraints. Multistage

Lo-Buffers were avoided to minimise LO-Phase mismatches.
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Figure 36: LO-Buffer for Power Mixer

Viop_Q Vion_Q

Circuit Diagram of Power Mixer:

Vdd
T

_“ Balun
HmﬂﬁSSohm _”7 %SDohm

(Load Resistance)
]TE
Vs

=4 - Fowes™ o =

Wion_0Q

| l |
| ') M ) |
Vhias Vibp_I Vbias Wbbn_| ‘Vhias Vebp @ Vhias Vbbn_Q

Figure 37: Power Mixer with output matching

A 2:1 Balun was used at the output to convert differential ended output to
single ended output which would drive 502 load directly. To improve output

impedance matching, a Resistor R, = 135{) was added to the circuit.
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Results:
The LO-Buffer was connect to the Power Mixer and the gain was plotted for

various values of Inductor in power mixer to get the necessary BW.

Gain vs Flo
0 T T T T T T T T T T T T T T T T T T T T T T T T T T I I
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6= ) 11=380.80H | |
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Figure 38: Power Mixer Gain vs Flo with LO-Buffer

1dB Compression Point vs Flo

0.5 1 15 2 25 3 35 4 45 5 55 6 6.5 7 75 8 85 9 9.5 10 10.5 11 115 12
Frequency (in GHz)

Figure 39: Power Mixer 1dB Compression vs Flo with LO-Buffer
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4.4 PVT Variation and Mismatch analysis

To check the robustness of the circuit, PVT Variation and Mismatch analysis

was performed. The circuit was tested at 5 frequencies across various corners

and the results are documented below:

At Flo=11.72GHz:

Gain Variation at 11.72GHz
165 \ \ \
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s \ \ \ \ \ \
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—©— 85,1.89V
—+—8821V
— % — 88231V
TT,1.89V
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Temperature (in °C)

Figure 40: Effect of PVT Variation on Gain at 11.72GHz

45

80



power Variation at 11.72GHz
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Figure 41: Effect of PVT Variation on Output Compression at 11.72GHz

At Flo=8.7T8GHz:

Gain Variation at 8.78GHz
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Figure 42: Effect of PVT Variation on Gain at 8.78 GHz
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Figure 43: Effect of PVT Variation on Output Compression at 8. 78 GHz

At Flo=6.12GHz:
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Figure 44: Effect of PVT Variation on Gain at 6.12GHz
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power Variation at 6.12GHz
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Figure 45: Effect of PVT Variation on Output Compression at 6.12GHz

At Flo=3.91GHz:

Gain Variation at 3.91GHz
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Figure 46: Effect of PVT Variation on Gain at 3.91GHz
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Figure 47: Effect of PVT Variation on Output Compression at 3.91GHz

At Flo=680MHz:
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Figure 48: Effect of PVT Variation on Gain at 680MHz
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power Variation at 680MHz
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Figure 49: Effect of PVT Variation on Output Compression at 680MHz

Mismatch:

At Flo=11.72GHz:
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Figure 50: Mismatch Variation in Gain at 11.72GHz
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Figure 52: Mismatch Variation in Gain at 11.72GHz (FS corner)
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Figure 53: Mismatch Variation in Gain at 11.72GHz (SF corner)
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Figure 54: Mismatch Variation in Gain at 11.72GHz (SS corner)
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Figure 55: Mismatch Variation in Gain at 11.72GHz (TT corner)
At Flo=8.78GHz:
Combined Histogram 1
Marme
B Carmibined 210.0 —
.10 hb_mnt dEZO0WWE_FF o
B 1) hb_mt dBZOVAVIFS 200.0 — o A CE
B e e - / Naiyar s Lo
b it -
1) Rt sR2OOATT 190.0 — i) Mean = 15.1634
iy Std Dev = 394.022m
1800 —
170.0 — \/\
1000 —
15000 —
1400 —
130.0 —
1200 —
5] =
B 110.0 -
& &
= 1000 -0 <iec} A % = i o
=] =
= Q0.0 =
80.0 —
OO0 =
G600 —
50.0 —
40.0
30.0 —
20,0 —
oo g
13.0 14.1 14.3 14.5 14.7 14.9 15.1 15.3 15.5 15.7 15.9 161 16.3 1o.4
Values

Figure 56: Mismatch Variation in Gain at 8.78GHz
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Figure 57: Mismatch Variation in Gain at 8.78GHz (FF corner)
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Figure 58: Mismatch Variation in Gain at 8.78GHz (FS corner)
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Figure 59: Mismatch Variation in Gain at 8.78 GHz (SF corner)
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Figure 60: Mismatch Variation in Gain at 8.78GHz (SS corner)
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Figure 61: Mismatch Variation in Gain at 8.78GHz (TT corner)
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Figure 62: Mismatch Variation in Gain at 6.12GHz
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Figure 63: Mismatch Variation in Gain at 6.12GHz (FF corner)
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Figure 64: Mismatch Variation in Gain at 6.12GHz (FS corner)
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Figure 65: Mismatch Variation in Gain at 6.12GHz (SF corner)
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Figure 66: Mismatch Variation in Gain at 6.12GHz (SS corner)
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Figure 67: Mismatch Variation in Gain at 6.12GHz (TT corner)
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Figure 68: Mismatch Variation in Gain at 3.91GHz
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Figure 69: Mismatch Variation in Gain at 3.91GHz (FF corner)
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Figure 70: Mismatch Variation in Gain at 3.91GHz (FS corner)
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Figure 71: Mismatch Variation in Gain at 3.91GHz (SF corner)
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Figure 72: Mismatch Variation in Gain at 3.91GHz (SS corner)
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Figure 73: Mismatch Variation in Gain at 3.91GHz (TT corner)
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Figure 74: Mismatch Variation in Gain at 680MHz
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Figure 75: Mismatch Variation in Gain at 680MHz (FF corner)
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Figure 76: Mismatch Variation in Gain at 680MHz (F'S corner)
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Figure 77: Mismatch Variation in Gain at 680MHz (SF corner)
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Figure 78: Mismatch Variation in Gain at 680MHz (SS corner)

64



(/netD67 h=1,-1)/(/nectl6é h=0,1) hb_mt 1
260_6__ B net06T h=1.-1Wnet16 h=0.11 hb_mt dB200VAL_TT
190.0 — Numbes = 200
_ Mean = 17.1899
180.0 — Std Drev) = 1.09844u

170.0 —

Lo0.0 —

150.0 —

140,00 =

130,10 —

120.0 —
11000 —
100.0

Q0.0

No. of Samples

a0.0

0.0

60.0

50.0

40.0

30.0

20.0

10.0

17.180861 17.180863 17.189865 17.189867 17189809 17.189871 17.189873 17.18987

alues

Figure 79: Mismatch Variation in Gain at 680MHz (TT corner)

AM-AM & AM-PM plots:
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Figure 80: AM-AM, AM-PM plot at Flo=11.72GHz
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Figure 81: AM-AM, AM-PM plot at Flo=10.5GHz
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Figure 82: AM-AM, AM-PM plot at Flo=8.8GHz
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Figure 83: AM-AM, AM-PM plot at Flo=7.49GHz
AM-AM & AM-PM Plot @ Flo=6.04GHz
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Figure 84: AM-AM, AM-PM plot at Flo=6.04GHz
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Figure 85: AM-AM, AM-PM plot at Flo=4.95GHz
AM-AM & AM-PM Plot @ Flo=3.8GHz
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Figure 86: AM-AM, AM-PM plot at Flo=3.8GHz
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AM-AM & AM-PM Plot @ Flo=1.6GHz
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Figure 87: AM-AM, AM-PM plot at Flo=1.6GHz
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Figure 88: AM-AM, AM-PM plot at Flo=631MHz
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Figure 89: AM-AM, AM-PM plot at Flo=370MHz
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5 Chip Testing

5.1 Introduction

The version 1 of the Wideband Tx chip which was tapped-out in the previous
year was to be tested. PCB board with RF Traces, Variable Voltage Supply
boards to power-up the chip and de-embedding boards for more accurate
measurements were designed to test the chips. The first job was to choose the
components and design the PCB boards.

Initially, RF board was designed to operate for 100MHz - 6GHz frequency range
to test the chip functioning in this frequency band. Later, new boards would be
designed for testing between 6GHz - 12GHZ. The board is design using FR-4

technology with the following stack-up:

Layer stack up
L1 TOP 0.060 Cu foil+plating
Core
L2 0.035 Inner layer
0.350 |
L3 0.035 Inner layer
Core
L4 BOTTOM 0.060 Cu foil+plating
0.04 Soldermask
Total Thickness 1.58 +/-10% mm

Figure 90: PCB Stack-up

The chip needs external IQ-Differential LO Signals and matching networks. For
easier matching, the matching network components were placed at a distance of
less than A/10. Wideband external Bias-Tee was used at the output of the chip
to bias the PA. The RF-Trace used co-planer waveguides whose widths were
calculated using the "LinCalc” and ADS tools. For constant voltage supply, a
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separate power supply board multiple variable output voltage pins using LDOs.
To extract the power losses in the traces and other passive components, 2
separate sets of de-embedding boards, each for Output RF trace and LO-RF
trace, were designed. For extracting the power loss, the traces and components
were replicated and placed back-to-back on board. For efficient performance,
layer L1 was used for the RF circuitry, L2 was used as ground, L.3 was used for
power traces and L4 was virtually unused except for ground to SMA connectors.
To reduce the voltage drop across power traces, the width of these lines in L3
were kept thick. Multiple ground pins and multiple staggered vias were also put
to have a uniform ground voltage across the board. Solder mask, over the
co-planar waveguides, was also removed for better matching. Components with
common footprints for different frequencies were selected to have a common
board for the given frequency band.

List of the components and their uses are summarised below:

Component | Footprint/Part Number Purpose
Tx Chip QFN-40 Wideband Transmitter Chip
Resistor 0201 General Purpose
Capacitor 0201 Matching Network
Inductor 0201 Matching Network
Bias-Tee TCBT-123+ Biasing PA
Balun 0805 Differential signal to single ended
SMA Connector 142-0801-801 RF-Connector
LDO TPS74401 Power Source
UFL CONUFL001-SMD-T Impedance Measuring
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5.2 Matching Network

The testing of the chip begins with the measurement of the output impedance
of the power port and the input impedance of the LO Port. Accordingly, a
matching network has to be decided to match the impedance to 50S2.

Since, the matching network can’t be finalised before measuring the impedance,
a general footprint of the components was designed as shown in the topology

given below:

P1 A2 A4 P2
o R/L/C RILIC ——o

A1 A3

R/L/C
R/L/C

Figure 91: Single ended matching network

To get a m — match between nodes P1 and P2, suitable components (R, L, C)
can be placed at Al, A2, A3 while a zero ohm resistor can be placed at A4.
Similarly, for a T-Match, components can be placed at A2, A3, A4 and Al can
be left open. This way, we can get both the matching topologies. This single
ended topology is used at the Power Output pins as the 2 differential half
outputs are a bit separated. For LO Inputs, since the 2 halves are close to each

other, a differential topology (as shown below) is used.
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P1p, RILC RILC oP2p

R/L/C
R/L/C

P1n, RILC RILC oP2n

Figure 92: Differential matching network

The single ended matching network was further modified to be able to measure

the impedance of the pins. The new layout is shown below:

A2 A4
P1e R/L/C R/L/C op2

A1 A3

R/L/C
R/L/C

J_ AR

= [ RWLC UFL

] L

Figure 93: Single ended matching network

To measure the impedance of a pin, say pin 1., A1, A4, A5 are kept open and
zero ohm resistors are placed at A2 and A3. The impedance at P1 can now be
measured by connecting co-axial cable to the UFL. Similarly, for pin2, A3 and
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A4 can be shorted suing zero ohm resistor and rest of the pads can be kept
open. The idea is to short the path to the pin from UFL with zero ohm resistor
and keep the other pad open.

When being used as a matching network, the UFL can be de-soldered, and the
matching network can be made by placing the components at A1, A2,A3 A4 (as
described previously) with a zero ohm resistor at A5 for ground.

In a similar way, the impedance of each pin in a differential port can be

measured. The component topology is shown below:

—
5
P1po R/L/C RILC ——P2p
O o
= =
(a . (.
Pin, | RIL/C | RILUC —oF2n

Figure 94: Differential matching network with UFL

The above mentioned matching topologies have also been used for Baseband

matching, but a 502 at each input node should work.

5.3 PCB Schematic

A broad level schematic of the Tx-Chip test board is show below (Note, to keep

it simple, power supply connections have been omitted):
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Figure 95: RF Board Circuit Diagram

= VW‘.

The on-chip PA is biased using an external voltage supply through BiasT.

Since, the matching network at the power output carries DC current, that

network has to be a High Pass network. The matching network at the input of

the LO signals can be either high pass or low pass.

The differential BB signals can be generated using a differential output voltage

DAC or using a Low frequency balun. These signals can be fed to the chip using

through the SMAs 1,2,3,4. The LO signal is fed through SMA 5. The Hybrid

coupler splits the signal creating a Odegree and 90 degree phase shifted signals

which are then fed to the Balun. This way, 4 signals with phase shift Odegree
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90degree, 180degree and 270degree are generated. The differential PA output

signal is combined using a balun and the output is then available at SMA 6.

Vdd

nl, oN2

Figure 96: Bias-Tee

5.4 Power Supply

wn

c

£

¢

= VDD
Bypass — l
P 1 T 4.7uF
Input 4.7uF 6BIAS OUT3

; T
Bias FB 2 Lo =

3 Ll

[ 7EN
10k POT
Enable |, [ GND4—— 2,
Input |5 — 5IN SS 1 B
GND |g 1 [DO =—=47nF
] T4F |

Figure 97: Power Supply Circuit Diagram

The values were chosen from the LDO datasheet by Texas Instruments. The
input to the LDO is through the Jumper Pins (as shown in the schematic). The

constant output voltage is available at VDD which can be adjusted using the
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10kS2 variable resistor. It is governed by the following expression:

R
‘/out — (E; + 1)‘/;“ef

where, R,.; is 0.8V, R; is the variable resistance from the pot, R is 3k(2

[Ry < 4.99k€)

A bypass pin as (shown in the schematic) can be used to give direct supply from
the source, bypassing the LDO. Enable pin is set to high when the output
voltage has to be turned on.

A total of 7 such modules were replicated to power-up the Tx-Chip. These

modules are capable of supplying voltage of 1V - 2.5V.

5.5 Layouts

Keeping the above discussion in mind, the PCB design layout was done and the

gerber files generated were sent to the manufacturer:

Figure 98: Power Supply Board Layout
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Figure 99: RF Board Layout

Figure 100: De-embed Board 1 Layout

Figure 101: De-embed Board 2 Layout




6 Concluding Remarks & Future Scope

6.1 Concluding Remarks

The objective of the project was to design and test a Wideband transmitter
with a flexible operating frequency ranging between 100MHz - 12GHz. It
involved minimising the number of individual sub-blocks in the Transmitter and
also improving their design and efficiency. We were able to merge all the
sub-blocks of the transmitter into a single unit called power
transmitter-operating in the given range of frequency- which reduced the
number on-chip components significantly.

We were also able to design test boards for testing version-1 of the Transmitter,
which involved designing critical RF-Traces for Wideband operations. The
boards were designed using FR-4 technology for frequencies between 100MHz -

12GHz. These test boards were sent to the manufacturer for fabrication.

6.2 Future Scope

Although, a major part of the Transmitter has been designed and simulated,
still there are some parts of the project which has to be done. A suitable
matching network for the output of the Power Mixer with large drain
capacitance and bond wire parasitics has to be designed. If that’s successful,
the chips can then be tapped-out and tested.

The PCBs were designed and fabricated, but due to time constraints, the
testing wasn’t completed. The version one of the chip is yet to be tested for the
frequency band of 100MHz - 6GHz. If the testing is successful, the next step

would be to test the chip for the frequencies between 6GGHz-12GHz.
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8 Appendices

Python Code to generate Matching Network Component Values:

import math

f= input (" Input the Oscillation Frequency:”)
w=2xmath . pix*f

Q=f /(600¢6)

if Q<=2.3:

Q=2.5

b=-31.25

a=351.5625/(Q+Q)

=(QeQ/4)+1
R11=(2*a)/(—b+math.sqrt (bxb—(4xaxc)))
R12=(2xa)/(—b—math.sqrt (bxb—(4xaxc)))
QL1=math. sqrt (12.5/RI11—1)
QRl=math. sqrt (50 /R11—1)
L12=50/(w+QR1)

C12=1/(wswsL12)
C11=1/(w+QL1*(RI1+(w+L12 /40)))
L11=1/(wsw#(Cl1+1.2¢ —12))
C1=C11xC12/(C114+C12)

QL2=math. sqrt (12.5/RI12—1)
QR2=math. sqrt (50 /R12—1)
L22=50/ (w+QR2)

022=1/(wsw*L22)

C21=1/(wxQL2x (RI2+(wxL22 /40)))
#1.21=1/ (wews (C21+0.576¢ —12))
L21=1/(wiws(C21+1.2¢ —12))
2=C21%(C22 /(C214+C22)

print ’\nTotal Q=’,Q

#print "\nQl= ', QLI, 'QR= ’,QRI1
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#print ’'net 1: (L1, L2, C)::’,L11,L12,C1

print ’\nQl= ", QL2, 'QR= ’,QR2
print ’net 2: (L1, L2, C)::’,L21,L22,C2
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