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ABSTRACT

Using deep neural networks for Single Image Deblurring has been well explored in

recent years, greatly improving the performance and decreasing the inference time,

making real-time deblurring possible. But these networks demand more computational

resources as they have a multi-stage architecture, as a result these models have diffi-

culty running on platforms with less computational resources such as mobile phone.

We propose a novel training method to improve the performance of small networks

providing a light weight alternative for platforms with less computational resources.

Our experiments show that we can obtain performance comparable to multi-stage net-

works by using our training method on light networks. We also look at the problem

of restrictive effective receptive field in the context of single image deblurring and pro-

pose novel block-wise self-attention block to extract global contextual information and

greatly enlarge the receptive field. Our experiments demonstrate the effectiveness of

this block whose use can be extended to other Image Processing tasks such as image

super-resolution and image denoising.

The problem of visual grounding is widely addressed using a two stage framework

where an object detection network gives object proposals and these proposals are then

ranked based on language query. We introduce novel feature filtering framework to

filter out all the image features that are not being referred to in the language query and

predict bounding box from the remaining features. Few other one stage approaches

simply append language features to image features. Through our experiments we show

that these networks suffer from false positives and that our feature filtering framework

partially solves this problem as a result improving the accuracy.
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CHAPTER 1

Introduction

Image deblurring is important image processing task for better visual perception as well

as achieving good performance in machine perception or computer vision tasks. Image

blurring can be caused by a range of phenomenon such as camera shake, object motion,

out-of-focus. It is a highly ill-posed problem and is solved in traditional methods by

imposing restrictions on camera motion and/or blur kernel. Most of these methods are

optimization based and take way longer compared to their learning-based counterparts.

In recent years learning-based methods have been well explored for the task of Sin-

gle Image Deblurring and of them networks using multi-stage architectures have been

promising [Nah et al. (2017), Tao et al. (2018)],Zhang et al. (2019)]. These work by

feeding the image at different scales to the network and learning the latent image stage

by stage. The networks are essentially learning the blur information in different stages

enforced by the network. In this thesis we propose an alternative method to enforce the

network to learn blur information in an incremental manner. We take a network with

one scale and train it with images of multiple scales in stages.

In this thesis we explore another problem in the area of Image Deblurring which can

potentially be extended to other Image Processing tasks such as Image Super Resolution

- the problem of effective receptive field. One reason why multi-scale networks work

so well is that it is easier to learn coarser or large blurs when the image is scaled down.

Theoretically using deep networks should help solve this problem but practically it is

observed that this is not the case as explored by Luo et al. (2016). We explore 2D

self-attention[Parmar et al. (2019)] to help solve this problem.

But self-attention only partially solves the problem as structure of message passing

across layers itself leads to restrictive receptive field. Hence, we propose a new block-

wise self-attention which considers blocks of image as a single pixels and processes

them.

In this thesis we also address the problem of Visual Grounding, which is the task

of finding the part of the image being described by the Natural Language input query.



The task of visual grounding is an important step towards human computer interaction.

The task can further be categorized into phrase localization, referring expression com-

prehension, natural language object retrieval. Phrase localization is where the language

query is a part of the sentence describing the whole image, there could be multiple such

parts. Referring expression comprehension is where the input sentence describes the

object to be found in the image. The current work can be applied to both the tasks, in

fact it can be applied to any Visual Grounding task.

Whether it is phrase localization or referring expression comprehension [Mao et al.

(2016a), Hu et al. (2016), Yu et al. (2018)] most of works followed the two stage

framework of getting all the object proposals and then ranking them by comparing them

with the input language query. On one hand it is highly inefficient to extract features

for all the region proposals and checking their similarity with the language query and

moreover, it is possible that the object proposals are not good and the region of interest

is not present in the proposals. Yang et al. (2019) propose a single stage network to

overcome these shortcomings, they append features extracted from language query to

the visual features and pass the resulting feature map through object detection network.

Appending language features to the visual features to include the query information

is sub-optimal, in the current work we explore feature filtering framework to filter visual

features while looking at the language features.

Next we’re going briefly discuss some papers on Image Deblurring that use multi-

scale approaches and some works that extend self-attention to images.

1.1 Deblurring using Neural Networks

In this thesis we deal with motion blur which is caused due to camera motion or motion

of objects in the scene. This can also be attributed to the comparatively high exposure

time. Not only does this make the photo look bad but also makes computer vision

applications such Object Detection and Image Classification very difficult to work. A

popular way to model motion blur is

B = KS + n
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where B,S are vectorized blurry and latent images, rows of K act as blur kernel and n is

noise.

If we already have information about the kernel the problem of finding the latent

image is called non-blind deblurring and has been well explored. But in general that

not the case and the only thing we have is the blurred image. The problem of finding

latent image without knowing the kernel information is called blind deblurring. This

is an ill-posed problem hence, some approaches were to parameterize blur by making

assumptions on its formation such as only camera rotation. But these approximations

are not accurate and hence we look to neural networks to learn complex blur kernels

from data.

In the area of learning based methods we are interested in the multi-scale approaches

in which sub-sampled image or part of the image is fed to the network at multiple stages.

In the next section we are going to look at few multi-stage approaches.

1.2 Multi-stage deblurring

Paper summary: Deep Multi-scale Convolutional Neural Network for Dynamic

Scene Deblurring

Figure 1.1: Network architecture taken from [Nah et al. (2017)]

In this paper paper the authors [Nah et al. (2017)] propose a multi-scale end to end
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trainable fully convolutional neural network. As shown in figure 1.1 the image is down

sampled and fed to the network at multiple stages. The authors use residual network as

building block after removing all the batch normalization layers and ReLU layer at the

output. The idea behind using multiple scales is to make the learning process easier by

having the first stage coarsest blur kernel and next stage learn finer blur and so on.

The authors use two types of losses - content loss which is mean squared error

between deblurred image and latent sharp image and adversarial loss from the discrim-

inator which classifies an image as deblurred or sharp one. The net loss is as follows:

Ltotal = Lcont + λ ∗ Ladv

where λ = 10−4

They also introduce a new dataset called the GOPRO dataset consisting of 3214

blur and image pairs at resolution of 1280x720. They take videos at 240fps and average

(7-13) latent frames to get a blurred image and sharp image is taken to be the mid-frame.

Paper summary: Scale-recurrent Network for Deep Image Deblurring

Figure 1.2: Network architecture taken from [Tao et al. (2018)]

The authors [Tao et al. (2018)] of this paper take the multi-scale approach intro-

duced by Nah et al. (2017) a step forward. They suggest that we do not need to learn
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different functions at different scales by pointing that the problem we are trying to solve

is the same. Hence, they propose a recurrent structure as shown in figure 1.2.

The recurrent structure helps reduce the number of parameters by a scale of three. It

is interesting to note that network with recurrent structure performs better compared to

the original three scale network which is attributed to instability or unrestrictive solution

space by the authors. The output at scale i is calculated as:

I i, hi = NetSR(B
i, I i+1↑, hi+1↑; θSR)

where Bi, I i are the input, output at that scale, NetSR is the proposed network , θSR the

training parameters, and the hidden state hi flows through layers. The authors also add

skip connections between encoder and decoder inspired by their effectiveness in other

restoration tasks [Mao et al. (2016b)]. They use sum of mean squared error at all scales

as loss function.

Paper summary: Deep Stacked Hierarchical Multi-patch Network for Image De-

blurring

Figure 1.3: Network architecture taken from [Zhang et al. (2019)]

The improvement in performance with increase in the number of scale saturates at

around 4 scales. Increasing the depth of the network also does not help improve the

performance. Hence, in this paper the authors propose dividing the image into parts,

deblurring them and sending them to next stage after concatenating them as shown in

the figure 1.3. The architecture used here is similar but shallower compared to the
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previous networks.

In this setup the level that deals with smallest patches learns finest blur kernel and

the next layer learns coarser blur kernel and so on. In this way the hierarchy is reversed

compared to multi-scale approaches where coarsest blur kernel is learned first (in terms

of network levels). The loss is mean squared error between the final deblurred image

and the ground truth.

The authors also introduce a novel stacking approaches and show that they do not

saturate as in the case of multi-scale approaches. The current network has inference

times 40 times faster than the previous multi-scale approach. This is a result of shallow

network with small kernel sizes and lack of need for up-sampling between different

levels.

1.3 Self-Attention in Images

The self-attention module has been introduced in the field of language modelling [Vaswani

et al. (2017)] to better capture long range dependencies and parallelize training and in-

ference. Convolutional Networks have been have used for extracting features from

images for a long time, yet they face difficulty in capturing long range dependencies.

The residual networks [He et al. (2016)] address this problem by enabling us to train

deeper networks. But increase the depth of the network is an inefficient way to capture

long range dependencies as shown by Luo et al. (2016).

Recently, there have efforts to use content based interactions to better capture image

features. One approach is where channel-wise attention [Hu et al. (2018)] is introduced

to capture inter-dependencies between channels. Non-local Neural networks were in-

troduced by Wang et al. (2018) to capture long range dependencies spatially. In this

architecture each pixel (or spatial position) is calculated with attention over all the pix-

els in the previous layer. This a computationally expensive, hence the feature map is

significantly down-sampled. To reduce the computational complexity self-attention is

modified to take attention over neighbouring pixels only as shown in 1.4.
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Figure 1.4: Network architecture taken from [Hu et al. (2019)]

Paper summary: Stand-Alone Self-Attention in Vision Models

The approaches we’ve discussed above use the attention layers as an augmentation to

convolutional layers [Bello et al. (2019)]. In the current paper [Parmar et al. (2019)]

the authors take this a step forward to using only attention layers to extract features

from images. To demonstrate the effectiveness of extracting features using attention

layers they are used in core Computer Vision tasks - Image Classification and Object

Detection.

Another important feature of attention layers is that the number of parameters does

not scale with the kernel size making it more parameter efficient. As a result, com-

petitive performance is achieved with much fewer parameters - ImageNet classification

with 29% fewer parameters and COCO object detection with 34% fewer parameters.

It is to be noted that adding positional information is an important part of self-

attention as otherwise all the neighboring elements are treated in the same way and

all positional information in the image is lost. This is verified through ablation studies

where removing the positional information reduces the accuracy of Object Detection by

2%. There are many ways to add positional information - adding features corresponding

to width and height as in Vaswani et al. (2017) or using geometry prior as in Hu et al.

(2019). In the current paper the relative positional features for each position are learnt.

7



Figure 1.5: Relative distance computation- taken from [Parmar et al. (2019)]

Next we are going to summarize some object detection networks that we use in our

architecture for Visual Grounding. In particular we are going to look at the YOLO

object detection networks.

1.4 YOLO Object Detection

Figure 1.6: Yolo detection network - Redmon et al. (2016)

Redmon et al. (2016) introduced a novel approach for object detection when the

widely used framework was to get region proposals and predict whether each proposal

was an object or not and the class of the object. Yolo is extremely fast as the whole

image is processed at once rather than processing each proposal at a time.

The framework introduced by Yolo is to divide the image into several grids and for
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each grid predict B bounding boxes and the confidence scores for each bounding box.

The confidence score of a bounding box represents the percentage of overlap it has

with a ground truth object. Whenever there exists an object the confidence score equals

the IOU (intersection over union) and is zero otherwise. For each bounding box we

predict (x,y) offset of the center of bounding box from the grid, (w,h) width and height

of the bounding box and confidence score of the bounding box. For each bounding box

C class conditionals are also predicted. A class conditional is the probability that the

object enclosed is of that particular class given it is an object.

Pr(classi|Object) ∗ Pr(Object) ∗ IOU truth
pred = Pr(classi) ∗ IOU truth

pred

Redmon et al. (2016) use grid size of 7x7 and for each grid cell they predict 2

bounding boxes and the number of classes is 20. The network structure used is as

shown in 1.6.

1.4.1 Version 2

Redmon and Farhadi (2016) make a bunch of modifications the Yolo framework to

further improve the performance. The pre-training of the network on the task of im-

age classification improves the performance on detection. The authors add batch nor-

malization [Ioffe and Szegedy (2015)] and pre-train on high resolution images which

moderately improves the performance.

An important modification is the use of anchor boxes to predict bounding boxes

instead of directly predicting the bounding boxes. The anchors boxes are priors that are

picked and fixed before the training starts. Then for each anchor box the center offset,

width, height offset, confidence and class conditional are predicted. The coordinates of

the bounding boxes are calculated as follows:

bx = σ(tx) + cx

by = σ(ty) + cy

9



bw = pwe
tw

bh = phe
th

confidence = σ(to)

where tx, ty, tw, th and to are predicted by the network and cx, cy are coordinates of top

left corner of prior and pw, ph are width and height of the prior.

Figure 1.7: Bounding box with offset prediction and prior - Redmon and Farhadi (2016)

1.4.2 Version 3

In version 3 Redmon and Farhadi (2018), the authors incorporate feature extraction and

prediction of boxes across three different scales. The back-bone network is larger -

53 convolutional layers whereas the one used in version 2 has 19 convolutional layers.

Three bounding box priors are used for each scale which makes a total of 9 priors.

Instead of using softmax independent logistic classifiers are used to address overlap of

object classes. In our network we use this version of Yolo as the back-bone architecture.
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CHAPTER 2

Theory Background

In this section we will look into some of the basic building blocks and structures used

in learning based methods to solve Image Processing and Computer Vision problems.

2.1 Convolutional Neural Network

Convolution Neural Networks have been extensively used in Image Processing and

Computer Vision for feature extraction. Their effectiveness was first proved by Krizhevsky

et al. (2012) in task of Image Classification by demonstrating considerable improve-

ment over existing methods.

It is computationally very expensive to use Feed Forward Neural Networks to pro-

cess images, another problem could be the large number of parameters which could be

hard to train. Hence we look to a low cost alternative - Convolutional Networks - used

to exploit the local dependency in images.

2.2 Residual Network

Figure 2.1: Training error and testing CIFAR-10 with networks of different depth. Fig-
ure from:-He et al. (2016)



The performance over computer vision tasks was improved by increasing the depth

of networks and altering the kernel size. But, after reaching a certain point training deep

networks becomes a difficult task as demonstrated by He et al. (2016).

To solve this problem they introduce shortcut links in the network to help easier

learning. The residual block used is as defined below. The intuition behind this is

that the deeper stages of the network will only have to learn difference between actual

function and function already learnt by the previous layers.

y = F(x,Wi) + x

where x,y are input and output and Wi are parameters to be learned.

2.3 Encoder-Decoder Skip Connections

Figure 2.2: Skip connections - [Mao et al. (2016b)]

The encoder-decoder fully convolutional architectures have been used for Image

Restoration tasks to deal with images of varying sizes and since they work well in

practice. But as the networks get deeper and the representation at the end of encoder

get smaller (too small in dimension) information loss is expected.

This idea was first used for Image Segmentation where Ronneberger et al. (2015)

introduce the U-Net Architecture. The idea is to compensate for the information loss by

adding direct skip connections between encoder and decoder. These skip connections

can be implemented as adding encoder and decoder features or appending them. This

idea has since been widely used in Image Restoration tasks such as Image Denoising

[Mao et al. (2016b)] and Image Deblurring [Nah et al. (2017)].
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2.4 Self-Attention

Figure 2.3: Encoder-decoder architecture - [Vaswani et al. (2017)]

Self-Attention was first introduced in the area of Language processing by Vaswani

et al. (2017) as an alternative to Recurrent Neural Networks. The idea was to paral-

lelize language processing in order reduce training time and also address vanishing and

exploding gradient problems in Recurrent Neural Networks. This idea is an extension

of attention between encoder and decoder in language understanding tasks. The archi-

tecture used for language modelling is as shown in 2.3.

In self-attention each feature in the next level is calculated with attention over every

feature in the previous layer. Moreover, dot-product attention is used here instead of

additive attention. From each feature we calculate three features - query, key and value

13



Figure 2.4: Multi-head attention - [Vaswani et al. (2017)]

- and use dot-product between key and query of different features to score their compat-

ibility or relation. We take weighted sum of all the values as our output feature vector

where weights are obtained by taking dot-product of query of current feature and keys

of all the features. In practice it is calculated as follows:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V

where Q is matrix stacked with query vectors, K is matrix stacked with key vectors,

V is matrix stacked with value vectors and dk is a dimension of keys.

Multi-head attention is to run multiple such attentions in parallel and append all

the output features in the end as show in 2.4. Having multiple heads enables each of

the head to focus on different aspects of the feature all the while maintaining the same

computational cost as we reduce feature sizes by a scale of number of heads.
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CHAPTER 3

Multi-stage Training

In this chapter we propose and study multi-stage training for single image deblurring

as an alternative to multi-stage networks. In the previous chapter we’ve looked at few

multi-stage networks [Nah et al. (2017), Tao et al. (2018), Zhang et al. (2019)] used

for Single Image Deblurring. The multi-stage structure helps the networks train easily.

We are interested in the weight shared model where number of parameters is same as

the that of a single stage but is better in terms of performance. This is due restriction

imposed on learning by the structure of the network. We try to use this idea on a single

stage network and restrict the learning process by training it in a multi-stage manner.

This gives comparable performance to multi-stage network while giving dramatic in-

ference speed gain.

3.1 Motivation

We are going to look at the Multi-patch network [Zhang et al. (2019)] we’ve seen in the

previous chapter to motivate our proposal for multi-stage training. In the multi-patch

network the image is divided into parts and each part is passed through the encoder

independently at each stage and then the parts are concatenated at the end of encoder

before the decoder.

The current network is a fully convolutional network hence, it shouldn’t matter if

parts of the image are passed through the convolutional network or the whole image

is passed at once. There would only be differences at the boundaries which is due to

zero padding. We confirm this by inputting a blurry image of size 720x1280 in both

the ways and finding the difference between outputs as shown in 3.1. First we input

a blurry image part after part as described in [Zhang et al. (2019)] to get De-blurred

Image1 in 3.1. Then we send the whole image as input at all the stages of the network

to get De-blurred Image2 in 3.1. The difference between both the deblurred images is

negligible hence, we scale any non-zero values to one (max value) to visualize even the



Figure 3.1: Output of the Multi-patch network

slightest differences shown in 3.1. The current experiment is performed for architecture

with three scales (1-2-4).

However, sending whole image as input during training gives comparatively worse

performance. It is to be noted that during training the input image is of size 256x256

and at scale four each part of the image is of size 64x64. The difference at boundaries

can be as thick as the receptive field and hence for a small image there could be a great

difference between both methods of input. Having a small image as input helps the

network learn finer kernels. We conclude that the input method described in [Zhang

et al. (2019)] helps train the network better and does not have any structural advantage

inherently.

Hence, we conclude that we can obtain comparable performance by constraining

the learning process similarly by introducing a multi-stage training process.

3.2 Multi-Patch Training

The Multi-Patch training (MPT) process is inspired from the network structure in Zhang

et al. (2019). As this is just a training algorithm this can implemented for any network
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structure. In this algorithm at each stage of training the image is divided into a certain

number of parts and each part is sent through the network. The output is obtained by

spatially concatenating outputs of all the parts.

Ii = Net(Pi)

I = Concat(I1, .., Ii, .., In)

where each Pi is a part of blurry image Bi and i ∈ [1, n]. n is the number of parts the

image is divided into.

The network is initially trained by dividing the image into large number of parts (8

for example) and once the training saturates we decrease the number of parts the image

is divided into. This process is continued until we complete training with the number of

parts as one. This way the network first learns fine blur kernels and learns coarser blur

kernels with each stage.

It is important to note that the size of input should be small (256x256) during the

training process for this algorithm to give good performance. As the small size of the

image is what helps the network to learn finer blur kernels.

3.3 Multi-Scale Training

The Multi-Scale Training (MST) process is similar to the Multi-Patch Training process

but the blur is learned in coarser to finer manner instead as in Tao et al. (2018). In this

algorithm the image is down-scaled and given as input to the network. Once the training

a particular scale stabilises the scale of the image is increased. This process is repeated

until the network is trained with image of original size.

The reverse of this algorithm would be to start training with the original sized image

and then down-scale the image once that training saturates. Repeating this process

for required number of stages. The reverse of Multi-Scale Training can added onto

Multi-Patch Training. The resultant algorithm would be to train in Multi-Patch fashion

and once single part (or full image) stage is reached continue onto reverse Multi-Scale

training. In this way the network is trained from the finer extreme to the coarser extreme.
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CHAPTER 4

Block-Wise Self Attention

In this chapter we review effective receptive field in the context of single image deblur-

ring and propose a novel block-wise self-attention to extract global contextual informa-

tion and expand receptive field. The problem of Single Image Deblurring is ill-posed.

The resultant blurry image could’ve formed as a result of a wide range of blur kernels

of multiple scales. For example motion of an object close to the camera would result

in a small blur whereas motion of an object farther from the camera would result in a

large blur. To capture large blurs we need a network with large receptive field. Adding

depth to the network helps to some extent but is not effective as the effective receptive

field is only a fraction of theoretical receptive field as shown by Luo et al. (2016). The

multi-scale networks and the multi-scale training we’ve looked at in the previous sec-

tion increase the effective receptive field forcibly through the training process. In this

section we are going to look at content based feature extraction and a novel block-wise

feature extraction to enhance the effective receptive field.

4.1 Motivation

Each unit in convolutional networks depends only on a region of input and this region

is called the receptive field. It is important that we have an idea about the receptive

field of a network as a pixel outside the receptive field cannot affect the output and we

are missing out on any information outside the receptive field. Hence having large re-

ceptive helps computer vision tasks such as Image Classification where the object to be

classified could be as large as the image. Increasing depth is one of the straight-forward

ways to increase the receptive field, as a result the depth of architectures for image clas-

sification has increased over the years - 5 layers AlexNet [Krizhevsky et al. (2012)],

19 layers VGG Network [Simonyan and Zisserman (2014)] and 22 layers GoogleNet

[Szegedy et al. (2015)].



However, it can be seen that center of the receptive field has more number of paths

to the output compared to pixels at the border of the receptive field. As a result center

of the receptive has more impact on the output, Luo et al. (2016) explore this intuition

further and introduce the notion of effective receptive field. They study the distribution

of impact in the receptive field and conclude that in most cases it distributes as a Gaus-

sian centered at the center of receptive field. The measure of impact used is the partial

derivative of the output unit with respect to the particular pixel in the receptive field.

Measure of impact =
∂y0,0
∂xi,j

where y0,0 is the (0,0) unit in the output and xi,j is the (i,j) pixel of input.

Any point inside receptive field having an impact greater than 95.45% of the center

point is considered effective and the size of effective receptive field (ERF) is taken as

the square root of number of effective pixels.

Figure 4.1: Absolute growth (left) and relative shrinkage (right) of ERF - Luo et al.
(2016)

Luo et al. (2016) show that effective receptive field grows linearly with square root

of the number of layers (or depth) of the network. And ratio of effective receptive field

to theoretical receptive field decays linearly with inverse of the square root of the depth

of the network. So, it not an efficient strategy to increase the depth of the network to

increase the receptive field.

Hence, to increase the receptive with less increase in computational cost we study

content based feature extractors for the task of Image Deblurring which proved effec-

tive for Computer Vision tasks image classification and object recognition. We also
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introduce a new block-wise convolution structure to address the same problem.

4.2 Network Architecture

The network architecture we use is very simple. We take the Multi-Patch [Zhang et al.

(2019)] encoder-decoder network as the back-bone as it is simple without any encoder-

decoder skip connections and is easy evaluate.

Figure 4.2: Encoder(b)-Decoder(a) Architecture - Zhang et al. (2019)

To increase the receptive field we add an Aggregation Block (AB) at the end of

encoder. The Aggregation Block helps in extracting the global context, adding these

non-local features to the encoded representation helps the network in better deblurring

the image. The integration of global context to local information is important to cap-

ture large blurs. Capturing global context also helps when different parts of the image

experience similar blur or when the blur across the image is related as is in the case

of blur due to camera motion. The Aggregation Block in effect tries to capture inter-

dependencies in blur across the image.

X = Encoder(B)

Y = AB(X)

I = Decoder(Y )

where B is the blurry input image, AB is the Aggregation Block and I is the deblurred
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output image.

4.3 Aggregation Block

The aggregation block is implemented using the self-attention mechanism similar to the

one seen in chapter 1. We divide the feature map into non-overlapping blocks of given

size. For this the width and height of the feature map have to be multiples of block size,

so we pad the feature map appropriately (symmetrically along as possible). Now, each

block is treated like a single unit while applying self-attention, hence the kernel size

and the stride also have to be a multiple of the block size.

Now, we calculate compatibility between blocks and take weighted sum of all the

neighbouring blocks depending on the kernel size to get the output block. For each

block we compute query and key feature vectors. The dot-product between key and

query of two blocks is the score of their compatibility.

kij = Wk ·Xij

qij = Wq ·Xij

where Xij is the ijth block of input feature map X, ki, qi are the key and query for ijth

block and Wk, Wq are learn-able parameters. The calculation of keys and queries can

be optimized by implementing it as two convolutions with kernel size and stride equal

to block size and out channels equal to key and query dimension (dk).

It is important to add spatial information to distinguish between all the neighbouring

blocks. We use relative attention as defined in Parmar et al. (2019) to add spatial infor-

mation. The features for each relative position are learned and are for dimension dk/2

so that we can append relative row positional feature and relative column positional

feature to get a dk dimensional relative positional feature. The output of block-wise

self-attention (BWSA) is calculated as

Yij =
∑

a,b∈Nbrs(Xij)

softmaxab(q
T
ijkab + qTijra−i,b−j)Xab
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where ra−i,b−j is relative positional feature and Nbrs(Xij) represents neighbours of

Xij which is determined by the kernel size. The value block is not calculated through

linear transformation as this would be expensive both computationally and in terms of

number of parameters.

The feature map obtained as output of block-wise self-attention is then cropped to

match the size of input X. Then X and Y are concatenated across channels which would

result in doubling the number of channels. We then pass it through a convolutional layer

of kernel size 1 with number of out-channels equal to the number of channels of X. This

is the final output of the aggregation block.

Y = BWSA(X)

Output = CNN(Concat(X, Crop(Y ))

where X is the input of the Aggregation Block, BWSA is block-wise self-attention

operation defined above, CNN, Concat, Crop operations are as described in the previous

paragraph and ’Output’ is the output of the Aggregation Block.

Why block-wise over pixel-wise? Firstly it is computationally more efficient for

a given kernel size. Moreover, when used in Language Modelling each word has a

meaning by itself and we are modelling relations between words but in images a single

pixel in the feature map might not have a meaning by itself. On the other hand a block

of pixels may have contextual meaning by itself, hence we model relations between

blocks.
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CHAPTER 5

Attentive Filtering

5.1 Motivation

In this chapter we propose a new feature filtering method to suppress false positives

in visual grounding. In the current work we propose a framework where we filter vi-

sual features extracted from the image depending on whether they are described in the

language query. The filtered features are then passed through an object detection net-

work to predict the bounding box. We suggest this as an alternative to the two-stage

framework where all the objects are detected first and then ranked based on their simi-

larity with the language query. Yang et al. (2019) have a framework similar to ours but

they append the language features to the visual features and pass the resulting features

through object detection network.

5.2 Network Architecture

Figure 5.1: Feature Pyramid Network - Lin et al. (2017)

We use the Darknet-53 [Redmon and Farhadi (2018)] pre-trained on COCO object

detection [Lin et al. (2014)] as our back-bone to extract visual features. The Darknet-53

is based on feature pyramid network which is used to extract visual features at different

scales, it is shown to improve performance of object detection networks by Lin et al.



(2017). The visual features are extracted at three different scales and are of different

sizes. When the language query contains location based details it is important to add po-

sitional embeddings. We add simple position embeddings similar to Yang et al. (2019)

which are as follows:

(
i

W ′ ,
j

H ′
,
i+ 0.5

W ′ ,
j + 0.5

H ′
,
i+ 1

W ′ ,
j + 1

H ′
,
1

W ′ ,
1

H ′
)

The language features are encoded using an bidirectional LSTM. Then we filter

visual features at each scale using dot-product attention over language embedding. The

language embedding acts as query and each position in the visual feature map is mapped

to a key and a value. The weights of each position are calculated by applying softmax

over compatibility values (query-key dot-product) of each position.

q = Wq ∗ L

keykij = W k
key ∗ V k

ij

valuekij = W k
value ∗ V k

ij

FF k
ij = softmaxij(q

Tkeykij)value
k
ij

where k∈ {1, 2, 3} is the scale of the visual features, L is language query embed-

ding, q is the query, V represents visual features and FF represents the Filtered Features.

W k
key and W k

value are learn-able parameters. And softmaxij denotes softmax applied

over all positions (ij) of that particular scale.

The equations are written for single head attention for simplicity, but our experi-

ments show that using multi-head attention gives better performance. The reason could

be that the task of attention is now divided and each head can pay attention to a partic-

ular detail. We try different ways of using the filtered features such adding them to the

original features, appending them to the original features and we also try adding batch

normalization. We find that passing the filtered features without any modification gives

better performance and adding batch normalization [Ioffe and Szegedy (2015)] speeds

up training and improves accuracy by 0.5%.

The filtered features are then passed to the object detection network which then
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predicts center offset, width offset, height offset and confidence score for each bounding

box prior. Note that we don’t need the class conditionals here.
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CHAPTER 6

Experiments

6.1 Quantitative Results on Multi-stage Training for Im-

age Deblurring

All our experiments are done on NVIDIA RTX 2080 TI GPU. We use the GoPro dataset

[Nah et al. (2017)] for all our experiments. There are a total of 3214 blur and sharp

image pairs of resolution 720x1280 in this dataset of which we use 2103 image pairs

for training and remaining 1111 pairs for testing. We train all the networks on 256x256

patch randomly cropped from each image. We use batch size of 8 during training for

all the results reported.

To have a fair comparison all the models reported below have same number of pa-

rameters. The current experiments are performed with Deep Stacked Multi-patch Hier-

archical Network (DMPHN) architecture and the DMPHN models with multiple stages

are weight shared (WS).

Table 6.1: Quantitative results for multi-stage training on GoPro dataset

Model PSNR SSIM Runtime(ms)
DMPHN(1) 28.76 0.9134 7

DMPHN-WS(1-2) 29.27 0.9213 13
DMPHN-MPT(2-1) 29.10 0.9196 7

DMPHN-MST(1/2-1) 28.96 0.9184 7
DMPHN-MPT+MST(2-1-1/2) 29.19 0.9202 7

DMPHN-WS(1-2-4) 29.60 0.9261 22
DMPHN-MPT(4-2-1) 29.34 0.9223 7

DMPHN-MST(1/4-1/2-1) 29.22 0.9210 7
DMPHN-MPT+MST(4-2-1-1/2-1/4) 29.48 0.9246 7

The table 6.1 reports PSNR, SSIM and running time different model setups. The

reported running time is CNN running time in milli-seconds. From the table it can be



seen that MPT+MST trained single stage network performs comparably with a multi-

stage weight shared network. The speed up gained by training the network in a multi-

stage fashion instead of using multi-stage network is proportional to the number of

stages.

Having such small running time leaves room to make the network more complex

and deep to further improve accuracy. It is also memory efficient and hence can be used

on platforms with less computational resources.

6.2 Quantitative Results on Block-Wise Self-Attention

for Image Deblurring

All our experiments are done on NVIDIA RTX 2080 TI GPU. We use the GoPro dataset

[Nah et al. (2017)] for all our experiments. There are a total of 3214 blur and sharp

image pairs of resolution 720x1280 in this dataset of which we use 2103 image pairs

for training and remaining 1111 pairs for testing. We train all the networks on 256x256

patch randomly cropped from each image. We use batch size of 8 during training for

all the results reported.

To have a fair comparison all the models reported below have approximately same

number of parameters as the Aggregation Block is essentially equivalent (in terms of

parameters) to two convolutional layers. The current experiments are performed with

Deep Stacked Multi-patch Hierarchical Network (DMPHN) architecture as back-bone.

Table 6.2: Quantitative results for our model on GoPro dataset

Metric DMPHN DMPHN-AB(1,3) DMPHN-AB(1,5) DMPHN-AB(1,7) DMPHN-AB(1,9)
PSNR 28.76 28.91 29.04 29.12 29.13
SSIM 0.9134 0.9152 0.9176 0.9191 0.9196

Metric DMPHN-AB(1,15) DMPHN-AB(3,9) DMPHN-AB(3,15) DMPHN-AB(5,15)
PSNR 29.15 29.31 29.54 29.46
SSIM 0.9197 0.9217 0.9248 0.9242

The table 6.2 reports PSNR, SSIM for Aggregation Blocks with multiple block sizes

and kernel sizes. AB(x,y) represents a block size of x and kernel size of y. Block-size

of one implies pixel-wise self-attention, as we can see the performance for block size
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one increases with kernel size till the kernel size reaches 7 after which it saturates. At

a kernel size of seven itself it is accumulating information from 49 units and as we are

using softmax it can only accumulate information from few number of units, hence the

performance saturates at kernel size of seven.

We can also see that block size of 3 gives better performance compared to block size

of 1 for the same kernel size (9) which is in favor of our argument that using block-wise

self attention is better. However, block size of 5 gives worse performance compared

to block size of 3 for the same kernel size (15). We are adding the Aggregation Block

after the encoder hence each position in the feature map has already accumulated infor-

mation, using large block size such as 5 is probably more restrictive in terms of context

aggregation.

6.3 Quantitative Results on Attentive Filtering for Vi-

sual Grounding

In this section we show our experiments on comparison with other state-of-the-art vi-

sual grounding methods. We perform all our experiments on RefCOCO dataset [Yu

et al. (2016)] using the split as in [Yu et al. (2016)]. Which is train/val/testA/testB

120,624/10,834/5657/5095, testA contains images with multiple people and testB con-

tains images of all the other objects. We also show some bounding box predictions on

the RefCOCO dataset [Yu et al. (2016)].

All our experiments are done on NVIDIA RTX 2080 TI GPU. For fair comparison

we use the same training procedure as Yang et al. (2019). We resize each image such

that long size is of length 256 and pad pixels with mean value to the short edge to get

an image of size 256x256. We perform data augmentation by adding randomization

to color space, randomly flipping the images horizontally and random affine transfor-

mations. We use RMSProp [Tieleman and Hinton (2012)] as the optimizer to train the

model. We use a batch size of 16 to train all the models.

6.3 shows comparison of our methods with other state-of-the-art methods OSVG

[Yang et al. (2019)], Mattnet [Yu et al. (2018)], Similarity Net [Wang et al. (2019)],

SLR [Yu et al. (2017)] and VC [Zhang et al. (2018)] using proposal methods SSD [Liu
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Table 6.3: Accuracy on RefCOCO dataset[Yu et al. (2016)]. LSTM and COCO trained
Res101 are encoders if not stated.

Model Region Proposals Val testA testB
SLR FRCN 69.48 73.71 64.96

VC-VGG16 SSD - 73.33 67.44
MattNet Base FRCN 72.72 76.17 68.18

Mattnet FRCN 76.40 80.43 69.28
Similarity Net Edge box N=200 57.33 57.22 55.60
Similarity Net FRCN 71.48 74.90 67.32

Similarity Net-Darknet FRCN 72.27 75.12 67.91
OSVG-LSTM None 72.05 74.67 70.12

Ours None 74.02 76.43 71.64

et al. (2016)] or FRCN [Ren et al. (2017)] or Edge box [Zitnick and Dollár (2014)]. It

is to be noted that we re-train only OSVG on our system, for other networks we take

results from their respective papers. Our method produces 1.5% improvement over the

previous one stage approach, hence we argue that directly fusing language and visual

features is sub-optimal.

6.4 Qualitative Results on Attentive Filtering for Visual

Grounding

In this section we see some results where our network performs better than OSVG [Yang

et al. (2019)] and reason about them. The green box is the ground truth bounding box,

blue box is the predicted bounding box and the language query is given as caption. In all

the images below bounding box in the left image is predicted by OSVG and bounding

box in the right image is predicted by our network.
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Figure 6.1: falling

It can been that in all the example images [6.1, 6.4, 6.3, 6.5, 6.6, 6.2] that OSVG

[Yang et al. (2019)] gives fairly accurate bounding boxes but for the wrong person

which means that the information in the language query is not harvested fully. In our

work we score portions of image that are being addressed in the language query and

hence our network is better at recognizing the correct person.
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Figure 6.2: little boy left on womans elbow

Figure 6.3: granny
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Figure 6.4: hands on coffee mug

Figure 6.5: guy in purple

Figure 6.6: girl with hands on head
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CHAPTER 7

Conclusion

In this thesis we explore novel training procedures to improve performance of Single

Image Deblurring networks which comes without any extra cost in terms of training

time and inference time. We demonstrate the improvement in performance through ex-

periments. These training procedures when applied on single stage networks give per-

formance comparable to multi-stage networks all the while maintaining same inference

time as single stage network. This makes the models very fast and memory efficient a

perfect fit for platforms with less computational resources. We also review the concept

of effective receptive field in the context of single image deblurring and propose novel

block-wise self-attention block to aggregate the global context information, in effect

greatly increasing the receptive field, resulting in better performance.

We also introduce a new feature filtering method for the task of Visual Ground-

ing where we attentively filter out visual features that are not being referred to in the

language query. This gives better performance by actively suppressing false positives

compared to prediction of bounding boxes by appending language features to visual

features. The feature filtering method we introduce can further be improved by us-

ing better attention mechanisms, hence we advocate the use and exploration of feature

filtering method for the task of Visual Grounding.
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