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ABSTRACT

KEYWORDS: Sticky bandit ; Regret upper bound; Reward; UCB.

In this project we have proposed UCB like algorithms for two cases of sticky bandit

problem - with unknown and known delays (Yk), referred to as case-1 and case-2, re-

spectively. We obtained a sub-linear regret upper bound for the case-1 as proportional to
√
n, where n is run-time. For case-2 we have partially developed a UCB like algorithm,

which we expect to outperform the algorithm of case-1.
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NOTATION

κ Number of arms.
n Run-time.
T (t, k) Number of times kth arm is pulled at time t.
Xk,j Reward in pulling kth arm as jth pull.
Yk,j Delay in pulling kth arm as jth pull.
xk Expected value of Xk.
yk Expected value of Yk.
Tk(i) Number of times arm k is pulled after ith pull.
x̂k(i) Empirical value of xk calculated after ith pull.
ŷk(i) Empirical value of yk calculated after ith pull .
ñ Upper bound for number of pulls.
Rn Regret,
yl Smallest expected delay among κ arms.
ym Largest expected delay among κ arms.
Pk(.) Probability distribution of Yk.
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CHAPTER 1

INTRODUCTION

Multi Armed Bandit(MAB) or κ− armed bandit problem(Auer et al. (2002)), consists

of κ alternative levers, each having a stochastic reward with an initial unknown prob-

ability distribution. A decision maker tries to maximize the sum of rewards earned

through a sequence of lever pulls. By picking the arm with maximum expected reward,

we can maximize the expected value of sum of rewards. Sampling an arm more number

of times (exploration) leads to better the estimate of expected reward. This helps us

find the optimal arm. Later committing to this arm (exploitation) leads to improving the

expected total reward.

The regret Rn after n rounds is defined as the expected difference between the reward

sum associated with an optimal strategy and the sum of the collected rewards.

Rn = nµ∗ − E

(
n∑

i=1

Xi

)
(1.1)

Where Xi is the reward obtained in the ith round. And µ∗ is the expected reward of the

optimal strategy. This expression can be reformulated as

Rn =

κ∑

k=1

E [Tk(n)]∆k (1.2)

where Tk(n) is number of times arm k is pulled in n rounds.

And ∆k = µ∗ − µk denotes the gap between the expected rewards of the optimal arm

and of arm k.

An algorithm with less regret is expected to give a larger reward.

In a sticky bandits, picking an arm results in you being stuck with that arm for a period

of time. This wait period is stochastic with different distributions for each arm. We

introduce three different cases of the sticky bandit problem and discuss its convergence

for a Upper Confidence Bound (UCB) like algorithm. The UCB algorithm for standard

κ-armed bandits is given in APPENDIX A.



CHAPTER 2

PREVIOUS WORKS

Auer et al. (2002) have shown simple and efficient policies exhibiting uniform logarith-

mic regret for the bandit problem. The policies are deterministic and based on upper

confidence bounds. A result from this is crucial for deriving a sub-linear regret upper

bound.

Prashanth.L.A (2018) has shown a regret upper bound for UCB algorithm on MAB

problem. We tried to extend this to the sticky bandit problem and derived a regret upper

bound.

Jun and Nowak (2016) have introduced an anytime exploration for multi-armed bandits

using confidence information to make a prediction of the top m−arms at every time

step. They proposed an Any Time Lower and Upper Confidence Bound (AT-LUCB)

algrithm, which is a nontrivial algorithm that provably solves anytime Explore-m.

Carrascosa and Bellalta (2019) have carried out a decentralized Access Point(AP) se-

lection using multi-armed bandits using a novel approach called opportunistic ε-greedy

with stickiness. This halts the exploration when a suitable AP is found, then, it remains

associated to it while the user station(STA) is satisfied, only resuming the exploration

after several unsatisfactory association periods.

Mannor (2011) has briefly reviewed some of the most popular bandit variants such

as Bayesian, Markovian, adversarial, budgeted, and exploratory.

Lai and Robbins (1985) have constructed asymptotically efficient adaptive allocation

rules for multi arm bandit problem. They have also shown a lower bound for the ex-

pected sample size form an inferior population.



CHAPTER 3

STICKY BANDIT-GENERAL MODEL

We consider a κ armed bandit with delayed reward. Another key difference from the

regular bandit problem is that, instead of a fixed number of pulls, here we have a fixed

run-time equals "n". The problem formulation is given as follows.

If arm k is pulled for the T (t, k)th pull at time t.

• the reward comes at a time t+ Yk,T (t,k).

• the reward is Xk,T (t,k).

• Yk,j & Xk,j are i.i.d s

• Xk,j & Yk,j-sub-Gaussian with mean xk & yk

We are considering the following two cases.

Case I: Yk,j realization is not known on pulling k. You are not allowed to "quit" waiting
for reward of k & pull another arm.

Case II: Yk,j realization is known as soon as we pull k. You are allowed to "quit" waiting
for reward of k & pull another arm. You get no reward from k and incur a one
unit time loss, if we quit.



CHAPTER 4

CASE-1

In this chapter we propose a Upper Confidence Bound(UCB) like algorithm for case-

1 of the sticky bandit problem. We also find the regret upper bound which is a good

metric to show the effectiveness of the algorithm. We try to obtain a sub-linear regret

upper bound.

4.1 Regret Function

We obtain a regret upper bound for the sticky bandit problem using UCB, in a method

similar to the standard MAB problem Prashanth.L.A (2018).

At each turn we pick an arm with gain {Xk ∼ 1 sub-Gaussian}κk=1 and delays (time you

get stuck in the arm) {Yk ∼ 1 sub-Gaussian}κk=1

Just as in Prashanth.L.A (2018), we assume 1st arm to give largest sum of rewards.

Regret function is given by

Regret = E
[
T 11
]
x1 −

κ∑

k=1

E [Tk] xk (4.1)

where,

T 11 = # times 1st arm is pulled in most optimal route(Always picking arm-1)

Tk = # times kth-arm is pulled according to our algorithm

xi = E(Xi) yi = E(Yi)

In the optimal strategy (picking arm-1), let the delays be Y(1)
1 , Y(2)

1 , Y(3)
1 , . . .

From Wald’s equation:

∑

i

Y
(i)
1 = E

[
T 11
]
y1 = n

=⇒ E
[
T 11
]
=
n

y1
(4.2)



Put equation(4.2) in (4.1),

Regret = n
x1

y1
−

κ∑

k=1

E [Tk] xk (4.3)

Here ′n ′ is the time up to which we are allowed to pick an arm. As a result, we have

the following.

κ∑

k=1

E [Tk]yk ≥ n (4.4)

From equations (4.3) and (4.4), we get

Regret ≤
κ∑

k=1

E [Tk]∆k

where, ∆k =
x1

y1
yk − xk

This is what we try to optimize from now on.

Looking at the regret function it is clear that at each turn we want to pick k that maxi-

mizes expected reward rate (xk/yk).

4.2 Method

Our objective is to pick the arm with maximum expected reward rate xk/yk, which

is the 1starm in our case. We now derive the Upper-Confidence-Bound(UCB) of the

ktharm calculated before the ithpull.

x̂k and ŷk are empirical means of Xk and Yk respectively.

Because of our initial assumption of Xk and Yk for all k being 1-sub Gaussian, by

following Prashanth.L.A (2018)

P [ŷk(i− 1) ≥ yk + ε] ≤ exp
(
−Tk(i− 1)ε

2

2

)
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P [x̂k(i− 1) ≤ xk − ε] ≤ exp
(
−Tk(i− 1)ε

2

2

)

These can be re-written as

P

[
ŷk(i− 1) ≥ yk +

√
2 log(1/δ)
Tk(i− 1)

]
≤ δ

P

[
x̂k(i− 1) ≤ xk −

√
2 log(1/δ)
Tk(i− 1)

]
≤ δ

We choose δ = 1/i4 by following Auer et al. (2002) to get a sub-linear regret. From

this

P

[
ŷk(i− 1) ≥ yk +

√
8 log i
Tk(i− 1)

]
≤ 1

i4

P

[
x̂k(i− 1) ≤ xk −

√
8 log i
Tk(i− 1)

]
≤ 1

i4

Taking this into consider we define UCB of arm k as

UCB(k, i − 1) =
x̂k(i − 1)+

√
8 log i

Tk(i−1)

ŷk(i − 1)−
√

8 log i
Tk(i−1)

This upper bound is violated with the probability 2
i4

.

P

{
UCB(k, i− 1) ≤ xk

yk

}
≤
2

i4

At any ith pull, we pick the ktharm when its UCB is maximum among the different

arms.
x̂k(i− 1) +

√
8 log i
Tk(i−1)

ŷk(i− 1) −
√

8 log i
Tk(i−1)

>
x̂1(i− 1) +

√
8 log i
T1(i−1)

ŷ1(i− 1) −
√

8 log i
T1(i−1)

(4.5)
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4.3 Finding Regret Upper Bound

4.3.1 Part-1

The above inequality(4.5) is satisfied in the following cases

Case-A : x̂1(i− 1) < x1 −

√
8 log i
T1(i− 1)

Case-B : ŷ1(i− 1) > y1 +

√
8 log i
T1(i− 1)

Case-C : x̂k(i− 1) > xk +

√
8 log i
Tk(i− 1)

Case-D : ŷk(i− 1) < yk −

√
8 log i
Tk(i− 1)

Case-E : The original inequality can also be satisfied in cases

where Case-A, B, C and D are not followed

x̂k +
√

8 log i
Tk

ŷi −
√

8 log i
Tk

>
x̂1 +

√
8 log i
T1

ŷ1 −
√

8 log i
T1

From the converses of Case-A, B, C and D, we get

xk + 2
√

8 log i
Tk

yk − 2
√

8 log i
Tk

>
x1

y1

=⇒ Tk <
32 log i
∆2k

(
1+

x1

y1

)2

Suppose there is an ñ for which the following inequality is always satisfied

κ∑

k=1

Tk ≤ ñ (This makes sense in a few cases like delays being bounded)

=⇒ i ≤ ñ

For a =


1+

x1

y1



2

when Tk(i− 1) ≥ u =
32a log ñ

∆2k

Case-E is not possible and we only have to look at Cases A, B, C and D.
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Cases A, B, C and D each occurs with a probability ≤
1

i4
.

4.3.2 Part-2

Tk(n) ≤ u+

∞∑

i=u+1

I




x̂k +

√
8 log i
Tk

ŷk −
√

8 log i
Tk

≥
x̂1 +

√
8 log i
T1

ŷ1 −
√

8 log i
T1





≤ u+

∞∑

i=u+1

I



 min
u<sk<i

x̂k +
√

8 log i
sk

ŷk −
√

8 log i
sk

≥ max
0<s<i

x̂1 +
√

8 log i
s

ŷ1 −
√

8 log i
s





≤ u+

∞∑

i=u+1

i−1∑

s=1

i−1∑

sk=u

I




x̂k +

√
8 log i
sk

ŷk −
√

8 log i
sk

≥
x̂1 +

√
8 log i
s

ŷ1 −
√

8 log i
s





E [Tk] ≤ u+

∞∑

i=0

i−1∑

s=1

i−1∑

sk=u

P (G)

where

G =

{
x̂k +

√
8 log i
sk

> xk

}⋃{
x̂1 −

√
8 log i
s

< x1

}

⋃{
ŷk −

√
8 log i
sk

< yk

}⋃{
ŷ1 +

√
8 log i
s

> y1

}

and P(G) ≤ 4

i2

we get E [Tk] ≤ u+

∞∑

i=0

i−1∑

s=1

i−1∑

sk=u

4

i2

≤ u+ 2

(
1+

π2

3

)

4.3.3 Part-3

yl = min
k
yk ym = max

k
yk

κ∑

k=1

ykE [Tk] ≤ n+ ym

8



4.3.4 Part-4

Rn ≤
κ∑

k=1

∆kE [Tk]

≤
(

κ∑

k=1

∆2kE [Tk]

yk

)1/2( κ∑

k=1

ykE [Tk]

)1/2
(Cauchy-Schwarz inequality)

≤
(

κ∑

k=1

∆2kE [Tk]

yl

)1/2
(n+ ym)

1/2

≤ 1√
yl

[
32κa log ñ+ 2

(
1+

π2

3

) κ∑

k=1

∆2k

]1/2√
n+ ym

Rn ≤ C
′√
n+ ym

where

C
′

=
1√
yl

[
32κa log ñ+ 2

(
1+

π2

3

) κ∑

k=1

∆2k

]1/2

Here, we obtained a sub-linear regret for the case-1 of the sticky banded problem.

Regret ∝ √n .

9



CHAPTER 5

CASE-2

Given the distribution of Yk, say Pk(.), then the optimization strategy is to every time

pull the arm k∗ given by

k∗ = argmax
k

{
max
∆

xkPk(Yk ≤ ∆)
Pk(Yk > ∆) + E [Yk|Yk ≤ ∆]Pk(Yk ≤ ∆)

}

∆k = argmax
∆

xkPk(Yk ≤ ∆)
Pk(Yk > ∆) + E [Yk|Yk ≤ ∆]Pk(Yk ≤ ∆)

We wait for reward if Yk∗,j ≥ ∆k∗
else "quit" immediately.

We try to explain the logic behind this algorithm in the following

For a given threshold ∆

t = average time spent after you pick arm k

(We incur one unit loss of time on quitting)

= 1× Pk (Yk > ∆) + E (Yk|Yk < ∆)× Pk (Yk < ∆)

Since Xk and Yk are independent, we have

E (Xk|Yk < ∆) = E (Xk) = xk (5.1)

x = Average reward from picking arm k

(We obtain zero reward on quitting)

= 0× Pk (Yk > ∆) + E (Xk|Yk < ∆)× Pk (Yk < ∆)

= xk × Pk (Yk < ∆) (By equation(5.1))



Average reward rate for ∆

=
xkPk(Yk ≤ ∆)

Pk(Yk > ∆) + E [Yk|Yk ≤ ∆]Pk(Yk ≤ ∆)
(5.2)

=
xk
∑∆

j=1 Pk(j)∑∞
j=∆ Pk(j) +

∑∆
j=1 jPk(j)

(5.3)

From equation(5.3), it is clear that for larger values of∆, as∆ increases, average reward

rate decreases (since the denominator increases at a faster rate). Therefore∆maximizes

the above expression for a finite value.

We use the optimal ∆ for each arm and pick the arm which offers the best average.

This way we obtain maximum reward per unit time.

5.1 Our suggestion for a UCB like algorithm

We can re-write the optimum average reward rate for each arm as the following.

Uk = max
∆

[
E [Xk]

E [I (Yk ≤ ∆)]
(E [I (Yk > ∆)] + E [YkI (Yk ≤ ∆)])

]

Steps involved in ith pull

1. Take all the samples from the kth arm (Xk,r, Yk,r) r = 1, 2 . . . Tk(i)

2. Estimate all the expectations using corresponding sample averages.

3. For every arm, search over all ∆. The estimate of Uk after ith pull is Uk(i).

4. Choose the arm - argmaxkUCB (Uk(i))

In this work we have not found an expression for a proper upper confidence bound(UCB)

of Uk. Given an appropriate expression for UCB(Uk), we expect the above algorithm

to give a smaller regret than the one found in case-1. This is because the average reward

rate in this case is greater than that of case-1(case-1 reward rate for arm k is xk/yk).
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CHAPTER 6

CONCLUSIONS

In this project we have proposed UCB like algorithms for two cases of sticky bandit

problem - with unknown and known delays (Yk), referred to as case-1 and case-2, re-

spectively.

A metric showing the effectiveness of the algorithm is the regret upper bound. We

have derived an expression for regret which helped us identify that we have to pick the

arm with maximum average reward rate xk/yk at each pull.

The regret upper bound for the case-1 is found to be directly proportional to
√
n, where

n is run-time. Such a sub-linear regret upper bound is preferred.

For case-2 we have partially developed a UCB like algorithm, which we expect to out-

perform the algorithm of case-1. To convert this into a full fledged algorithm, we need

an expression for UCB(Uk).



APPENDIX A

UCB algorithm for κ-armed bandit

X1, X2, X3,. . . . . . Xκ are rewards for κ arms. n is the number of pulls.

Reward=0
for i = 1, 2, 3..., κ do

Select ith arm.
T(i) = 1
Calculate UCBT(i)(i) Reward=Reward+Xi

end
for i = κ+ 1, κ+ 2, κ+ 3..., n do

Select kth arm that has maximum UCB

k = argmaxjUCBT(j)(j)
T(k) = T(k) + 1
Reward=Reward+Xk

end
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Abstract

In this project, we try different formulations for blind deblurring of im-
ages as optimization problem, then try to prove its convergence. We con-
sider Alternate Minimization for solving all of the formulated problems.



Chapter 1

Introduction

We try different formulations for blind deblurring. The deblurred image
made into a vector and kernal(filter) are the varables. For most of the
project we use Alternate Minimization as method of solution, and formu-
lations of the problem are made in such a way that, the problem can be
proven to converge using Theorem 4.3 from Prateek Jain [2017].
We have considered a few other methods and proofs for convergence, and
will make attempts towards that in the future.
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Chapter 2

Previous work

1. Robust Blind Deconvolution via Mirror Descent by Ravi et al. [2018]
This paper deals with a convergence of an algorithm named PRIDA.
The algorithm used is similar to Alternate Minimization with pro-
jection.

2. Expectation-Maximization and Alternating Minimization Algorithms
by Haas [2002]
This paper mainly deals with Expectation-Maximization and its use
for certain problems like mixture models. It also talks about the
similarities in Expectation-Maximization and Alternating Minimiza-
tion.

3. IITM JTG 2019 optimization lectures by Praneeth NetrapalliNetrapalli
[2019]
The lecture notes deals with Methods like Gradient Descent(GD),
projected GD, Mirror Descent etc. and its rate of convergence for
various cases of objective like convexity, strong convexity, and smooth-
ness.

4. Non-convex Optimization for Machine Learning, 2017 Prateek Jain
[2017]
Chapter 8 of the book discusses the convergence of low rank ma-
trix completion using Alternate-Minimization. Robust Bistability
Property from chapter 4 is what we tried using till now to prove
convergence for our different formulations.

2



Chapter 3

Modelling of optimization
problem

3.1 1st formulation

One of the first formulations we tried was.

min f (A, x) =‖y− Ax‖2
2 + λ‖A‖2

F

were, A is kernal and x is image pixel intensity value in column vector.
First the term‖A‖2

F, was added to avoid the trivial solution, A = I (Iden-
tity matrix) and x = y.
Later we realised this term also offers a constraint on A to be a stochastic
matrix.
Let λ1, λ2, λ3, ..etc. be the eigen values of A, then while A is stochastic

max
i

λi ≤ 1 ⇒ ‖A‖2
F ≤∑

i
λ2

i ≤ n

By changing λ, we expect to get desired deblurred image. Because of
the form of the problem, being marginally convex in both A and x, we
consider Alternate Minimization(Algorithm 1) as method of solution. We
try to prove convergence using Theorem 3.1. A motivation towards this is
We also consider an alternate form, equivalent to the C-Robust Bistability
Property, in Result 3.1.

Definition 3.1. f : Rp ×Rq → R is α−Marginally Strongly Convex(MSC)
and β−Marginally Strongly Smooth(MSS) in its first variable if ∀ y ∈ Rq,

α

2

∥∥∥x2 − x1
∥∥∥

2

2
≤ f (x2, y)− f (x1, y)−

〈
g, x2 − x1

〉
≤ β

2

∥∥∥x2 − x1
∥∥∥

2

2

3



where g = ∇x f
(

x1, y
)

and x1, x2 ∈ Rp.

Definition 3.2. A function f : Rp×Rq → R satisfies the C-robust bistabil-
ity Property if for some C > 0, for every (x, y) ∈ Rp×Rq, ỹ ∈ mOPT f (x)
and x̃ ∈ mOPT f (y), we have

f (x, y∗) + f (x∗, y)− 2 f ∗ ≤ C.
[
2 f (x, y)− f (x, ỹ)− f (x̃, y)

]

Data: Objective function f : X×Y → R

Result: A point with near optimal objective value
(x1, y1)← Initialize();
for t = 1, 2, 3..., T do

xt+1 ← argmin
x

f (x, yt)

yt+1 ← argmin
y

f (xt+1, y)

end
return (xT, yT)

Algorithm 1: Alternate Minimization

Theorem 3.1. (from Prateek Jain [2017]) Let f : Rp ×Rq → R be a continu-
ously differentiable function, within the region S0 =

{
x, y : f (x, y) ≤ f (0, 0)

}
⊂

Rp+q,satisfies α−MSC, β−MSS in both its variables and C-robust bista-
bility . Let alternating minimization be executed with (x1, y1) = (0, 0).
Then after at most T = O

(
log 1

ε

)
steps, we have f

(
xT, yT

)
≤ f ∗ + ε

Result 3.1. A function which is α−MSC and β−MSS follows Robust Bistabil-
ity Property if it follows

∥∥x− x∗
∥∥2

2 +
∥∥y− y∗

∥∥2
2 ≤ k{‖x− x̃‖2

2 +‖y− ỹ‖2
2}

Along with the original inequality, we try to show that the objective follows this
inequality to prove convergence.

Proof: As ∇ f |(x∗,y∗) = 0, α−MSC and β−MSS of f (x, y) gives us

α

2

∥∥x− x∗
∥∥2

2 ≤ f (x, y∗)− f (x∗, y∗) ≤ β

2

∥∥x− x∗
∥∥2

2 (3.1)

α

2

∥∥y− y∗
∥∥2

2 ≤ f (x∗, y)− f (x∗, y∗) ≤ β

2

∥∥y− y∗
∥∥2

2 (3.2)
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As ∇x f |(x̃,y) = 0

α

2
‖x− x̃‖2

2 ≤ f (x, y)− f (x̃, y) ≤ β

2
‖x− x̃‖2

2 (3.3)

As ∇y f |(x,ỹ) = 0

α

2
‖y− ỹ‖2

2 ≤ f (x, y)− f (x, ỹ) ≤ β

2
‖y− ỹ‖2

2 (3.4)

From equations 3.1, 3.2, 3.3 and 3.4

f (x, y∗) + f (x∗, y)− 2 f ∗ ≤ C.
[
2 f (x, y)− f (x, ỹ)− f (x̃, y)

]

⇒ α{
∥∥x− x∗

∥∥2
2 +
∥∥y− y∗

∥∥2
2} ≤ C× β{‖x− x̃‖2

2 +‖y− ỹ‖2
2 (3.5)

,and

{∥∥x− x∗
∥∥2

2 +
∥∥y− y∗

∥∥2
2

}
≤ C1 × α

{
‖x− x̃‖2

2 +‖y− ỹ‖2
2

}

⇒ α f (x, y∗) + f (x∗, y)− 2 f ∗ ≤ C1 × β
[
2 f (x, y)− f (x, ỹ)− f (x̃, y)

]
(3.6)

From equations 3.5 and 3.5, it is clear that robust bistability is equiva-
lent to our formulation.

We have tried to prove that the objective satisfies the inequalities in
Definition 3.2 and Result 3.1, but failed at it. One of the issues faced
was, not knowing the values of (x∗, y∗) that were necessary for the both
inequalities. Our hope was that, we could prove it with some assumptions
of optimal point and function characteristics.

x̃ = (AAT)Ay

Ã = (xxT + λI)−1xyT

here A at every step of the AM-algorithm is a rank 1 matrix. This
causes trouble in finding x in the next step. We try other formulations
that better characterises the problem.
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3.2 2nd formulation

In the second formulation, we apply the condition that A is stochastic.

min f (A, x) = {∑
i

∥∥yi − 〈ai, x〉
∥∥2

2 + λ‖ai‖2}

Subject to 〈ai, 1〉 = 1
We face the same problems as the first formulation (Ã is a rank 1 matrix,
and the problem with lack of information of (x∗, y∗)).

3.3 3rd formulation

We now tried to add the constraint that A is doubly stochastic. Doubly
stochastic matrices can be represented as linear combinations of permu-
tation matrices.

A = ∑
i

ziPi

where ∀i, zi ≥ 0, ∑i zi = 1 and Pi are permutation matrices.
Our problem becomes

min f (z, x) =

∥∥∥∥∥y− {∑
i

ziPi}x
∥∥∥∥∥

2

2

+ ∑
i

z2
i

Subject to: z < 0 and 〈1, z〉 = 1
yTy + xT ∑

i,j
zizjPT

i Pj x− 2yT ∑
i

ziPi x + λ ∑
i

z2
i

∂ f
∂zk

= ∑
j,i

xT
(

ziPT
i Pj + zjPT

i Pj

)
x− 2yTPkx + 2λzk

∇x f = 2 ∑
j,i

zizjPT
i Pjx− 2 ∑

i
ziPT

i y = 0

We obtain the x̃ and Ã from the above equations.
We still face problems with proving convergence through Theorem 3.1

as we do not have knowledge about (x∗, y∗).
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3.4 Trying simpler problems

To check if it is possible to prove convergence using Theorem 3.1, we
consider a simpler problem whose solution we know.

min f (A, x) =‖y− Ax‖2
2

The solution to this is A∗ = I and x∗ = y.
This is when we realised a fault to most of our formulations. None of
them follow robust bistability property. Even for the above simple prob-
lem, there are multiple bistable points to which the algorithm could con-
verge. By interchanging any two any two rows of A∗ and corresponding
elements of x∗, we get another solution(value of objective does not change
with this operation).

In Result 3.1 , Suppose (x, y) = (x1, y1) , where (x1, y1) which is an-
other bistable point, other than (x∗, y∗). In this case we get (x̃, ỹ) =
(x1, y1), and the inequality needed to be proven becomes

∥∥∥x1 − x∗
∥∥∥

2

2
+
∥∥∥y1 − y∗

∥∥∥
2

2
≤ 0

. Which is not true.
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Chapter 4

Results and Work to be done

A mentioned in the end of the previous chapter there are other consider-
ations to be taken to the objective of the optimization problem, if we want
to prove convergence using Theorem 3.1. Terms can be added to the ob-
jective to avoid multiple bistable points. Gradient term of x or terms like
‖y− x‖ could be used for this purpose. We are considering this for the
future of this project.

Theorem 3.1 is too general. We might need to consider a proof that is
specific to the problem. Chapter-8 of Prateek Jain [2017] has convergence
proof for low-rank matrix completion by Prateek Jain. We are going
through such proofs as part of research study, to possible find a proof
for our problem.
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