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ABSTRACT

Dual-lens (DL) mobile phones that can mimic the bokeh feature of bulky DSLRs

are now in vogue. However, motion blur due to camera shake is a ubiquitous

phenomenon in handheld photography. Because one of the cameras in DL phones

typically comes with a narrow field-of-view, the effect of motion blur becomes

magnified. The consideration of 3D scenes further aggravates the DL deblurring

problem. While image aesthetics is the main objective in conventional single-lens

deblurring, any method for DL deblurring is additionally tasked with ascertaining

binocularity in the deblurred image-pair. Ours is the first work to systematically

address the problem of motion deblurring in DL phones. We unveil the shortcom-

ings of the mature single-lens blur model for the DL configuration, and propose a

generalized model that elegantly explains the intrinsically coupled image forma-

tion process in DL. We proceed to reveal an intriguing challenge that stems from

an inherent ambiguity unique to DL deblurring which naturally disrupts binocu-

larity. We address this issue by devising a judicious prior that also accounts for

the unknown center-of-rotation. Based on these findings, we propose a DL blind

deblurring method which exhibits state-of-the-art performance.
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CHAPTER 1

INTRODUCTION

Motion blur is an ubiquitous phenomenon in hand-held photography. A plethora

of works have been proposed to address the issue of blur in images due to camera

shake. Unlike the problem of non-blind deblurring (NBD) which has the blur ker-

nel as well as the blurry image as input, blind motion deblurring (BMD) methods

estimate a clean image and/or the blur kernel by only utilizing the blurry image.

The blurring process is typically represented as the convolution of a blur kernel

with the sharp image. Each approach proposes a blur model based on some as-

sumptions and invert this model to obtain the clean image estimate.

These single image deblurring approaches can broadly be classified under 2 classes:

Models assuming uniform or spatially invariant (SIV) blur [3, 37, 38, 31, 39, 26]

and models assuming non-uniform or spatially variant (SV) blur [33, 36, 18, 27, 35].

The methods assuming SIV blur estimate a single blur kernel and subsequently

perform deconvolution to obtain the sharp image. The methods of [33] and [5]

show that blur due to camera shake is, in general, non-uniform across the image.

The former method assumes that this blur is mostly due to 3D rotational motion

of the camera. This blur model is predominantly followed in subsequent works

[36, 18, 27, 35]. In addition to model based solutions for single-lens (SL) BMD,

several deep learning based solutions exist [17, 29] as well.

However, no methods exist for the case of dual-lens (DL) setup. Most modern

cameras come with DL configuration which consists of two cameras separated

by a baseline. These cameras have, in general, dissimilar configurations such



as different focal lengths or field-of-views (FOV), image resolution and exposure

times. Recently, there has been a renewed interest in leveraging these multiple

camera systems with unconstrained settings for various applications such as HDR

imaging [20, 2, 28], low-light photography [32], super-resolution [9] and visual

odometry [16, 8]. Many smartphones today are equipped with DL cameras, one

with a narrow FOV (high focal length) and the other with a wide FOV. Higher

focal length of the narrow angle camera further amplifies the effect of handheld

shake on motion blur. The problem of BMD for DL cameras is fraught with addi-

tional challenges over those present in normal cameras. This DL-setup warrants

deblurring based on scene depth. Additionally, any method for DL-BMD must

ensure scene-consistent disparities in the deblurred image pair. Finally, SL BMD

methods assume that the centre of rotation (COR) of the camera is at the optical

center, whereas in practice it may be located at a point far away. No methods exist

which handle the COR issue, which is also exacerbated by higher focal length of

narrow-angle camera.

This method addresses the BMD problem for an unconstrained DL setup account-

ing for COR. There exists an inherent ill-posedness present in DL-BMD which

is addressed with a well devised prior. Finally, the method proposes a strategy

which decomposes the high-dimensional BMD problem into subproblems, while

enforcing the prior and preserving the convexity. The main contributions are

summarized below:

• This is the first attempt to formally address blind motion deblurring for
unconstrained camera configurations. To this end, a generalized DL blur
model is introduced that allows for arbitrary COR.

• There exists an inherent ill-posedness present in DL-BMD, that disrupts scene
consistent disparities. To address this, a prior is introduced that ensures
biconvexity and allows for efficient optimization.

• Employing the introduced model and prior, a practical DL-BMD method is
proposed that achieves state-of-the art performance for current DL set-up.
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CHAPTER 2

Related works

A plethora of works exist for the single-lens BMD problem. While initial works

restricted to space-invariant blur [3, 37, 38, 31, 39, 26], the methods of [33] and

[5] show that motion blur is, in general, space variant. [5] propose a blur model

assuming in-plane translations and rotations while [33] assume a 3D rotational

model. Building on [33], other works propose models with different types of

priors such as unnatural L0 prior [35], dark channel prior [18] and extreme channel

prior [36].

For the case of DL cameras, Xu et al.[34] restrict to a constrained set-up, i.e., they use

two identical cameras working in full synchronization, so the same camera shake

applies to both cameras. Importantly, the method imposes strong assumptions on

blur that it is primarily caused by inplane translations and that the scene is fronto-

parallel with layered depth. For the case of light field (LF) cameras, all multi-view

images share identical camera configurations and ego-motions and hence cannot

apply, in general, to unconstrained camera setups. Except [15], none of the LF BMD

methods apply to this problem because their objective warrants optimizing for a

4D light field consisting of images with identical FOVs, resolutions and exposure

times. Arun et al.[1] propose a method for multi-shot BMD, but employ 4 images

and restrict to layered depth scenes. Moreover, they require all the images to

be registered within a few pixels, over the entire image coordinates. Though this

requirement can be met for multi-shot capture, it is easily violated for stereo images

because of strong depth-dependent disparities. Hu et al.[7] jointly estimate depth



and the clean image from a single blurred image. However, they restrict the blur to

be primarily due to inplane translations. Recently, DL video deblurring methods

have been proposed [19, 22], but they address dynamic objects and necessitate as

input multiple stereo image-pairs.

12



CHAPTER 3

Single Lens Blind Motion Deblurring

3.1 Blur Model for Single-Lens System

Following the model of [33], if a camera undergoes 3D rotation about its optical

centre, the change in world coordinate system is given by

X
′

= RX (3.1)

where R is the rotational matrix describing the motion of the camera, X = [X,Y,Z]T

and X
′

= [X′

,Y′ ,Z′]T are the 3D world coordinates with respect to initial and final

camera positions respectively. Additionally, the relation between the 2D image

coordinates and the 3D world coordinates is given as

x =
1
Z

KX (3.2)

where x = [x, y, 1]T represents the 2D image coordinates [x, y]T in homogenous

coordinates, K is the camera’s internal calibration matrix and Z is the Z coordinate

or the depth of the scene point (assuming the image plane to be the x − y plane).



Therefore, we get,

x
′

=
1
Z′

KX
′

=
1
Z′

KRX

=
1
Z′

KR(ZK−1x)

= λHx

(3.3)

where H = KRK−1 represents the 2D homographic transformation between the 2

image coordinates x and x′ and λ = Z
Z′ is the normalization constant.

The matrix R is described by an angle θ moved about some axis, consisting of 3

parameters. The matrix K is taken to be of the form

K =


f 0 x0

0 f y0

0 0 1

 (3.4)

where f is the focal length of the camera and [x0, y0]T represents the coordinate on

the image plane which is intersected by the camera optical axis.

Now, as the camera undergoes a sequence of rotations while the camera shutter is

open for the exposure time te, the blurred image IB is an integration of the sharp

images corresponding to each rotation. Thus the equation is given as

IB =
1
te

∫
t∈te

P(RtX)dt + ε (3.5)

where ε represents noise in the observed image, Rt is the matrix corresponding to

the rotational pose at time t, and P(X̄) represents the image formed by projection

of the world coordinates X̄ onto the image sensor. Note that this model assumes

that the COR is at the optical centre.
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As the blurry image is independent of the chronological order of the poses it

undergoes, Eq. 3.5 can equivalently represented as a weighted integral over a set

of camera rotations:

IB =

∫
θ∈P3

P(RθX)ωθdθ + ε (3.6)

Discretizing Eq. 3.6, we get

IB =
∑
θ∈P3

P(RθX)ωθ + ε (3.7)

where P3 represents the pose space containing all the possible rotations of the

camera and ωθ is the weight representing the fraction of exposure time the camera

stayed in the pose θ.

Thus, the blurry image IB ∈ RN (N is total number of pixels in the image) can be

equivalently represented by a weighted summation of all the projectively warped

versions of the clean image Ic ∈ RN, where Ic = P(X). If the projective warping

operation of Ic does bilinear interpolation then it can be represented as a linear

transformation, i.e.,

P(RθX) = M(θ)P(X) (3.8)

where the N × N matrix M(θ) does the projection corresponding to rotation θ.

Thus Eq.3.7 can be represented as

IB =

K∑
k=1

ωkMkIc + ε (3.9)

where K is the total number of 3D poses in the pose spacePθ, Mk andωk correspond

to some camera orientation θk. The set of all weights can be represented by a single

vector ω ∈ RK, called the Motion Density Function (MDF).

By closely observing Eq. 3.9, it can be seen that the blurry image IB is linear in
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either ω or Ic when the other quantity is known. Thus, it can be equivalently

represented in 2 forms as:

IB = AIC + ε, or (3.10)

IB = Bω + ε (3.11)

where each row of the N ×N matrix A is a local blur filter which acts on the clean

image Ic to obtain the corresponding blurry image pixel at that row location and

each column of the N × K matrix B contains a projectively transformed version of

Ic for some rotational pose corresponding to the column location. The matrix A is

very sparse as the blur filters only act on a small set of pixels of the clean image.

3.2 Latent image and kernel optimization

Since Eq. 3.10 and 3.11 are linear in the sharp image and the MDF respectively,

it allows for efficient optimization of the two unknowns. However, optimizing

for the best sharp image and MDF is ill-posed because of fewer equations than

parameters. There can be multiple pairs of the sharp image estimate ÎC and the

MDF estimate ω̂ which yield the same blurry image IB. Therefore, in order to

estimate the right solution, regularization and/or constraints are used on both the

sharp image and kernel. Firstly, the kernel elements are restricted to be between 0

and 1 (as they represent fraction of exposure time) and sum up to 1. Additionally,

handheld shake causes the camera to pass through only a small subset of all

possible oritentations while the camera shutter is open. Thus, ω will have very

few non-zero elements and can have a sparsity prior imposed on it. For the case

of image, typically, a hyper laplacian prior is imposed on the image gradients
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enforcing sparsity.

Representing the blurry image by g, the clean image f and the MDF by ω, we

wish to get estimates f̂ and ω̂ of the clean image and the MDF. This is obtained by

maximizing the posterior distribution,

p(f,ω|g) ∝ p(g|f,ω)p(f)p(ω) (3.12)

where p(f) and p(ω) are the respective prior distributions for image and kernel, and

the likelihood p(g|f,w) is obtained by assuming noise, ε, to be isotropic Gaussian:

p(g|f,ω) ∝
∏

i

exp
(
−

(ĝi(f,ω) − gi)2

2σ2

)
(3.13)

where σ is the noise standard deviation and ĝ can be obtained by current estimates,

f̂ and ω̂.

A simple alternating minimization approach of Eq. 3.12 with respect to f and ω

does not yield the desired results. A series of nonlinear filtering and thresholding

steps are added in order to ensure that the priors come into effect.

In the first step, the current estimate of clean image, f̂, is bilateral filtered and

shock filtered in order to enhance the edges of the image (as homogeneous regions

carry no blur information). Sparse gradient maps are then computed for this

filtered image by finding its derivatives (upto the second order), {fx, fy, fxx, fyy, fxy}

and thresholding, so that only a small number of non-zero gradients are retained.

However, some parts of the image might have smaller gradients. In order to

ensure all regions are equally represented, the image is split into a 3 × 3 grid and

thresholding is done independently for each cell of the grid. The steps above are

also done for the blurry image g to get the gradient maps {gx, gy, gxx, gyy, gxy}. The

gradient maps obtained are then added to the following cost function which is
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minimized with respect to the kernel, ω along with some constraints:

C(ω) =
∑
(f j,g j)

||ĝ(f j,ω) − g j||
2
2 + β

∑
k

ωk

such that ∀k = 1, 2, ...,K,ωk ≥ 0

(3.14)

where each partial derivative (f j, g j) ∈
{
(fx, gx), (fy, gy), (fxx, gxx), (fyy, gyy), (fxy, gxy)

}
.

Eq. 3.14 applies `1 regularization combined with non-negativity constraints allow-

ing for the kernel to be sparse. Minimization of this cost function yields a MDF

estimate ω̂. Subsequently, we use ω̂ to estimate the sharp image Îc by inverting

Eq. 3.10.

Image reconstruction can be done by various methods. One of the methods [10]

does MAP estimation of the sharp image using the hyper-Laplacian prior on the

image gradients. This is equivalent to maximizing the following posterior over f:

p(f|g, ω) ∝ p( f |g,ω)p(f) (3.15)

where

p(f) =
∏

i

exp(−λ| f x
i |

p)exp(−λ| f y
i |

p) (3.16)

where p = 0.5 to ensure sparsity of image gradients. Repeated optimizations of

quadratic cost functions are done as in the work of [10].

Additionally, the method of Richardson-Lucy can be used for deconvolution which

works especially well around saturated pixel regions where the linear model is not

valid. The algorithm runs for multiple iterations while improving the current

estimate f̂ as:

f̂i+1 = f̂i �
(
AT(g ⊗ Af̂i)

)
(3.17)
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where i is the iteration number, � is elementwise multiplication, ⊗ is elementwise

division and matrix A depends on the estimated non-uniform blur as in Eq. 3.10.
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CHAPTER 4

Dual-Lens Blind Motion Deblurring

4.1 Blur Model for unconstrained Dual-Lens setups

(Sections 4.1 and 4.2 were written by Mahesh Mohan and are mentioned here for

the sake of completeness.) This section explains how the single-lens model can be

extended to a general DL setup. DL setups in most mobile phones consist of a single

narrow-FOV camera (higher focal length) and a single wide-FOV camera separated

by some baseline tb. Thus, at any instant of time, one camera will perceive the

world, shifted by the stereo baseline. with respect to the other camera. Both the

cameras need not have same image resolutions or exposure times. Denoting the

parameters of the narrow angle and the wide angle camera by superscripts n and

w respectively, the change in the world coordinate system for the two cameras can

be represented by

Xn = R(X − tc) + tc + tb (4.1)

Xw = R(X − tc) + tc (4.2)

Thus a DL motion blurred image-pair (Iw
B and In

B can be represented by the following

equations (based on Eq. 3.6):

In
B =

∫
θ∈P3

Pn(R(X − tc) + tc + tb)ωn
θdθ + εn

Iw
B =

∫
θ∈P3

Pw(R(X − tc) + tc)ωw
θdθ + εw

(4.3)
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Figure 4.1: DL configuration warrants a depth-variant transformation (Note the
variation of PSF in Fig. (b) with respect to scene depth in Fig. (a)).
As the single-lens motion blur model is depth-invariant, the model op-
timized for a fixed depth can fail for other depths, leading to ineffective
deblurring across depths (Fig. (d)).

The centre of the wide angle camera is taken as the origin. Notice the different pro-

jection functions (Pn(.) and Pw(.))for the two configurations as well as the different

kernels (ωn and ωw). From Eq. 3.2, we have the two image projection equations

given by:

xn =
1
Z

Kn(X + tb) (4.4)

xw =
1
Z

KwX (4.5)

Substituting Eq. 4.4 and Eq. 4.1 into the equation below,

(x
′

)n =
1
Z′

Kn(X
′

)n

=
1
Z′

Kn
(
R(X − tc) + tc + tb

)
=

1
Z′

Kn
(
R
(
Z(Kn)−1xn

− tb − tc

)
+ tc + tb

)
=

1
Z′

Kn
(
ZRKn)−1xn + tc(I − R) + tb(I − R)

)
= λ

(
KnR(Kn)−1︸      ︷︷      ︸

homography

xn +
1
Z

Kn(I − R)tc︸          ︷︷          ︸
center-of-rotation

+
1
Z

Kn(I − R)tb︸          ︷︷          ︸
baseline

)
(4.6)

where Z is the scene depth of the coordinate xn and λ normalizes the third coordi-

nate of x′ . Thus, Eq. 4.6 yields the pixel mapping for the narrow angle camera. A
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similar pixel mapping holds for the wide angle case, with the superscript n replace

with w and with tb = 0. Eq. 4.6 contains a similar homography as the single-lens

system but also has additional components such as the center-of-rotation tc and

the baseline tb. Unlike the single-lens pixel mapping in Eq. 3.3, Eq. 4.6 has a

translational component and is dependent on the scene depth. The Point Spread

Function (PSF), at the spacial coordinate xn is obtained by super-imposing the

pixel-mappings of xn for all the poses which the camera undergoes, and weighed

by the corresponding element of the MDF. PSFs quantify the motion blur, because

the blurred image is obtained by convolving the space-variant PSFs with the latent

image. As the pixel mapping in Eq. 4.6 is a function of COR, baseline, and depth,

the MDF itself depends on these quantities unlike in the case of single lens. It is

thus necessary to estimate depth and COR in order to completely characterize mo-

tion blur. To analyze this depth-variant nature of the kernel, Figs. 4.1(a-d)consider

a camera trajectory and a 3D scene from [21].Fig. 4.1(b) shows the corresponding

kernels (projected using Eq. (4.6)), which clearly reveals depth-dependency of blur,

with lower depths exhibiting severe blurs relative to the farther ones. Figure 4.1(d)

shows the deblurred image-patches for different depths employing the normal

camera method [35], optimized for a given depth; it is evident that this approach

is not quite successful due to the depth-dependency of the blur, which clearly neces-

sitates a new approach for DL-BMD. While single image methods model blur as

independent of depth, as recovering depth from a single blurry image is a difficult

problem, pixel disparities between images can be used to obtain a depth estimate

in the dual-lens case.
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4.2 Costs and Prior for unconstrained DL-BMD

Similar to the cost function in Eq. 3.14, the joint cost for DL-BMD is L = Ln + Lw,

where:

Lk = ||Bkωk
− Ik

B||
2
2 + αk

||ωk
||1 + βk

||∇Ik
c ||1, (4.7)

where k ∈ {n,w} and ||Bkωk
− Ik

B||
2
2 = ||AkIk

c− Ik
B||

2
2 is used depending on minimization

of either kernel or latent image, as per Eq. 3.11 or Eq. 3.10. Note that the matrices

Ak and Bk are depth and COR dependent as explained in section 4.1.

The estimated deblurred image-pair In
c , I

w
c must obey the scene binocularity, where

the narrow-angle camera perceives the same scene-orientation as the wide-angle

camera, but displaced by baseline tb. However, directly optimizing for the DL-

BMD cost L yields multiple valid solutions of the deblurred image pair, which do

not adhere to the scene consistent disparities. A desired solution which minimizes

the cost L is {Pn(X + tb),Pw(X)}, which is referred to as the true image-pair and

{ωn(p), ωw(p)} referred to as the true MDF-pair. Now, Eq. 4.3 can be equivalently

written in discrete form (akin to Eq. 3.7) as

In
B =

∑
p

ωn(p)Pn
(
RpR−1

n Rn( X︸︷︷︸
true

−tc) + tc + tb

)
=

∑
p

ωn(p)Pn
(
RpR−1

n

(
Rn(X − tc) + tc︸            ︷︷            ︸

apparent

−tc

)
+ tc + tb

) (4.8)

where the new scene-orientation is Rn(X − tc)+tc, with Rn , I. The rotation matrix

Rn shifts all the true poses by an offset of R−1
n , which produces a shifted version of

the true MDF (sparsity cost remains same). Thus, a new solution is the image-pair
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(a) Wide-angle blurred (b) True MDF (c) MDF with prior (d) MDF without prior

(e) Narrow-angle (f) Wide-angle (g) Wide-angle image-patches

(1) Ground truth

(2) With Prior

(3) Without Prior

Figure 4.2: Effect of the proposed prior: The MDF estimate and the deblurred
image-patches of prior-less case clearly show a significant rotational
ambiguity (Figs. (g,3) d). Also, the deblurred image in the prior-less
case exhibits considerable ringing artifacts and residual blur (Figs. (e-
f,3)), which could be possibly due to the less accurate MDF estimate
(Fig. d). In contrast, the addition of the prior successfully curbs the
pose ambiguity (Figs. (g,2),c), improves the MDF accuracy (Fig. c) and
produces better deblurring quality (Figs. (e-f,2)).
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{Pn(Rn(X − tc + tc + tb),Pw(X), which do not obey scene binocularity (narrow angle

camera perceives a different scene orientation). The TV prior cost on the image re-

mains same as the new narrow-angle image is a warped version of the true image.

The cost Lw remains same and hence, the above solution minimizes L as well. A

similar ambiguity occurs in the wide angle case as well, where the resultant image

pair becomes {Pn(Rn(X − tc) + tc + tb),Pw(Rw(X − tc) + tc)} (in general, Rn , Rw).

The ill-posedness exists irrespective of whether the exposure time is same or differ-

ent in the two cameras. This is tackled by introducing a prior which assumes some

overlap between the two exposure times. The prior is motivated by the fact that

the image-pair will be scene-consistent if Rn = Rw. For identical exposure time,

this criterion requires that both the MDFs completely intersect over the pose-space.

For overlapping exposure time, both MDFs must intersect over the shared poses.

Hence a prior of the form ||ωn
− ωw

||2 is included in the cost. The priorless DL

BMD cost L can allow MDF pairs with significant drifts but the prior cost increases

for such pairs which prevents it from being the minima of the overall cost. The

proposed DL prior preserves the biconvexity property of the cost which guaran-

tees convergence by alternative minimization. The effect of the proposed prior is

highlighted in Fig. 4.2.

4.3 A practical algorithm for DL-BMD

Most single lens BMD methods work in a scale-space manner while optimizing

for the MDF and the latent image. This involves alternative minimization from a

coarse to fine image scale over a number of iterations each scale, in order to account

for large blurs. For the first scale and first iteration, the latent images, MDFs and

COR are initialized as shock-filtered blurry images, Kronecker delta and optical
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centre respectively.

Computational complexity is an important factor for such iterative algorithms. In

order to have a fast and accurate optimization scheme, Efficient Filter Flow (EFF)

is used in the deblurring pipeline (as per the work of [6]).

4.3.1 Blurring using EFF

As performing space variant convolution for every pixel in the image is com-

putationally expensive, in this approach, motion blur is approximated as space

invariant convolutions in small individual patches of the image.

Relaxing the superscript notation of n and w (both cameras will have similar equa-

tions), this is represented as

IB =

M∑
m=1

D†m.
(
hm ∗ (Dm.Îc)

)
(4.9)

where M is the total number of overlapping patches in the latent image Îc, h is

the blur kernel or the PSF (explained in Sec. 4.1) which is convolved with the mth

image patch, Dm.Îc is a linear operator which extracts the mth patch from Îc and

D†m inserts it back into the original position with a Barlett windowing operation.

Thus, each patch is represented by a single blur kernel allowing for efficient space

invariant convolution for the patch. The PSF is obtained as follows:

hm =
∑
p∈P3

ω(p)δm(p) (4.10)

where δm(p) is an impulse which is shifted by transforming, according to some pose

p, an impulse centred at the mth patch center. The transformation is based on the
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depth and COR dependent pixel mapping in Eq.4.6. Thus the blur kernel at the mth

patch center is just a superposition of these shifted impulses weighed by the MDF.

The impulses are calculated only once, for each patch k, and can be used to create

the blur kernel for any image. Thus, given a latent image estimate Îc and MDF

estimate ω̂, the blurring process for EFF computes kernels in the M patch centres

using the MDF and the precomputed δm(p), convolves it with the corresponding

image patch and combines it to yield the full image. Efficient convolution can be

done in the frequency domain by using Fast Fourier Transforms. This eliminates

the need for building large warp matrices and carrying out expensive matrix mul-

tiplication in order to obtain the blurry image.

4.3.2 Depth and COR estimation

As depth from stereo is a well-studied problem, an off-the-shelf algorithm for depth

estimation is selected [13], owing to its good trade-off between accuracy and speed

[12, 25]. Disparity is obtained by resizing the current wide-angle image estimate

to the size of the narrow-angle image estimate, which is used as the reference.

Once the disparity is computed, depth of the scene can be obtained by utilizing

the baseline and focal length information of the dual-lens camera. To estimate

the COR, a least squares cost is considered between the observed blurry image

and the synthesized blurry image using the blur model in Eq. 4.9 and the current

image and MDF estimates. The cost is framed in the gradient domain and involves

gradient map estimation and thresholding as in Section. 3.2. The optimization for

the COR is given by:

t̂c = argmin
tc

(Ln
tc

+ Lw
tc

) (4.11)
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where,

Lk
tc

=

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∑j

(
g j − ĝ(f̂k

j , ω̂
k)
)∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

2

(4.12)

j ∈ {x, y, xx, yy, xy}, k ∈ {n,w}, f̂k
j is the clean image estimate and ω̂k is the MDF

estimate for the corresponding configuration. A trust-region reflective algorithm

[4] is used for optimizing Eq. 4.12, which is initialized with the COR estimate of

the previous iteration.

4.3.3 Kernel estimation

With respect to the cost function for kernel estimation in Eq. 3.14, we have ĝ(f j,ω) =

B jω and each column of the matrix B j contains a projectively transformed version

of f j for some rotational pose corresponding to the column location, as in Eq. 3.11.

Taking the wide-angle camera as reference, we get the MDF objective function as

ω̂w = argmin
ωw

∑
j

||Bw
j ω

w
− gw

j ||
2
2 + β||ωw

||1 (4.13)

where the superscript w implies the required quantities correspond to the wide

angle camera. The cost function in Eq. 4.13 applies `1 regularization which helps

optimize for a sparse kernel. Adding the prior to the narrow angle cost, we get

ω̂n = argmin
ωn

∑
j

||Bn
jω

n
− gn

j ||
2
2 + β||ωn

||1 + α||ωn
− ω̂w

||
2
2 (4.14)

In order to reduce ill-conditionness and to improve convergence, the cost function

is minimized in the gradient domain instead. This is done by separating out the
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sparsity prior as a constraint and taking the derivative yielding:

ω̂w = argmin
ωw

∑
j

∣∣∣∣∣∣∣∣(Bw
j )TBw

j ω
w
− (Bw

j )T gw
j

∣∣∣∣∣∣∣∣2
2

such that ||ωw
||1 ≤ β

′

(4.15)

ω̂n = argmin
ωn

∑
j

∣∣∣∣∣∣∣∣((Bn
j )

TBn
j + αI

)
ωn
−

(
(Bn

j )
T gn

j + αω̂w
)∣∣∣∣∣∣∣∣2

2

such that ||ωn
||1 ≤ β

′

(4.16)

where I is the identity matrix of the same shape as the square matrix (Bn
j )

TBn
j .

Eq. 4.15 and 4.16 are LASSO of the form argminx ||Ax − b||2, ||x||1 ≤ γ which can be

optimized with many efficient solvers (LARS [30]).

(Relaxing the superscript notation n,w and referring to a general case).

Naively using the large dense N × K matrix B j, to obtain BT
j B j has a large memory

requirement as well as computational cost for performing the matrix multiplica-

tion. Employing the EFF structure, the image is split into M overlapping patches,

as in Subsection. 4.3.1 and the matrices BT
j (m)B j(m) are computed by direct matrix

multiplication of B j(m) with its transpose, for the mth patch. Each of these M matri-

ces can be computed independently of each other and have much smaller matrix

dimensions. The results are then added to obtain the full BT
j B j matrix. A similar

method is also adopted to obtain the BT
j g j vector.

4.3.4 Latent image estimation

Using the MDF estimates {ω̂n, ω̂w
} at the current iteration, this step estimates the

latent image pair {Î
n
c , Î

w
c }which ensures scene consistent disparities. Since the MDF
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estimation already utilizes the image gradient information, image priors are not

always necessary for this step of the alternative minimization. The latent image

is thus obtained by inverting the forward blurring process in Eq. 4.9. Again,

employing the EFF structure, each patch of the blurred image is obtained and

deconvolved with the corresponding PSF using FFT and then combined using the

windowing operation, to get the latent image estimate. The equation is thus given

as

IC =

M∑
m=1

D†m.F−1 (F(Dm.IB) ⊗ F(hm)) (4.17)

where ⊗ represents the element-wise division while ensuring numerical stability

for small values of the PSF hm. F and F−1 represent the forward and inverse DFT

operations respectively.

For the final iteration at the finest scale, instead of direct deconvolution in Eq. 4.17,

the Richardson-Lucy deconvolution algorithm [14] is used instead as shown in Eq.

3.17.

The same equations are used for the narrow-angle and wide-angle cases, with the

quantities in the equation replaced with the ones corresponding to the narrow-

angle and wide-angle configuration respectively.
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CHAPTER 5

Analysis and experimental results

5.1 Sensitivity of COR

(This chapter was written by Mahesh Mohan while the results were gathered by

me.) To analyze the sensitivity of COR for narrow-angle and wide-angle con-

figurations, we considered images blurred with a common COR , and performed

deblurring by perturbing the COR vector and using the true ego-motion (identically

for both the configurations). Figure 5.1(b) compares the average PSNR of deblurred

images for different COR approximations. The figure clearly shows a significant

drop in deblurring performance as the approximated COR deviates from the true

COR. Also, note the detrimental effect of the common COR approximation about

the camera center (that is followed in single-lens BMD methods). The figure also

reveals higher sensitivity of COR in narrow-angle configuration as shown by the

higher rate of its performance-drop. This is due to higher focal-length, and hence

larger blur inherent in narrow-angle setup which is a function of COR.

5.2 Noise analysis

To analyze the effect of noise in our DL-BMD method, we experimented with blurry

images corrupted with additive white Gaussian noise. Standard-deviation of noise

(in pixels) is varied from 0 (noise-less case) to 5. Fig. 5.1(c) plots the average PSNRs
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Figure 5.1: Analysis: (a) Model inaccuracies of the homography model. (b) Sen-
sitivity of COR: Both narrow-angle and wide-angle configurations are
very sensitive to COR, with the former exhibiting relatively more sen-
sitivity. (c) Effect of image noise on our method.

of a deblurred image and depth estimate corresponding to different noise levels.

The average PSNRs for deblurred image and depth-estimate is more than 25 dB and

29 dB, respectively, over the entire standard-deviation range; this clearly reveals the

noise-robustness of our algorithm. Although we did not perform denoising in any

examples, for very high noisy levels, the blurred image-pair need to be denoised

prior to deblurring. This is because noise can deteriorate image-gradients which

are required for ego-motion estimation.

5.3 Generalizability and effect of prior and COR

The theory and method presented directly apply to DL cameras with entirely differ-

ent settings. They hold well for identical cameras ( f n = f w) or camera arrays (mul-

tiple baselines), wherein exposures are different (ωn , ωw) or identical (ωn = ωw).

They also work for normal camera methods (tc = tb). The table 5.2 shows the gen-

eralizability of the proposed algorithm for the three DL-configurations: Narrow-

Narrow, Narrow-Wide, Wide-Wide. We consider the same exposure time for both

cameras, 52mm focal length for narrow angle camera and 26mm focal length for

the wide angle camera. The values reported in the Table 5.2 are averaged over
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PSNR
Blur

W/o Prior W/o Prior W/ Prior W/ prior

(dB) W/o COR W/ COR W/o COR W/ COR

Image 22.39 25.69 26.59 27.28 28.88

Depth 28.33 23.35 23.59 29.12 30.52

Table 5.1: Quantitative results of our method with and without the DL prior and
COR. In particular, our DL prior reduces the ill-posedness by a good
margin (i.e., by 7 dB, as indicated in bold).

three examples. As can be seen, our method performs consistently better than the

methods of [34, 15] in all three configurations.

In order to analyze the effect of the DL prior and COR, PSNR results for im-

age/depth are gathered by averaging over five examples by including or excluding

the two quantities. Table 5.1 summarizes the results. For creating the synthetic

dataset, exposure overlap and COR are randomly sampled from 10 to 100% and

−30 cm to 30 cm cube, respectively. The unconstrained setup employed is narrow-

FOV and wide-FOV pair, with f n = 52mm, f w = 26mm and the former having

twice the resolution of the latter (As in Samsung S9+). The depth information

gets significantly corrupted for the prior-less case (PSNR drops by 7 dB). This

underlines the importance of resolving the pose-ambiguity in dual-lens BMD. The

deblurring performance also drops by 2.3 dB in the prior-less case, possibly be due

to the loss of reinforcement between the narrow-angle and wide-angle costs (as

discussed earlier). Further, the table reveals that both image and depth accuracies

deteriorate when COR issue is not addressed, i.e., image and depth PSNRs drop

by 1.6 dB and 1.3 dB, respectively.

Thus, our method can seamlessly address partial and full exposure-overlaps ([14,

29, 47, 30, 24]), without any modifications.
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Configuration Blurred Xu et al.[34] Mohan et al. [15] Ours

Narrow-Narrow
27.27 / 1.75 / 0.2319.90 / 1.08 / 0.22 29.21 / 2.30 / 0.36 31.03 / 3.04 / 0.43

29.22 15.83 29.50 30.35

Narrow-Wide
27.33 / 1.78 / 0.2319.86 / 1.13 / 0.22 26.50 / 1.95 / 0.31 30.50 / 3.10 / 0.42

28.51 15.29 28.56 31.11

Wide-Wide
27.87 / 1.97 / 0.2714.56 / 0.94 / 0.17 25.90 / 2.04 / 0.32 30.64 / 4.40 / 0.56

30.15 13.88 28.56 30.62

Table 5.2: Generalizability to diverse DL set-ups: Our method consistently out-
performs the methods of [34, 15] in the PSNR, IFC and VIF metrics
respectively, for image (top part of rows) and the PSNR metric for depth
(bottom part of rows).

Figure 5.2: Quantitative evaluations using objective measure (PSNR). Our method
performs competitively against the state-of-the-art, and produces the
least depth errors.

5.4 Quantitative and Qualitative evaluations

In this section, the algorithm is evaluated on both synthetic and real examples.

Comparison methods: The works of [18, 35] are considered to represent normal

camera BMD. For computational cameras, state-of-the-art stereo BMD [34] and

light field BMD [15] are used as comparisons. The single-image BMD work of [7]

and the multi-image method of [1] are considered for depth-aware case. Finally

the deep learning works which are comparisons are the works of [17] and [29]

representing auto encoder and recurrent neural networks respectively.

Metrics: The metrics used for quantitative evaluation of images are PSNR, IFC [24]
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Figure 5.3: Quantitative evaluations using subjective measures (IFC, VIF). Our
method performs deblurring with the best aesthetics.

and VIF [23]. IFC and VIF are shown to be the best metrics for subjective evaluation

of BMD [11]. For qualitative evaluation, we provide the narrow-FOV image and

(normalized) depth estimated from deblurred image-pair or by algorithms [7, 1].

Quantitative Evaluations: Figures 5.2-5.3 provide objective and subjective mea-

sures for different methods. Both the measures of the state-of-the-art DL-BMD

[34] clearly reveal its high sensitivity, when it deviates from the assumptions of

synchronized and identical cameras, and layered depth scenes. This once again

emphasizes the need for an unconstrained DL-BMD method. For normal camera

methods [18, 35], there is a perceivable drop in the depth performance, which

clearly suggests their inadequacy in DL set-up. While the inferior depth perfor-

mance of [1] can be attributed to its assumption of layered depth, for [7], it can also

be due to its single image restriction. As compared to our method, light field BMD

[15] is not quite successful (i.e., image/depth PSNR is less by 2.37/4.47 dB). This

can be attributed to its lens effect and assumption of synchronized and identical

camera settings. Finally, our method outperforms deep learning methods [17, 29]

by 3.50 dB and 2.72 dB for image and 4.39 dB and 4.36 dB for depth, respectively.

Based on the claims of [17, 29] that they generalize well for real-captured images,

this performance degradation could be possibly due to the unique characteristics
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of unconstrained DL blur.

Qualitative evaluations: Figures 5.4-5.13 provide visual results for synthetic

[21] and real experiments. We wish to highlight that ringing artifacts in deblurring

are mainly caused by ego-motion error, which can be either due to inaccurate

blur/ego-motion model or ineffectiveness of optimization. It can be seen that depth

estimation is also sensitive to ringing artifacts; one reason could be that ringing

deteriorates the feature matches required for depth estimation. The deblurred

images of [34, 1] exhibit severe ringing artifacts (possibly due to the assumptions

on scene and ego-motion and capture settings). Also, note that [7] produces

erroneous layered-depth estimates (e.g., nearer depths appear to be farther, as in

Fig. 5.6, first row, chandelier). This is due to its sole restriction to single image cues

for depth sensing. The results of [15, 18, 35] amply demonstrate the inadequacy

of light field and single-lens BMD in the dual-lens setup, where the deblurring

is not uniform over different depth levels (e.g., in Fig. 5.5, fifth row, the closer

books and farther windows are not simultaneously accounted for) and exhibits

perceivable ringing artifacts, (e.g., in Fig. 5.6, first row, over the chandelier). The

visual results of deep learning methods [17, 29] once again prove that they are

inadequate to deal with DL blur. When compared with the competing methods

on all the examples, it is evident that our DL deblurring method consistently

accounts for features at different depths, produces lesser ringing artifacts, and

faithfully preserves consistent depth information.
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(a) Blurry image

(b) Ours (c) Mohan et al.[15] (d) Pan et al.[18]

(e) Tao et al.[29] (f) Xu et al.[35] (g) Xu et al.[34]

(e) Mathamkode et al.[1] (f) Hu et al.[7] (g) Nimisha et al.[17]

Figure 5.4: Synthetic experiments: Our method is able to retrieve the finer details
at different depth levels with little ringing. The text in the patches are
sharper when compared with the other methods.
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(a) Blurry image

(b) Ours (c) Mohan et al.[15] (d) Pan et al.[18]

(e) Tao et al.[29] (f) Xu et al.[35] (g) Xu et al.[34]

(e) Mathamkode et al.[1] (f) Hu et al.[7] (g) Nimisha et al.[17]

Figure 5.5: Synthetic experiments: Our method is able to retrieve the finer details
at different depth levels with little ringing. The text in the patches are
sharper when compared with the other methods.
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(a) Blurry image

(b) Ours (c) Mohan et al.[15] (d) Pan et al.[18]

(e) Tao et al.[29] (f) Xu et al.[35] (g) Xu et al.[34]

(e) Mathamkode et al.[1] (f) Hu et al.[7] (g) Nimisha et al.[17]

Figure 5.6: Real experiments: Unlike the results of [15, 18, 34], our method is able
to deblur the image with no artifacts while also recovering the finer
details on the chandelier and the wall. Also, note the ineffectiveness of
the single-lens methods [7, 18, 35] in DL configuration.
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(a) Blurry image

(b) Ours (c) Mohan et al.[15] (d) Pan et al.[18]

(e) Tao et al.[29] (f) Xu et al.[35] (g) Xu et al.[34]

(e) Mathamkode et al.[1] (f) Hu et al.[7] (g) Nimisha et al.[17]

Figure 5.7: Real experiments: The results of the deep learning methods of [17, 29]
exhibit a significant amount of residual blur. Our method is able to
faithfully preserve the depth information and exhibits the least ringing
artifacts.
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(a) Blurry image

(b) Ours (c) Mohan et al.[15] (d) Pan et al.[18]

(e) Tao et al.[29] (f) Xu et al.[35] (g) Xu et al.[34]

(e) Mathamkode et al.[1] (f) Hu et al.[7] (g) Nimisha et al.[17]

Figure 5.8: Real experiments: Unlike all the other methods, our method is able to
recover fine textual information on the car and also the thin branches
in the background. The light field method of [15] and the dual lens
method of [34] exhibit severe artifacts in the deblurred image.
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(a) Blurry image

(b) Ours (c) Mohan et al.[15] (d) Pan et al.[18]

(e) Tao et al.[29] (f) Xu et al.[35] (g) Xu et al.[34]

(e) Mathamkode et al.[1] (f) Hu et al.[7] (g) Nimisha et al.[17]

Figure 5.9: Synthetic experiments: Our method recovers the sharp details of the
image such as on the guitar and the book without any erroneous depth
values.
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(a) Blurry image

(b) Ours (c) Mohan et al.[15] (d) Pan et al.[18]

(e) Tao et al.[29] (f) Xu et al.[35] (g) Xu et al.[34]

(e) Mathamkode et al.[1] (f) Hu et al.[7] (g) Nimisha et al.[17]

Figure 5.10: Synthetic experiments: Our method retrieves scene features with-
out introducing aritificial structures (unlike the deep learning method
[17]), e.g., the features in the highlighted patches in [17] are halluci-
nated by the deep learning N/W.
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(a) Blurry image

(b) Ours (c) Mohan et al.[15] (d) Pan et al.[18]

(e) Tao et al.[29] (f) Xu et al.[35] (g) Xu et al.[34]

(e) Mathamkode et al.[1] (f) Hu et al.[7] (g) Nimisha et al.[17]

Figure 5.11: Synthetic experiments: Our method has considerably lesser ringing
and sharper features (such as on the closer doll and the farther basket)
leading to good depth estimates compared to the other methods.
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(a) Blurry image

(b) Ours (c) Mohan et al.[15] (d) Pan et al.[18]

(e) Tao et al.[29] (f) Xu et al.[35] (g) Xu et al.[34]

(e) Mathamkode et al.[1] (f) Hu et al.[7] (g) Nimisha et al.[17]

Figure 5.12: Real experiments: Even in a low-light (noisy) scenario, the uniform
deblurring performance of our method over different depth levels
reveals the noise-robustness of our method.
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(a) Blurry image

(b) Ours (c) Mohan et al.[15] (d) Pan et al.[18]

(e) Tao et al.[29] (f) Xu et al.[35] (g) Xu et al.[34]

(e) Mathamkode et al.[1] (f) Hu et al.[7] (g) Nimisha et al.[17]

Figure 5.13: Real experiments (Well-lit scenario): The uniform deblurring over dif-
ferent depth levels yet again proves the effectiveness of our proposed
method. Notably, the depth estimate is more accurate and finer in our
approach as compared to the competing methods.
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5.5 Conclusions and Future Work

In this thesis, we addressed the problem of blind motion deblurring for uncon-

strained dual-camera set-ups. Our algorithm allows for any arbitrary COR in the

blurring process and is incorporated in the optimization pipeline. We revealed

an inherent ambiguity in the BMD problem which hampers the scene-consistent

depth cues embedded in the image-pair. Towards this end, we introduced a con-

vex and computationally efficient prior. We showed the efficacy of the proposed

prior which enforces scene consistent disparities leading to improved deblurring.

Comprehensive comparisons with existing state-of-the-art methods amply demon-

strate the superiority and need of our method. As an increasing number of modern

cameras are employing dual-lens configurations, our theory and method will be

very relevant for steering further research in this field.
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