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ABSTRACT

KEYWORDS: ASR-ESPNET

The National Programme on Technology Enhanced Learning (NPTEL) is an initiative
in which several Indian Institutes of Technology (IIT Bombay, Delhi, Guwahati, Kan-
pur, Kharagpur, Madras and Roorkee) and the Indian Institute of Science (IISc, in Ban-
galore) are partners in creating complete, free and open course ware online for engi-
neering, science and management subjects, and in training teachers in Indian technical
institutions to help improve the overall quality of technical and professional education
and the employ-ability of Indian graduates. The contents are, however, available free
to everyone in the world and follow closely the curriculum design adopted by major

technical universities in India and abroad.

Most of the lectures that are available on NPTEL are in English language. There
are many students who struggle with English language while attending NPTEL lectures
online. They might benefit if these lectures are translated into different languages. Cur-
rently We have Sophisticated Language models that we are capable of doing speech

recognition very well and all that we need is Data to train them.

My project is a part of above main idea that helps to convert Audio to text of the
lectures by using ASR-ESPNET. I trained and decoded the audio files using ESPNET
architecture on a large dataset form the NPTEL websites and train them by using the

time frame information available for each lecture in the form of “srt” files(subtitles file).
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CHAPTER 1

INTRODUCTION

1.1 ESPNET

ESPnet is an end-to-end speech processing toolkit, mainly focuses on end-to-end speech
recognition and end-to-end text-to-speech. ESPnet uses chainer and pytorch as a main
deep learning engine, and also follows Kaldi style data processing, feature extraction/-
format, and recipes to provide a complete setup for speech recognition and other speech

processing experiments.

Automatic speech recognition (ASR) becomes a mature technology with a lot of
research and development efforts mainly in speech processing communities. This pa-
per describes a new open source toolkit named ESPnet (End-to-end speech processing
toolkit), which aims to provide a neural end-to-end platform for ASR and other speech
processing.ESPnet provides a single neural network architecture to perform speech

recognition in an end-to-end manner.

ESPnet fully utilizes benefits of two major end-to-end ASR implementations based
on both connectionist temporal classification (CTC) and attention-based encoder-decoder
network. Attention-based methods use an attention mechanism to perform alignment

between acoustic frames and recognized symbols.
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Figure 1.1: Software architecture of ESPnet

1.2 Functionality

Figure 1.1 shows a software architecture of ESPnet. In the ESPnet, main neural network
training and recognition parts are written in python, which calls Chainer and PyTorch

by switching the backend option.

1.2.1 Attention-based encoder-decoder
Encoder

The default encoder network is represented by bidirectional long short-term memory
(BLSTM) with subsampling given T-length speech feature sequence O;.r to extract

high-level feature sequence /., as

hyq = BLSTM(Oy17)(1.1)

where T < T in general due to the subsampling.
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Figure 1.2: Flow of standard ESPnet run.sh code

1.3 run.sh

1.3.1 code

run. sh code is a shell script.

1.3.2 Standard flow

Figure 1.2 shows a flow of standard recipes in ESPnet.The standard recipe includes the

following 5 stages in run. sh:

Stage O(optional) - Data Download

This stage is for data download if we dont have data. We adopt the Kaldi data directory

format, and we can simply use the Kaldi data preparation script.

stage 1: Feature Generation

we use the Kaldi feature extraction. Most of recipes use the 80-dimensional log Mel
feature with the pitch feature (totally 83 dimensions). These features are stored in fbank

directory.



stage 2: Dictionary and Json Data Preparation

This stage converts all the information including in the Kaldi data directory (tran-
scriptions, speaker and language IDs, and input and output lengths) to one JSON file

(data. json) except for input features.

stage 3: Network Training

Character-based BLSTM is trained by using either Chainer or PyTorch backend. Attention-

based encoder-decoder is trained by using either Chainer or PyTorch backend.

stage 4: Decoding

After training the model, testing of model is done by decoding on seperate data set. Af-
ter decoding, results are produced in terms of WER(Word Error Rate), CER(Charecter

Error Rate).



CHAPTER 2

Data Preprocessing before training

2.1 Introduction

Data required for model training are audio files(.wav format) and corresponding subtitle
file(.srt file). These data can be downloaded from NPTEL website. But these audio
files are mostly 50min - lhour long files. For training we need audio files of length
approximately 15 - 20sec and corresponding subtitle files. This segmentation is done

by split_srt.py python code.

text file
[ VWav.scp
Eot thow ot mos Sese Spkzut fis
uttZspk file

Figure 2.1: Flow chart of inputs and outputs of split-srt.py



2.2 Input formats required for model training

Model training requires certain formats of inputs. The following are required formats:

text.txt

This text file should contain Utterance ID followed by the text of segmented audio file.

An example line in text file :

mod01lec01_1006.72_1019.29 in India there are many factors that can influence the

society

where,
modO1lecO1_1006.72_1019.29 - Utterance ID
modO1lecO1 - lecture number,
1006.72 - start time in seconds,
1019.29 - end time in seconds.

At last is the text data in that time segment.

wav.scp
The wav.scp file should contain Utterance ID followed by entire path of corresponding
audio file.

An example line in wav.scp file :
modO1lecO1_1006.72_1019.29 /speech/batch1/bharath/testnptel5/data/tr/
splitwav/ modO1lec0O1_1006.72_1019.29. wav

where,

modO1lec01_1006.72_1019.29 - Utterance ID

spk2utt file

The spk2utt file should contain Speaker ID followed by each Utterance ID.



utt2spk file

The utt2spk file should contain each Utterance ID followed by speaker ID.

where
Speaker ID: ID given to each speaker(in this case lecturer)
Utterance ID: ID give to each segmented audio file in the format of professor_name_course_start-

time_end-time

2.3 Algorithm of split_str.py

The algorithm of split_srt.py code is as follows:

i mp3_list = contains all the names of the mp3 files in the current
folder.
> extract_timeframes_text() : function that returns a list of timestamp

information and corresponding text data from the given srt file.
time_framelist=contains the timestamps
text_list =contains the corresponding text data for each timestamp
Algo:
for mp3_file in mp3_list:
initialise time_framelen_tillnow=0
initialise prev_timestamp=0
initialise clip_start=0
time_framelist ,text_list =extract_timeframes_text(mp3_list+
srt )
text=
for i in range(len(time_framelist)):
temp_timeframe_len=time_framelist[i]—prev_timestamp
if (temp_timeframe_len+time_framelen_tillnow <=15):
time_framelen_tillnow+=temp_timeframe_len
text+=text_list[1i]
prev_timestamp=time_framelist[1i]
else:
File . write (textfile , clip_start , prev_timestamp, text_list)
File . write (spk2_utt , clip_start , prev_timestamp)

File . write (utt2spk , clip_start , prev_timestamp)
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File . write (wav.scp , clipped paths of wav files , clip_start
prev_timestamp )
clip_start=prev_timestamp

time framelen_ tillnow=0

s temp_timeframe_len=time_framelist[i]—prev_timestamp

time_framelen_tillnow+=temp_timeframe_len

prev_timestamp=time_framelist[1i]

)



Note:

e Several corner cases and how the text , wav.scp ,spk2utt, utt2spk files were written
were not addressed here.

e The clipped audio segments cannot directly be given as input to the espnet be-
cause they are generally sampled at different rates ( 40 to 45 kHz ) which unnec-
essarily uses a lot of space so all the clipped audio segments are downsampled to
16 KHz using sox command in resample.sh code.

o All the clipped .wav files are indexed to a single speaker itself in spk2utt ,utt2spk
files because we don’t have the information about the course instructors for a
course in the downloaded data. If so , then index each course by a different
speaker.

2.4 Key procedures that are to be taken care of before

running split_srt.py

There are some processes that are to be taken care of before running split_srt.py. They
are as follows:

e Download mp3 files and the corresponding srt files for each lecture from NPTEL
website.

e Preprocess the srt files to check for unusual tokens because they reduce the model
performance.

e Naming for both mp3 and srt files of a lecture that is downloaded from NPTEL
website should be same. This is the important one since it is assumed in the code.

After running split_srt.py, we get all the input files required for ESPnet model train-

ing. Train the ESPnet model using the input files.



CHAPTER 3

Model Performance after Training

After training the model, model is tested by decoding it with some data files. The results

of decoding are as follows:

3.1 The model performance when trained for 8 hours

data and tested for 1hour data using RNN model

3.1.1 Without text normalisation

Table 3.1: The model performance without text normalisation

Word error rate | Character error rate | Number of epochs
89.2 56.5 15

3.1.2 With text normalisation

Table 3.2: The model performance with text normalisation

Word error rate | Character error rate | Number of epochs
44.1 20.5 15

As we can see from Table3.1 and Table 3.2 that there is significant decrease in
Word Error rate and Character Error Rate from training without normalisation to with
normalisation. This is because in training without normalisation there will be capital
letters and small letters and words using them. since there is less data and more targets
hence WER and CER is high. Where as in the case of with normalisation, there will be

only either Upper case or lower case words. Hence, WER and CER decreased greatly.



3.1.3 Observations

The word error rates have been same when we normalised the data into all capital letters

to the case where data is normalised to all small letters.

3.2 The model performance when trained for 8 hrs data

and tested for one hour data using BLSTM

Table 3.3: The model performance when trained for 8 hrs data and tested for one hour
data using BLSTM

WER for validation | CER for validation | CER for training | Number of epochs
44.1 20.5 8.6 15

As we can see from Figure 3.1, the loss decreases with number of epochs. This is
because since there is not lots of data, it requires lots of epochs. This effect can also
be seen in Figure 3.2- Accuracy increases with number of epochs and from Figure 3.3-

CER decreases with number of epochs.

3.3 The model performance when trained for 400 hrs

data and tested for one hour data using BLSTM

Table 3.4: The model performance when trained for 400 hrs data and tested for one hour
data using BLSTM

WER for validation | CER for validation | CER for training | Number of epochs
19.6 9.8 4.8 11

In this case, there is lots of data, so training doesn’t require many number of epochs.
This can be seen in Figure 3.4 loss increases with epochs, from Figure 3.5 accuracy
decreases with number of epochs and from Figure 3.6 CER increases with number of

epochs.

11
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3.4 Observations

The following are the observations:

e As seen from the error plots above The training error continuously decreased
with increase in the number of epochs for the case with 8 lectures because the
data there is very less so it requires a large number of epochs to train that model.

e Contrary to which for the case with 400 lectures the validation loss is increasing
after 11 epochs indicating over fitting which is expected.

e More the amount of data that we pour into the training of the rnn model in espnet.
Better will be the word and character error rates as well that which is evident in a
decrease of about 55.56% in the word error rates and a decrease of about 55.2%
in the character error rate for the validation set than its predecessor model.
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CHAPTER 4

Codes

The codes used in the project are written here.

4.1 run.sh

#!/bin/bash

# Copyright 2017 Johns Hopkins University (Shinji Watanabe)
# Apache 2.0 (http://www.apache.org/licenses /LICENSE—-2.0)

./ path.sh
./cmd. sh

# general configuration
backend=pytorch

stage=4 # start from —1 if you need to start from data download

3 stop_stage=100

ngpu=0 # number of gpus ("0" uses cpu, otherwise use gpu)

debugmode=1

dumpdir=dump # directory to dump full features

N=0 # number of minibatches to be used (mainly for
debugging). "0" uses all minibatches.

verbose=0 # verbose option

resume= # Resume the training from snapshot

# feature configuration

do_delta=false

# network architecture

s # encoder related

etype=vggblstmp # encoder architecture type

elayers=4



3 eunits =320

2 eprojs=320

;0 subsample=1_2_2 1_1 # skip every n frame from input to nth layers
;51 # decoder related

» dlayers=1

33 dunits=300

4 # attention related

55 atype=location

36 aconv_chans=10

37 aconv_filts=100

s # hybrid CTC/attention

40 mtlalpha=0.5

41

2 # minibatch related

43 batchsize=10 #30

4 maxlen_in=800 # if input length > maxlen_in, batchsize is
automatically reduced

ss maxlen_out=150 # if output length > maxlen_out, batchsize is
automatically reduced

46

<7 # optimization related

s sortagrad=0 # Feed samples from shortest to longest ; —1: enabled for

all epochs, 0: disabled, other: enabled for ’other’ epochs
49 opt=adadelta
so epochs=15

si patience=3

s3 # decoding parameter
s« beam_size=20

ss penalty=0

s maxlenratio=0.0

57 minlenratio=0.0

ss ctc_weight=0.3

s9 recog_model=model.acc.best # set a model to be used for decoding:

model . acc.best’ or ’'model.loss.best’

oi # scheduled sampling option

62 samp_prob=0.0

17
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65

66

68

69

70

71

74 .

75

76

71

78

79

80

81

83

84

86

87

88

89

90

91

94

95

96

97

99

100

101

# data
voxforge=downloads # original data directory to be stored

lang=en # de, en, es, fr, it, nl, pt, ru

# exp tag

tag="" # tag for managing experiments.
utils /parse_options.sh |l exit 1;
./ path.sh
./cmd. sh

# Set bash to ’debug’ mode, it will exit on

# —e ’error’, —u ’‘undefined variable’, —o ... ’error in pipeline’, —x

‘print commands’,
set —e
set —u

set —o pipefail

train_set=tr_${lang}
train_dev=dt_${lang}

train_test=et_${lang}

s recog_set="dt_${lang} et_${lang}"

#recog_set="dt_${lang}"

<<"over"

if [ ${stage} —le —1 ] && [ ${stop_stage} —ge —1 ]; then
echo "stage —1: Data Download"
local/getdata.sh ${lang} ${voxforge}

fi

s if [ ${stage} —le 0 ] && [ ${stop_stage} —ge O ]; then

### Task dependent. You have to make data the following
preparation part by yourself.

### But you can utilize Kaldi recipes in most cases
echo "stage 0: Data Preparation”
selected=${voxforge }/${lang }/extracted

# Initial normalization of the data
local/voxforge_data_prep.sh ${selected} ${lang}
local/voxforge_format_data.sh ${lang}

fi

18



102

103

104

105

106

107

120

121

122

126

127

128

129

130

131

132

over

feat_tr_dir=${dumpdir }/${train_set }/delta${do_delta }; mkdir —p ${

feat_tr_dir}

feat_dt_dir=${dumpdir }/${train_dev }/delta$ {do_delta }; mkdir —p ${

if

fi

feat_dt_dir}

[ ${stage} —le 1 ] && [ ${stop_stage} —ge 1 ]; then

### Task dependent. You have to design training and dev sets by
yourself.

### But you can utilize Kaldi recipes in most cases

echo "stage 1: Feature Generation"

fbankdir=fbank

for x in ${train_dev} ${train_test} ${train_set}; do

utils /fix_data_dir.sh data/${x}

steps /make_fbank_pitch.sh —cmd "$train_cmd" —nj 10 —
write_utt2num_frames true \
data/${x} exp/make_fbank/${x} ${fbankdir}
done
# compute global CMVN
compute—cmvn—stats scp:data/tr_${lang}/feats.scp data/tr_${lang}/

cmvn. ark

dump.sh —cmd "$train_cmd" —nj 10 —do_delta $do_delta \
data/${train_set }/feats.scp data/${train_set }/cmvn.ark exp/
dump_feats/train ${feat_tr_dir}
dump.sh —cmd "$train_cmd" —nj 4 —do_delta $do_delta \
data/${train_dev }/feats.scp data/${train_set }/cmvn.ark exp/
dump_feats/dev ${feat_dt_dir}
for rtask in ${recog_set}; do
feat_recog_dir=${dumpdir }/${rtask }/delta${do_delta }; mkdir —p
${feat_recog_dir}
dump.sh —cmd "$train_cmd" —nj 4 —do_delta $do_delta \
data/${rtask }/feats.scp data/${train_set }/cmvn.ark exp/
dump_feats/recog/${rtask} \
${feat_recog_dir}

done

dict=data/lang_lchar/tr_${lang}_units.txt

19



5 echo "dictionary: ${dict}"

134

136

137

139

140

141

142

146

147

148

149

150

151

152

153

154

159

160

161

162

163

164

if [ ${stage} —le 2 ] && [ ${stop_stage} —ge 2 ]; then
### Task dependent. You have to check non—linguistic symbols used
in the corpus.
echo "stage 2: Dictionary and Json Data Preparation”
mkdir —p data/lang_Ichar/
echo "<unk> 1" > ${dict} # <unk> must be 1, 0 will be used for
blank" in CTC
text2token.py —s 1 —n 1 data/tr_${lang}/text | cut —f 2— —d" "
tr " " "\n" \
| sort | uniq | grep —v —e “Msx*x$’ | awk ’{print $0 " " NR+1}’ >>
${dict}
we —1 ${dict}

# make json labels

data2json.sh —Ilang ${lang} —feat ${feat_tr_dir }/feats.scp \
data/tr_${lang} ${dict} > ${feat_tr_dir }/data.json

data2json.sh —Ilang ${lang} —feat ${feat_dt_dir }/feats.scp \
data/dt_${lang} ${dict} > ${feat_dt_dir }/data.json

for rtask in ${recog_set}; do
feat_recog_dir=${dumpdir }/${rtask }/delta${do_delta}
data2json.sh —feat ${feat_recog_dir}/feats.scp \

data/${rtask} ${dict} > ${feat_recog_dir }/data.json
done

fi

7 if [ —z ${tag} ]; then

expname=${train_set}_${backend}_${etype}_e${elayers}_subsample$ {
subsample} _unit${eunits}_proj${eprojs}_d${dlayers}_unit${dunits}_$
{atype}_aconvc${aconv_chans}_aconvf${aconv_filts}_mtlalpha$ {
mtlalpha}_${opt}_sampprob${samp_prob}_bs${batchsize}_mli$ {
maxlen_in}_mlo${maxlen_out}
if ${do_delta}; then
expname=$ {expname} _delta

fi

else
expname=${ train_set}_${backend}_${tag}

fi

20



s expdir=exp/${expname }

6 #mkdir —p ${expdir}

167

68 #exit 0

o if [ ${stage} —le 3 ] && [ ${stop_stage} —ge 3 1];

170

178

179

180

181

182

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

mkdir —p ${expdir}

echo "stage 3: Network Trainin

gu

then

${cuda_cmd} —gpu ${ngpu} ${expdir}/train.log \

asr_train.py \
—ngpu ${ngpu} \
—backend ${backend} \

—outdir ${expdir}/results

—tensorboard —dir tensorboard/${expname} \

—debugmode ${debugmode} \
—dict ${dict} \
—debugdir ${expdir} \
—minibatches ${N} \
—verbose ${verbose} \

—resume ${resume} \

—train—json ${feat_tr_dir }/data.json \

—valid—json ${feat_dt_dir }/data.json \

—etype ${etype} \
—elayers ${elayers} \
—eunits ${eunits} \
—eprojs ${eprojs} \
—subsample ${subsample} \
—dlayers ${dlayers} \
——dunits ${dunits} \

—atype ${atype} \

—aconv—chans ${aconv_chans} \

—aconv—"filts ${aconv_filts} \

—mtlalpha ${mtlalpha} \
—batch—size ${batchsize}
—maxlen—in ${maxlen_in} \
—maxlen—out ${maxlen_out}
—opt ${opt} \
—sortagrad ${sortagrad} \

—sampling—probability ${samp_prob} \

—epochs ${epochs} \

—patience ${patience }

\

\

\
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205

206

207

208

239

240

241

fi

#exit O

recog_set="et_${lang}"

if [ ${stage} —le 4 ] && [ ${stop_stage} —ge 4 ]; then

echo "stage 4: Decoding"

nj=10

pids=() # initialize pids

for rtask in ${recog_set}; do

(

decode_dir=decode_${rtask }_beam${beam_size}_e${recog_model}

_p${penalty}_len${minlenratio}—${maxlenratio}_ctcw${ctc_weight}
feat_recog_dir=${dumpdir }/${rtask }/delta${do_delta}
mkdir —p ${expdir }/${decode_dir}

# split data

splitjson.py —parts ${nj} ${feat_recog_dir}/data.json

#### use CPU for decoding

ngpu=0

${decode_cmd} JOB=1:${nj} ${expdir}/${decode_dir}/log/decode.
JOB.log \

json \

asr_recog.py \

—ngpu ${ngpu} \

—backend ${backend} \
—debugmode ${debugmode} \
—verbose ${verbose} \

—recog—json ${feat_recog_dir}/split${nj}utt/data.JOB.

——result—label ${expdir}/${decode_dir}/data.JOB.json \
——model ${expdir}/results/${recog_model} \
—beam—size ${beam_size} \

—penalty ${penalty} \

—maxlenratio ${maxlenratio} \

—minlenratio ${minlenratio} \

—ctc—weight ${ctc_weight}

score_sclite.sh —wer true ${expdir}/${decode_dir} ${dict}
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242

244

245

246

247

248

249

)

) &
pids+=($!) # store background pids
done

i=0; for pid in "${pids[@]}"; do wait ${pid}

[l ((++1)); done

[ ${i} —gt 0 ] &% echo "$0: ${i} background jobs are failed." &&

false
echo "Finished"

fi

4.2 split_srt.py

import numpy as np

import os

import pydub

from pydub import AudioSegment
speaker="speakeridl"

uut_list=[]

current_directory = os.getcwd()
split_dir_name="splitwav2" # temporary folder

wavfiles downsampled to 16Khz and later saved

which contains

to splitwav

final_directory = os.path.join(current_directory+"/"+split_dir_name)

#print (os.path.exists (final_directory))
if not os.path.exists(final_directory):

os.makedirs (final_directory)
outFileName = os.getcwd()+"/" + "text"
outmp3FileName = os.getcwd () +"/"+ "wav.scp"
with open(outmp3FileName, "w") as fl:

with open(outFileName, "w") as f:

for mp3_files in os.listdir (os.getcwd()):

if (".mp3" in mp3_files):

sound = AudioSegment.from_mp3(mp3_files)

"

file=mp3_files[: —4] + ".srt

timestamps=15.0 # duration of each audio file

1=[]

"no_.n

with open(file ,"r", encoding="utf8") as fop:

I=fop.read () .splitlines ()
print(file)
fop.close ()
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39

40

41

43

44

46

47

48

49

50

51

54

55

56

57

58

59

60

61

62

dictionary={}# contains all info of start time, end
time and text
k=1
file_length=len (1)
for i in range(—1,file_length):
temp=""
if (1[i]=="" or i==—1):
i+=2
if (i<file_length):
temp_string=1[1]
start_time=int(temp_string [0:2]) *x60x60+
int(temp_string [3:5])*60+int(temp_string [6:8])+int(temp_string
[9:12]) %0.001
loc=temp_string . find (’>")
loc+=2
end_time=int (temp_string[loc+0:1loc+2])
x60x60+int (temp_string [loc+3:loc+5])*60+int (temp_string[loc+6:1loc
+8])+int (temp_string[loc+9:1oc+12])*0.001

i+=1

while (1[i]!=""):
temp+=1[i] + " "

if(i+1 >= file_length):
break #for loop index exceeding

else :

i=i+1

temp_list_for_dict=[]
temp_list_for_dict.append(end_time)
temp_list_for_dict.append (temp)

dictionary[start_time]=temp_list_for_dict

dict_keys=dictionary .keys ()
dict_len=len(dict_keys)
temp_sum=0

j=1

print(len (sound))

lenth=len (sound)
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63

64

65

66

67

68

69

76

77

78

79

80

81

84

85

86

87

88

89

90

91

92

93

94

temp_str=
start=None
end=None
time=None
timeslots = []
listofkeys = list(dictionary)
for m in dict_keys:
start=float (m)
end=float (dictionary [m][0])
time=end—start
boolean = 0
if (temp_sum+time>timestamps ) :
timeslots .append(float (m))

I=len(timeslots)

# if (l==1):

# outFileName = os.getcwd() + "\
Western_philosophy" + "_" + str(0) + "_" + str(timeslots[l—1]) + "
_Ltxt"

# else:

# outFileName = os.getcwd() + "\

non

Western_philosophy " + + str(timeslots[l—2]) +"_"+ str(timeslots

[1-1]) + "_.txt"
#outFile=open (outFileName , "w"
f.write(mp3_files[:—4] + "_"
if (1==1):
f.write(str(listofkeys[0]) + "_" + str(
timeslots[1—1]) + " ") #Utterance ID
uut_list.append (mp3_files[:—4] + "_"+str(
listofkeys [0]) + "_" + str(timeslots[1—1]))
else:
f.write(str(timeslots[1—2]) + "_" + str(
timeslots[1—1]) + " "Y#Utterance ID
uut_list.append (mp3_files[:—4] + "_"+str(
timeslots[1 —2]) + "_" + str(timeslots[1—1]))

f.write(temp_str.lower () )# text
f.write("\n")
temp_str=dictionary [m][1]
temp_sum=time

j+=1
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95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

113

114

115

116

117

118

noon

fl.write(mp3_files[:—4] +
if (1==1): # because we know only end time. we
didnt know start time. It can be pulled from listofkeys of
dictionary
temp_audio_file=sound[ float (listofkeys
[0])«1000: float(timeslots[1 —1])*x1000]# spliting audio according to
start and end time

temp_audio_file.export(final_directory+"/

"+"Western_philosophy"+ "_" + mp3_files[:—4] + "_" + str(
listofkeys [0]) + "_" + str(timeslots[l—1]) + "_.wav",format="wav")

fl.write(str(listofkeys[0]) + "_" + str(
timeslots[1—1]) + " "Y#for wav.scp

fl.write(os.getcwd()+"/"+split_dir_name+"

non non

/"+ "Western_philosophy "+ + mp3_files[: —4] + + str(
listofkeys [0]) + "_" + str(timeslots[1—1]) + "_.wav")#audio paths
for wav.scp
fl1.write("\n")
else:
temp_audio_file=sound[ float(timeslots[1
—2])*1000: float (timeslots[1—1])%x1000]

temp_audio_file.export(final_directory+"/

"+"Western_philosophy" + "_"+ mp3_files[:—4] + "_" +str(timeslots[
1-2]) + "_" 4+ str(timeslots[1—1]) + "_.wav",format="wav")

fl1.write(str(timeslots[1—2]) + "_" + str(
timeslots[1—1]) + " ")

fl1.write(os.getcwd () +"/"+split_dir_name+

" noon

"/"+ "Western_philosophy" + "_"+ mp3_files[:—4] + +str (
timeslots[1—2]) + "_" + str(timeslots[1—1]) + "_.wav")
fl.write("\n")
else :
if (boolean == 0):
temp_str+=dictionary [m][1]
temp_sum+=time
boolean = 1
else:

non

temp_str+= + dictionary [m][1]
temp_sum+=time

f.write(mp3_files[:—4] + "_")#for last segment

fl.write(mp3_files[:—4] + "_")# for last split

if(1==1):
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120

122

124

125

126

127

128

129

132

f.write(str(listofkeys[0]) + "_" + str(listofkeys
[len(listofkeys)—1]) + " ")

temp_audio_file=sound[ float(listofkeys [0])*1000:
float (listofkeys[len(listofkeys)—1])*x1000]

temp_audio_file.export(final_directory+"/"+"

Western_philosophy "+ "_" + mp3_files[:—4] + "_" + str(listofkeys

[0]) + "_" + str(listofkeys[len(listofkeys)—1]) + "_.wav", format="
wav"

fl.write(str(listofkeys[0]) + "_" + str(
listofkeys[len(listofkeys)—1]) + " ")

"

fl1.write(os.getcwd()+"/"+split_dir_name+"/" +

non noon

Western_philosophy "+ + mp3_files[: —4] + + str(listofkeys

[0]) + "_" + str(listofkeys[len(listofkeys)—1]) + "_.wav")

fl.write("\n")

uut_list.append(mp3_files[:—4] + "_"+str(

listofkeys [0]) + "_" + str(listofkeys[len(listofkeys)—1]))
else:

f.write(str(timeslots[1—1]) + "_" + str(

listofkeys[len(listofkeys)—1]) + " ")
temp_audio_file=sound[float(timeslots[1 —1])*x1000:
float(listofkeys[len(listofkeys)—1])*x1000]

temp_audio_file.export(final_directory+"/"+"

Western_philosophy" + "_"+ mp3_files[:—4] + "_" +str(timeslots|[I
—1]) + "_" 4+ str(listofkeys[len(listofkeys)—1]) + "_.wav", format="
wav"

fl.write(str(timeslots[1—1]) + "_" 4+ str(
listofkeys[len(listofkeys)—1]) + " ")

"

fl.write(os.getcwd() +"/"+split_dir_name+"/"+

" non

Western_philosophy" + "_"+ mp3_files[: —4] + +str(timeslots[1

—1]) + "_" + str(listofkeys[len(listofkeys)—1]) + "_.wav")
fl.write("\n")
uut_list.append (mp3_files[: —4] + "_"+str(
timeslots[1—1]) + "_" + str(listofkeys[len(listofkeys)—1]))

f.write(temp_str.lower())
f.write("\n")
f.close ()

f1.close

with open(os.getecwd ()+"/"+"utt2spk","w") as uf:

for 1 in uut_list:

uf . write (i+" "+speaker+"\n")
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141 uf.close ()

42 with open(os.getcwd ()+"/"+"spk2utt","w") as spf:

143 spf.write (speaker+" ")
144 for i in uut_list:

145 spf.write (i+" ")
146 spf.close ()

4.3 resample.sh

This script calls the above split_srt.py and downsamples all audio files to 16 /K hz.

#!/bin/bash

> mkdir —p splitwav
5 python split_srt.py

4+ for entry in ‘Is splitwav2/*; do

W

echo ${entry}

6 sox splitwav2/${entry} —r 16000 splitwav/${entry} #downsample the
wav files in splitwav2 created by split_srt.py and put them in
splitwav

done

N

%

rm —r splitwav2
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