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ABSTRACT

KEYWORDS: Dual-Lens, De-blurring, Deep Learning

With the recent advances in augmented reality, autonomous driving and robotics, the

need for good quality 3D images have increased. Despite improvements in 3D cam-

eras, the image-pairs captured is still prone to dynamic scene blurs, combined with the

difference in the resolution and exposure between the image pairs, the view-consistency

of the image pairs are broken, and the image qualities vary. Thus, forbidding their usage

in detail-oriented 3D reconstruction and scene understanding applications that require

equal quality view-consistent image-pairs. We tackle this un-addressed problem of un-

constrained dual-lens(DL) dynamic scene deblurring by an image adaptive multi-scale

based coherent fusion approach. In this work, we take into account the facts that 1)

The epi-polar error reduces when we down-sample the image pairs, 2) The image pairs

could contain complementary features which when incorporated into each other for a

win-win situation. In effect we address three important problems in the area of un-

constrained DL deblurring. We also address the inherent problem in unconstrained DL

deblurring that violates the epipolar constraint by introducing an adaptive scale space

approach. Our signal processing formulation allows accommodation of different image-

scales in the same network without increasing the number of parameters. We then ad-

dress the root cause of view-inconsistency in the generic DL deblurring network using

a coherent fusion module. Finally, we propose a filtering scheme to address the space

variant and image-dependent nature of blur, with guaranteed stability. We also build an

unconstrained-DL dataset with dynamic scene image pairs of different resolutions and

exposures. Comprehensive experimental results on our dataset show that we achieve a

new state-of-the-art performance for the unconstrained DL dynamic scene deblurring

problem.
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CHAPTER 1

Introduction

Motion blur is a phenomenon that not only introduces artifacts to image but also renders

it useless for many vision tasks. Motion blur can be caused due to camera motion, dy-

namic object motion or both. This makes methods that are exclusive only to deblurring

due to camera motion ineffective in the presence of dynamic object motion and thus

brings forward a need to tackle blur caused due to dynamic blurs

In this thesis, we propose a solution the problem of dynamic blur for dual lens

images. As opposed to the single lens case, dual lens de-blurring requires additional

attention to the stereo-cues. This renders methods for single lens deblurring to produce

erroneous results when used for the dual lens case. A solution to tackle the dual lens

blur must take into account the stereo-cues and information from both views before

arriving at a result.

A yet un-approached problem is the case of unconstrained dual lens blur where the

exposure times and resolutions of both views could be different. This results in the

feature loss due to blur in both images to be different. Hence, unconstrained Dual lens-

deblurring has to ensure consistency between the left right views, e.g., through fusing

good complementary features

Another issue is the space variant and image dependent nature of blur, this aspect

is rarely approached in deep learning networks. Ideally a network should be capable of

having different receptive fields and adapt according to the blur.

For unconstrained dual lens deblurring there exists only one work in literature [Mo-

han et al. (2019)], but it works only for the case of camera induced blur and takes a

lot of time( 20 mins) for deblurring a single stereo pair. The advantage of using a deep

network to solve the deblurring problem is that deep networks are extremely fast and

results could be obtained in about 0.4 seconds



1.1 Contributions of this thesis

• For the first time in literature, we study the phenomenon of unconstrained blurring
in dual lens configuration

• We bring out the issue of scene inconsistent depth and propose a multi-scale net-
work in order to solve it

• We address the problem of view inconsistency and propose a coherent fusion
module to solve it.

• We propose a filter module for addressing the space-variant and image dependent
nature of dynamic scene blur.
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CHAPTER 2

Theory Background

In this chapter we will discuss about some basic topics in the area of deep learning,

CNNs and learning methods

2.1 Convolutional Layer

A convolutional layer in terms of deep learning is a layer that is used to extract features

from an image. Mathematically, I is the input if W is a weight matrix, b as scalar bias

value then the output of the convolutional layer will be

O = σ(W.I + b)

Where, σ is the nonlinearity used

2.2 Convolutional Neural Network

Deep Convolutional Neural Networks(CNNs) were first introduced in the year 2012 in

the work of [Krizhevsky et al. (2012)], where it was able to obtain an improvement of

10.9% as compared to the second best entry. The network architecture was the first to

use a deep network of convolutional layers and fully connected layer for the task of

image classification,

After the success of Alexnet, CNNs have been used feature extraction in a wide

variety of vision tasks like Image classification, Object Detection, Object Tracking,

Image Segmentation, Super Resolution, De-blurring etc



Figure 2.1: A Residual Block. Figure from:-He et al. (2016)

2.3 Residual Network

After the success of AlexNet, the state of the art results were obtained by increasing

the depth of the network to obtain better accuracy, While AlexNet had 5 convolutional

layers, VGG Network [Simonyan and Zisserman (2014)] and GoogleNet [Szegedy et al.

(2015)] had 19 and 22 convolutional layers respectively.

But increasing the depth of the network further makes the network hard to train

because of the vanishing gradient problem as the gradients propagated to further layers

became very small because of multiple multiplications. The solution to this problem

was introduced in the work of He et al. (2016) where identity shortcut connections

were made for better gradient propagation and this can be seen in figure 2.1.

2.4 Dilated convolution

Dilated convolution for deep networks[Yu and Koltun (2015)] was an idea initially in-

troduced for segmentation tasks , and later this was used in a wide variety of computer

vision tasks. The main advantage of using dilated convolution is that it helps to give a

larger receptive field without an increase in number of parameters. For example in the

figure 2.2, a dilation rate of 2 and 3 in a 3× 3 filter gives a receptive field if size 5× 5
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Figure 2.2: Dilated convolution

and 7× 7 respectively.

2.5 Atrous spatial pyramid pooling

Figure 2.3: The ASPP module taken from Chen et al. (2017)

This idea was first introduced in the paper Chen et al. (2017) for the task of im-

age segmentation. In tasks like segmentation, where the size of an object of interest

may vary, using normal convolutional layers of a very small receptive size may fail to

capture the whole image details. A solution for this would be to use deeper networks

for the same task, but this causes vanishing gradient problem and difficulty in training.

The proposed solution as shown in figure 2.3 uses concatenated features obtained after

passing the input image through filters of different dilation rate, this not only reduces

depth of network, but is also does not add much parameters to the network

5



2.6 Learning rate Scheduling

Figure 2.4: Cosine annealing

Learning rate scheduling is adjusting the learning rate for training the model in a

predefined order. This technique has been used in networks in order to obtain lower

mean square error in case of regression tasks and lower cross entropy error in case of

classification tasks. In our work we use the technique of cosine annealing [Loshchilov

and Hutter (2016)].

Unlike normal learning rate decay methods, In cosine annealing as shown in fig.2.4

we decay the learning rate from a max value to a min value in through a cosine curve

over a fixed number of iterations and suddenly bring it back to its max value. This helps

in avoiding the cases where the network is stuck in local minimas, and helps in in faster

convergence

2.7 U-Net Architecture

The U-Net Architecture [Ronneberger et al. (2015)]initially devised for image segmen-

tation tasks was further used for various computer vision tasks like deblurring, super

6



Figure 2.5: U-Net architecture taken from [Ronneberger et al. (2015)]

resolution etc. This network consists of a symmetric encoder and decoder. Also the in-

put is appended to the subsequent part of the decoder symmetrically as shown in Figure

2.5

The loss is a computed by a pixel wise soft-max over the final feature map com-

bined with the cross-entropy loss function. These skip connection enable better flow of

gradients and makes training of the encoder easier

2.8 Video frame interpolation

In order to produce realistic dynamic scene blur, a common method used for the prepa-

ration of dataset is Video frame interpolation. This methods has been used for Go-

Pro[Nah et al. (2017)] and Stereo-Blur Datasets[Zhou et al. (2019)]. In this technique

the frame rate of a video is captured at captured at a low frame rate is increased by

extrapolating using the optical flow information between subsequent input frames

7



2.9 FlowNet

FlowNet[Dosovitskiy et al. (2015)] was the first network to utilize CNNs to perform

optical flow computation in a supervised manner. In FlowNet, multi channel features

of two image frames are produced by passing through 3 independent sets of convolu-

tional layers and a correlation layer further compare patches from each channel and

concatenates them, which is further processed by a series of convolutional layers to

find the optical flow. In our work, we use FlowNet 2.0[Ilg et al. (2017)] for all flow

computations as it provides much superior results.

2.10 Stereo Style Transfer

Figure 2.6: Network architechture taken from [Chen et al. (2018)]

In usual computer vision supervised tasks images or pair of images are concate-

nated and passed through a CNN and trained in a supervised fashion in order to obtain

the results. The paper[Chen et al. (2018)] introduced a new method in which dispar-

ity between stereo pairs were estimated and the encoded features were warped and

concatenated and decoded to obtain the subsequent left right image pair as shown in

Figure. 2.6.
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CHAPTER 3

Previous works

In this chapter we will discuss about some neural network architectures used for deblur-

ring and also the previous works on dual-lens deblurring

3.1 Deblurring using Neural Networks

Deblurring is the task of removing artifacts from an images which may be caused due

to camera motion or long exposures or some other phenomenon. The goal of deblurring

is to recover the sharp imageB = K ∗ S and where K is the blur kernel and B is the

blurred image and the * operation is convolution.

Deblurring is basically of two types Blind-Deblurring and Non-Blind Blurring,

Blind deblurring refers to the task of obtaining the clean image without the knowledge

of the blur kernel or the point spread function,

Motion blur is phenomenon in computer vision that not only affects the aesthetics of

the image but also affects many vision applications. Motion blur could be caused due to

camera motion or dynamic objects or both. So the techniques used for the case of only

camera motion doesn’t work when there is dynamic scene blur. The task of obtaining

the clean image in such cases is refereed to as dynamic scene deblurring.

The subsequent session will discuss in detail about some previous works in the area

of dynamic scene deblurring,

3.2 Multi-scale deblurring

Paper summary: Deep Multi-scale Convolutional Neural Network for Dynamic

Scene Deblurring

Nah et al. (2017) uses a multi-scale approach for the task of dynamic scene deblurring.



Along with a multi-scale approach to restore images in an end-to-end manner, the au-

thors introduced a new large-scale dataset-GOPRO dataset containing realistic blurry

images and their clean pair for the task of dynamic scene deblurring. In this technique,

the authors have used a slightly modified version of the residual network architecture

which enable them to use a deeper network compared to the normal deep CNN network.

The network consists of three stages and the input to these layers are the output of

the coarsest stage is up-sampled and concatenated with the finer stage(stage-2) and the

subsequent combination is passed through the network in order to deblur and the same

is repeated for stage-2 and the finest scale.The mean-square error of all three stages

are back-propagated together in order to obtain the clean images. The down-sampled

images are Gaussian pyramid images. One important point to note is that all three scale

reuses the same weight. The network also consist of a Discriminator which classifies

whether the final image obtained is a blurred image or a deblurred one.

Paper summary: Scale-recurrent Network for Deep Image Deblurring

Figure 3.1: Network architecture taken from [Tao et al. (2018)]

After the success of the multi-scale approach for dynamic object deblurring. Tao

et al. (2018) proposed a new network with much simpler architecture and small number

of architecture in order to produce the state-of-the art result in dynamic scene deblur-

ring. In this work the authors have used a network with recurrent structure that takes a
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series of images down-sampled from the input blurred image and produces the corre-

sponding sharp images.

The network as shown( Figure. 3.1 consists of three scales and along with con-

catenating the output or coarser scale to finer scale, The output of each scale is defined

as

I i, hi = NetSR(Bi, I i+1↑, hi+1↑; θSR)

Here Bi, I i are the input, output of a particular scale, NetSR is the proposed network ,

θSR the training parameters, and the hidden state hi flows through layers. The authors

have also added a convLSTM in between the encoder-decoder structure for flow of

information between subsequent layers. The inputs of coarser scales are obtained by

bi-linear down-sampling of the input blurred image

3.3 Other methods for monocular deblurring

Paper summary: Dynamic Scene Deblurring Using Spatially Variant Recurrent

Neural Networks

Figure 3.2: Network architecture taken from [Zhang et al. (2018)]

Zhang et al. (2018) proposed a network (as shown in Figure 3.2) consisting of three

Convolutional Neural networks CNNs and on Recurrent neural network (RNN). The

first CNN acts as an encoder. The RNN is used as a deconvolution operator on the

features extracted by CNN. Another CNN learns the weights for the RNN at different

11



locations thus making it spatially variant and enables it to model the deblurring process

with spatially variant kernel. The third CNN is used for image reconstruction and acts

as a decoder that provides the output from features.

The whole network is end-to-end trainable and is able to produce large receptive

fields with a small model size.

Paper summary: DeblurGAN: Blind Motion Deblurring Using Conditional Ad-

versarial Networks

The first GAN based approach of dynamic scene deblurring was introduced by Kupyn

et al. (2018) in their work DeblurGAN. Also the PSNR values does not reach state of

the art for this work. The structural similarity and output visual appearance were both

state of the art at the point of release of the paper. The main advantage of using a

GAN based approach for deblurring is that it is extremely fast because of low number

of parameters in the generator.

The DeblurGAN generator consists of two strided convolution blocks along with

nine residual blocks each containing a convolutional layer, a normalization layer and

ReLu Activation. The Wasserstein distance[Arjovsky et al. (2017)] with gradient penalty

is used for training the discriminator

3.4 Dual-Lens deblurring

In this section we will discuss about the only existing architecture for dual lens de-

blurring and also the state of the art work for dual lens deblurring using conventional

methods

Paper summary: DAVANet: Stereo Deblurring with View Aggregation

Zhou et al. (2019) proposed a network for the purpose of Stereo Image deblurring which

utilizes the two-view nature of stereo images and incorporates the features into one

another to deblur both images. The authors also introduced a large scale dataset which

contains blurred stereo image pairs and their corresponding clean image pairs. The input

12



Figure 3.3: Network architecture taken from [Zhou et al. (2019)]

to this network are scenes captured using a stereo camera with same characteristics for

each individual sub-camera.

The Networks as shown in figure 3.3 consists of three subnetworks, DeblurNet,

DispBiNet and FusionNet.

DispBiNet:- This network is a variant of DispNet[Mayer et al. (2016)]. Different

from DispNet , this network can find the bidirectional disparities in one forward pass.

Three stages of down-sampling happens in the encoder part of the network and sub-

sequent up-sampling in the decoder. The network also consists of a variant of ASPP

module for enhanced feature extraction.

DeblurNet:- DeblurNet is comprised of a U-Net architecture, i.e., an encoder de-

coder with residual connections along with a context module. The encoder outputs

features of 1/4th the scale of the input. In order to obtain a larger receptive field and

extract richer features, the encoder output is passed through the context module

FusionNet:-FusionNet extracts the depth information and the information from the

different views. The FusionNet consists of two stages, one for utilizing depth informa-

tion and the other for extracting information from the other view,i.e The features from

the right view is warped using a pooled version of disparity map to produce the left view

and a weighed version of the resultant features is appended along with left view encoder

features and this along with the depth feature obtained from the difference in views is

13



passed through the decoder to obtain the left clear image and the same is performed for

the right view.

Paper summary: Unconstrained Motion Deblurring for Dual-lens

Cameras

Mohan et al. (2019) proposed a novel method in order to obtain motion deblurred im-

ages with scene consistent disparities. The paper brings out an ill-posedness that is

inherent to solving the equation to estimate the clean image pair.i.e.,

InB = Σpw
n(p)P n(Rp(X − Ic) + Ic + Ib) =

Σpw
n(p)P n(RpR

−1
n (Rn(X − Ic) + Ic − Ic) + Ic + Ib)

Here InB is the blurred image Ic is COR, Ib is baseline, P n is world space projection

and wn(p) is proportion of time exposed to pose p. , as can be seen, the desired solution

is {P n(X + Ib), P
w(X)}, but {P n(Rn(X − Ic) + Ic + Ib), P

w(X)} is an apparent

solution. In order to fix this a convex DL prior is introduced which curbs the relative

shifts between MDFs
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CHAPTER 4

Scene consistent depth

In the next two chapters we will discuss about some unaddressed problems in the area of

unconstrained dual lens dynamic scene motion deblurring caused by existing methods

and reason about a solution for the problem.

4.1 Problem Formulation

Figure 4.1: Scene Inconsistent Depth



For the cases in which there are dynamic objects, a clean dual lens pair with scene

consistent depth is the one refers to pairs captured at the same time instant, in Figure 4.1

this is time 0 or tR. If this is not the case, the assumption of an epi-polar constraint is

violated and this causes many algorithms for 3D reconstruction and scene understanding

and for applications such as augmented reality, robotics, and autonomous driving, to fail

.

A motion blurred image can be modelled as a summation of clean images over a

exposure time. For an unconstrained dual lens exposure setting, i.e., exposures may or

may not be identical and fully-overlapping, blurred image-pair {BL, BR} in the left-

right views is given as

BL =
1

tL

∫ tL

0

FL
t dt

BR =
1

tR − t0

∫ tL

t0
FR
t dt

where {FL
t , F

R
t } is the clean dual lens image-pair at time-instant t, and [0, tL] and

[t0, tR] are exposure time in the left-right views. The constrained dual lens setting is

a special case, where t0 = 0 and tL = tR and this means identical, fully-overlapping

exposures.

The only existing Dual lens deblurring method using deep networks by utilizing

supervised learning from blurred image pair to a clean image pair that is located at

a particular time instant. This instant is typically selected at the middle of exposure

time. Although this method is apt for the constrained setting, t0 = 0 and tL = tR.

and {FL
t′ , F

R
t′′}, t′ = t′′being the clean image pair,in the cases of partially overlapping

exposures, this causes serious binocular inconsistency as t’ and t” are different.

Also, even if the pivots are chosen as the M th and N th fraction of exposure times,

the deblurred image-pair can still exhibit binocular inconsistency, and the error increas-

ing with the separation between the pivots M.tR and N.(tL− t0) . For an unconstrained

exposure where timings{tR, t0, tL} can freely vary, there exists multiple choice of pivots

which will produce scene-consistent depth.

A method to address the problem of scene-consistent depth has to adaptively select

pivots that depends on the input blurred image-pair. A mutual agreement between left
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and right-view signals to arrive at an intersecting pivot. Since using single-lens methods

for deblurring works by reusing the same network for individual views, mutual infor-

mation cannot be transferred from one another efficiently. Although the only existing

network for dual lens deblurring network promotes a signal flow between views, by ap-

pending with a warped version of encoder output of one view to encoder-output of the

other view for view-aggregation Zhou et al. (2019), the registration involved hinders

the control on pivots, registration is necessary for coherently combining the encoder-

outputs

4.2 Scale-adaptiveness for Scene-consistent Depth

Since there exists multiple choices of intersecting pivots in unconstrained dual lens

setting, the left-right views must establish a mutual agreement to arrive at an intersecting

pivot according to the input blurred image-pair. If we consider the standard choice

of pivots, i.e., at the center of exposure time or the centroid of blurred images. As

shown in Fig. 4.1, this choice results in deblurred left-right images at different time-

instants{t′, t′′}. Hence, a scene-point with respect to one view can undergo different

pose-changes in the other view due to object motion or camera motion or both. The

image-coordinate discrepancy of a world-coordinate X in the right-view is given as

[Mohan et al. (2019)]

∆xR = K

(
X + Ib
Z

− R∆tX + T∆t + Ib
Z ′

)

where K is the intrinsic camera matrix, lb is the stereo baseline, Z is the actual scene-

depth, ∆t = t′′−t′, andR∆t and T∆t model relative pose-change at t” due to rotation and

translations (which include center-of-rotation and object motion) and Z’ is the resultant

scene-depth. Suppose that we down-sample the left-right blurred images by a factor of

D(> 1), then the resultant image coordinate, this discrepancy becomes

∆xDR = D∆xR

whereD = { 1
D
, 1
D
, 1} which implies that image-coordinate discrepancies get scaled

down according decimation factors. This motivates our scale-space approach (as illus-

17



trated in Fig.4.2). We select a decimation factor that reduces the maximum discrepancy

within a sensor-pitch (i.e., one pixel), so that the binocular consistency holds good in

the discrete image-coordinate domain.

Figure 4.2: Adaptive Scale-space Approach

Next, we consider the coherent deblurred image-pair as the reference to centroid

align the binocularly inconsistent blurred image-pair in the higher scale (via registra-

tion), which produces a coherent deblurred image-pair. This process is repeated till the

fine-scale. Our registration approach is similar to the video deblurring method [Su et al.

(2017)] where a blurred frame is used as the reference to centroid-align its neighbouring

blurred frames, which together produce a coherent deblurred frame. Further, employing

deblurred image from a coarse scale as the reference for higher scale is standard prac-

tice in conventional deblurring methods [Mohan et al. (2019), Whyte et al. (2012)].

More importantly, our scale-space approach has to be adaptive with input blurred im-

ages, e.g., an input with discrepancy of four pixels ideally requires a decimation factor

at the coarser level to be five, whereas a constrained image-pair (i.e., no discrepancy)

requires only the fine scale . An optimal method has to adaptively select the number

of scales according to the input. Further, as the deblurred image from a lower scale is

used as the reference for higher scale (for registration), the step-size between the fine

and coarsest scale need to be small ( 1√
2

[Whyte et al. (2012)]).
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CHAPTER 5

View Inconsistency

In this chapter we will discuss about some unaddressed problems in the area of view

inconsistency and stability while using deep networks for dual lens deblurring.

5.1 Problem Formulation

Figure 5.1: View Consistency



The issue of view inconsistency stems from unconstrained dual lens setting of dif-

ferent resolutions and exposure duration ([Mohan et al. (2019)]). Here, the feature-loss

due to resolution and motion blur can be different in the input images in left-right views.

This directly contradicts the assumption followed in the constrained dual lens deblur-

ring methods [Zhou et al. (2019)] that the input images have identical resolutions and

coherent blur (or identical exposures). Resultantly, these methods produce inconsistent

deblurring performance in left-right views, i.e., disrupt view consistency.

We attempt to reason this inadequacy to arrive at a solution. To decouple this prob-

lem from the previous one, we assume that dual lens deblurring somehow produces

intersecting pivots. As shown in Figure 5.1, a generic architecture for dual lens de-

blurring consists of symmetrical networks for left- and right-views, with both networks

sharing identical weights (in order to not scale-up trainable parameters as compared

to that of single-lens methods [Zhou et al. (2019)]). The mappings of the left-right

networks to deblurred images {FL
t′ , F

R
t′′} can be respectively given as

T (BL
φ , f

L
φ,i,W.f

L
φ,enc + W̄ .fR→Lφ,enc , d

L)

T (BR
φ′ , f

R
φ′,i,W.f

R
φ′,enc + W̄ .fL→Rφ′,enc, d

R)

where the sets φ and φ′ contains the resolutions and exposures of left-right views, re-

spectively. Features fi are the ith intermediate-outputs of encoder which are fed-forward

to decoder, and fenc is the encoder-output. Bilinear masks W and W̄ = 1 −W com-

bine left and right-view encoder outputs after registration (denoted by R→ L) for view

aggregation, and {dL, dR} are depth-features for depth awareness.

The primary reason for the success of dual lens deep learning methods in producing

view-consistent output [Zhou et al. (2019)], that is for the constrained dual lens set-up,

is that the left- and right-view networks or mappings are identical, and more important,

signal flowing in those networks are of identical nature (i.e., φ = φ′ ).

However, as shown in Figure.5.1 using yellow and green highlights, the same ar-

chitecture leads to view inconsistency in unconstrained dual lens set-up because now,

signal flowing in those identical networks are of different nature (i.e., φ 6= φ′ ). A

method to address the problem of view-consistency has to ensure signal flowing in left-

and right-view networks to be of identical nature irrespective of φ 6= φ′ or φ = φ′
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5.2 Coherent Fusion for view consistency

Figure 5.2: Coherent Fusion for view consistency

View inconsistency is caused in dual lens deblurring techniques because there does

not exist a sub-part to enforce that the flow of signals in the left and right view networks

are identical. As highlighted in Fig. 5.1, this inconsistency stems at nodes A, B and C,

D, where the nodes A,B creates an imbalance in the encoder inputs and hence all feed-

forward inputs to the decoder and network output, whereas the latter creates imbalance

in the decoder inputs. In order to solve this, we introduce a coherent fusion module

with two self-supervision costs(Fig. 5.2 ) . The module enforces the nature of signal

in those two nodes to be identical, but equalizes with respect to the signal with more

information. Mathematically, the fusion module maps the input left-right view signals

{xL, xR} to output {yL, yR} andW,WL,WR are image-dependent bilinear masks [Zhou

et al. (2019)]

ys = W � xR→C +W � xL→C ;

yL = WL � yC→Ls +W
L � xL;

yR = WR � yC→Rs +W
R � xR;

. W is a function of the error between xL→C and xR→C , where 0 ≤ W ≤ 1,W +

W = 1. In addition, the two self-supervision costs are LLR = ||yL→R − yR||2and

LRR = ||xR − yR||2
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CHAPTER 6

Stability issues in deep networks

6.1 Problem Formulation

A dynamic-scene deblurring network requires spatially variant mapping (with vary-

ing receptive fields), and that has to adaptively vary with blurred images [Zhang et al.

(2018)]. Intuitively, consider a scenario of static camera, and two dynamic objects at

different depths, with the same velocity. Here, the static background exhibits no motion

blur, whereas the nearer object exhibits more blur than the farther one (due to parallax

[Zhou et al. (2019)]). Hence, an ideal deblurring network warrants an identity mapping

for background and non-identity mapping for dynamic objects, with relatively larger

receptive fields for the nearer one.

Also, those object-positions can freely vary in a fronto-parallel plane, and hence

these mappings need to be image dependent. However, the only-existing dual lens

deblurring network [Sim and Kim (2019)] do not account for this, whereas ([Zhang

et al. (2018)]) restricts to fixed and very small receptive fields.

Filters employed in a deep learning network has to be stable, otherwise, finite energy

signals like images or feature-maps can get mapped to unbounded or saturated signals,

which erroneously steer the network. For the current problem, the existing solution is

to perform an image-dependent causal IIR filtering [Zhang et al. (2018)]. But it is well

known that recurrent filter can be easily unstable.

Specifically, a causal IIR filter is unstable if any of its poles lies outside the unit

circle in pole-zero plot . Therefore, it is quite possible that some image-dependent

IIR filters can be unstable. Next, we consider a best-case scenario that for all possible

blurred images the generated poles lie inside the unit-circle. However, manipulation

of network-weights, which is indispensable for model compression (e.g., quantization),

can easily shift the poles leading to instability (see Fig. 6.1). Therefore, to guarantee

stability while addressing the problem of space-variant and image dependent blur, a



method has to ensure that no poles lie outside the unit circle under any influence (e.g.,

input images and/or network-weight manipulations, etc

Figure 6.1: Instability due to quantization

6.2 Adaptive FIR Filter Module for Stability

The existing IIR approaches that address space-variant and image-dependent nature of

blur exhibits stability issues due to its non-zero poles. Hence, we resort to finite im-

pulse response (FIR) filters as they are inherently stable irrespective of any filter-weight

manipulation. Since, FIR is the defacto filter in convolutional neural network (CNN).

However, typical CNN filters have fixed receptive fields and filter-weights, and hence

are not adequate for dynamic scene blur [Zhou et al. (2019)]. We introduce an adaptive

filter module which produces spatially varying FIR filters with diverse receptive fields

and weights in accordance with the input blurred image pair.
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CHAPTER 7

Experiments

In this chapter we sill discuss about the various experiments and ablation studies that

were done in evaluating our network. We divide this chapter into four parts,in the first

part we will discuss about the data augmentations and training configurations used in

the network, in the second section we will discuss about how our network is able to

tackle view inconsistency and scene inconsistent disparity and finally we will compare

some qualitative results of our network and other deblurring networks.

7.1 Dataset Preparation

Figure 7.1: Dataset preparation

Till now the only public dataset for stereo deblurring is the Stereo Blur dataset. In

this paper we introduce a new synthetic dataset which could be used for unconstrained

stereo deblurring.

For this, as shown in Figure 7.1 we take 3 consecutive frames,from the clean images

of Stereo Blur Dataset for both left and right image-pairs, the frames are interpolated

using the video interpolation network [Niklaus et al. (2017)] to generate 3 interpolated

frames between two clean frames.

In order to establish the unconstrained scenario, we consider three cases,i.e.(3,5),

(1,3), (3,4) consecutive frame pairs which have at-least one overlapping frame for (1,3)



case and two over-lapping frames for(3,4)and(3,5)case between the 9 frames we have,

here higher number of frames(more-blur)could be for left or right image, we average

consecutive clean frames thus generated to create dynamic scene blur. The clean image

pair location for both left and right image is aligned with the middle frame of the lower-

blur case with vertical disparity close to zero.

By this method, we are able to generate blurred pairs which have a disparity along

both x-y directions, and have different exposure times and the clean image-image pair

retain the stereo constraint. Further the left image in each case down-sampled and up-

sampled by a factor of 2 in order to generate different resolution inputs.The training

dataset size is 43,642 pairs, where 17319 is from Stereo Blur Dataset, 9200 (3-5) case,

8806 (3-4) case,8317 (1-3) case and testing dataset size is 8221 pairs, where3318 is

from Stereo Blur Dataset, 1614 (3-5) case, 1614(3-4) case, 1675 (1-3) case.

7.2 Training Configuration

Implementation details

Our network is implemented on pytorch 1.1.0 in a server with Intel Xeon CPU and an

NVIDIA RTX 2080 TI GPU.We perform evaluations for our network with a modified

version of Stereo Blur data set[Zhou et al. (2019)] containing 20475 stereo pairs with

their ground truth(17158 for training and 3318for evaluation).

Data Augmentation

For increasing diversity in our model, similar to the works[Tao et al. (2018), Zhou

et al. (2019)], we take 256 × 256 patches, create down-sampled image pairs and per-

form chromatic transformations(brightness, contrast and saturation sampled uniformly

from[0.85,0.15]). To make our network robust to noise variations, we add random Gaus-

sian noise with σ = 0.01 .Image pairs are also vertically flipped in random with a

probability of 0.5 to generate new pairs.
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Model Training

For training our model, we use Adam optimizer[Kingma and Ba (2014)] with β1 = 0.9

and β2 = 0.999.For both single image and dual lens deblurring, we set the batch size

as 4 and 1 respectively. All the weights are initialized using Xavier initialization. For

training we first train our network for single image setting,i.e. without our fusion blocks

for 100,000 iterations and then add the dual lens setup. Convergence was observed for

our dual lens setup in 400,000 iterations. The learning rate is decayed from 0.001 to 0

with power 0.3 for both single image and dual lens case

7.3 Performance of the coherent fusion module and scale-

space approach

Scale adaptiveness

In order to test effectiveness of our scale adaptiveness technique, we perform a compre-

hensive study by comparing the PSNR values of left right views obtained at different

scales for some standard networks

Figure 7.2: Scale-space approach results
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In fig.7.2 we compare the effect on PSNR values for 7 different decimation scales

for Zhou et al. (2019) and our work. As we can see, for both DAVANet and OUR work

scale adaptiveness increases the average PSNR for more than 4dB.

Stereo quality

In order to find the subjective left-right consistency of the deblurred image pair we

use the SAR evaluation metric from [Chen et al. (2013)] on the images obtained after

deblurring from our network

Figure 7.3: Subjective left-right consistency

As we can see in fig 7.3 the SAR values for Our network is much higher compared

to other networks for deblurring.

Effect on Super Resolution

As we have mentioned before, scene inconsistent disparities could adversely affect the

usage of the deblurred image in other vision tasks. In order to throw more light into

this, we downscale the deblurred images obtained from the standard networks and super

resolve it using Wang et al. (2019)
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Figure 7.4: Dual Lens super resolution

Figure 7.5: Coherent fusion module Visualization
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As we can see the PSNR values of the SR images obtained from deblurred images of

our network is higher. These is because of the view consistency of the output deblurred

image, thus preserving stereoscopic property.

Visualization of Coherent fusion module

Fig. 7.5 shows a visualization of the coherent fusion module used in our network. The

mask refers to the occlusion mask and black marks of the mask gives us areas where

right view is present by the subsequent left view is not there.

7.4 Quantitative Results

In this section we present some quantitative results and ablation studies, For the below

tables, scene-consistent disparities in unconstrained dual lens deblurring can be judged

by MAE (lower values are better).

Table 7.1: Table containing different metric value on removing certain stages of our
network for Exposure 1:3

Method Ours Ours(BS) Ours( No SA) Ours(No CF) Ours (No AF)
MAE 0.7718 0.7838 1.7782 0.7846 0.7952
PSNR 30.132 30.127 29.852 28.456 29.177

PS:OFFSET 0.1580 6.3260 0.2531 6.1211 0.2541
SSIM 0.915 0.895 0.908 0.900 0.899

SS:OFFSET 0.0070 0.0350 0.0080 0.0710 0.0076

Table 7.2: Table containing different metric value on removing certain stages of our
network for Exposure 4:3

Method Ours Ours(BS) Ours( No SA) Ours(No CF) Ours (No AF)
MAE 0.8465 0.8533 1.97118 0.8572 0.8318
PSNR 30.581 30.560 30.118 27.11 28.32

PS:OFFSET 0.8450 5.1810 0.8971 5.2181 0.8677
SSIM 0.917 0.913 0.915 0.894 0.899

SS:OFFSET 0.0030 0.0290 0.0081 0.0581 0.0083
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Table 7.3: Table containing different metric value on removing certain stages of our
network for Exposure 3:5

Method Ours Ours(BS) Ours( No SA) Ours(No CF) Ours (No AF)
MAE 1.0043 1.0066 2.2731 1.0076 1.0068
PSNR 28.801 28.724 28.402 26.181 27.65

PS:OFFSET 1.0050 4.1380 1.1139 3.254 1.0178
SSIM 0.904 0.901 0.898 0.885 0.891

SS:OFFSET 0.0090 0.0310 0.0131 0.0413 0.0454

Table 7.4: Table containing comparison of different metric value for different standard
networks for Exposure 1:3

Method Mohan Tao Zhang Zhou Ours
MAE 1.3504 1.8256 1.9312 1.7658 0.7718
PSNR 27.724 27.844 27.665 28.102 30.132

PS:OFFSET 2.6440 6.3310 5.4890 6.0460 0.1580
SSIM 0.888 0.874 0.871 0.890 0.915

SS:OFFSET 0.0070 0.0820 0.0770 0.0680 0.0030

Table 7.5: Table containing comparison of different metric value for different standard
networks for Exposure 4:3

Method Mohan Tao Zhang Zhou Ours
MAE 2.273 1.9704 12.0488 1.9328 0.8465
PSNR 25.169 26.536 26.406 26.437 30.581

PS:OFFSET 1.0600 6.4970 5.6060 5.6360 0.8450
SSIM 0.816 0.860 0.858 0.863 0.917

SS:OFFSET 0.0130 0.0860 0.0730 0.0740 0.0070

Table 7.6: Table containing comparison of different metric value for different standard
networks for Exposure 3:5

Method Mohan Tao Zhang Zhou Ours
MAE 3.021 2.2524 2.3518 2.2444 1.0043
PSNR 26.348 26.593 26.431 26.040 28.801

PS:OFFSET 1.9870 4.1550 3.2460 3.3640 1.0050
SSIM 0.876 0.862 0.858 0.868 0.904

SS:OFFSET 0.0140 0.0570 0.0470 0.0440 0.0090
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Table 7.7: Table containing comparison of different metric value for different standard
networks for Exposure 1:1

Method Mohan Tao Zhang Zhou Ours
MAE 1.215 0.8869 0.9921 0.8672 0.7380
PSNR 26.815 26.984 25.854 29.198 32.052

PS:OFFSET 1.8090 1.2520 1.2960 3.9320 0.2580
SSIM 0.854 0.861 0.828 0.892 0.905

SS:OFFSET 0.0300 0.0330 0.0330 0.0480 0.0070

7.5 Qualitative Results

Some Qualitative results and comparison are shown below:-

Figure 7.6: Synthetic image: Qualitative:-1
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Figure 7.7: Real image: Qualitative:-2

Figure 7.8: Real image: Qualitative:-3

Figure 7.9: Real image: Qualitative:-4

Figure 7.10: Synthetic image: Qualitative:-5
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Figure 7.11: Synthetic image: Qualitative:-6

Figure 7.12: Synthetic image: Qualitative:-7
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CHAPTER 8

Conclusion

In this work, we introduce a novel network for tackling unconstrained dual lens dynamic

scene blurring. The proposed network incorporates an adaptive multi-scale approach

to obtain scene-consistent depth in the image pairs. A new image adaptive feature

extraction block using dilated convolutions is introduced which has the capability to

use receptive fields of different sizes on different images. We also propose a coherent

fusion block to to address the problem of view inconsistency.

Using the proposed method, image-pairs having different resolutions and different

exposures making them blurred image pairs having significantly different blurs, could

be deblurred to obtain equal quality pairs as compared to other networks where the low

blur image gives better results.

We also built a new large dataset for unconstrained dual lens deblurring with dy-

namic scenes using frame interpolation and averaging. The dataset contains left-right

views with different resolutions, and three different exposures, as well as the uncon-

strained scenario.

Comprehensive evaluations with the existing state-of-the-art monocular and dual

lens techniques shows the superiority of our network for solving the unconstrained dual

lens dynamic scene deblurring problem.

Possible future work to improve the disparity and quality of registration on improv-

ing the quality of optical flow values and coming up with more accurate flow estimation

networks. Our proposed modules can be easily adapted to future deep learning methods

that handle unconstrained dual lens cameras.

We conclude our work by again thanking everyone who have directly or indirecly

aided in the completion of this project.
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