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ABSTRACT

KEYWORDS: systolic array ; deep learning; hardware acceleration.

Deep neural networks (DNNs) are widely used for various artificial intelligence

applications. While they tend to perform well for various tasks, it also comes

with the cost of high energy consumption and latency. In order to get the best

out of DNNs it is important to use a better hardware which can deliver good

performance with reasonable energy consumption. With the end of Moore’s law,

general purpose architectures are not able to deliver high performance with energy

efficiency. This raised a need to build domain-specific architectures. Thus we look

to build a hardware accelerator for DNN inference in edge devices which will

interface with the Shakti C-Class processor. This work mainly discusses how data

movement is done from the main memory to the accelerator and how data storage

is done inside the accelerator. The main contributions of this work are design

and implementation of the load module of the accelerator, implementing double

buffering and design trade-off analysis of few design choices in the buffer module.
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CHAPTER 1

INTRODUCTION

Deep neural networks have gained popularity due to their success in various appli-

cations such as computer vision, speech and audio recognition, etc. However they

require a lot of computations which results in high latency and energy consump-

tion. This leaves us with a need to use hardware with high compute capabilities

with limited energy consumption. With Moore’s law coming to an end, we are

not going to get the performance gains from CPUs as before and also with the

end of Dennard scaling, peak power density doesn’t remain constant anymore.

GPUs became popular for running deep learning workloads. While GPUs give

good compute capability it comes at a cost of high power consumption. FPGAs

then became a popular choice for CNN based deep learning workloads. While FP-

GAs gave better performance per watt due to low power consumption, they were

still less efficient than the application specific hardwares. Thus domain-specific

hardware for deep learning became a need to get high performance and energy

efficiency.

Convolution is an important operation and contributes to the majority of the

compute time in DNN inference. Thus accelerating convolutions can give us a

high overall improvement in performance. Systolic array (2) is an architecture

that can compute convolutions / matrix multiplications efficiently. This is why a

lot of existing DNN accelerators are based on systolic arrays.

Some early hardware accelerators for neural networks were from NeuFlow (3)

(2011) and DianNao (4) (2014). NeuFlow contains a grid of processing tiles where

each tile can be programmed to do a task in runtime. DianNao came up with an

accelerator for large scale DNNs with special emphasis on the impact of memory.

Eyeriss (5) (2017) proposed a dataflow called Row stationary(RS) dataflow

on a spatial architecture of 14x12 PE array. It also implements compression to

improve energy efficiency. Google came up with a systolic array based accelerator

called the Tensor Processing Unit (6) (2017) to accelerate their neural network



workloads. In CNNs, the intermediate feature maps and the weights can be sparse

i.e, consists of a lot of zeros in them. Accelerators like SCNN (7) (2017), EIE (8)

(2016) look to exploit the sparsity and improve efficiency . Gemmini (9) (2019)

is a systolic array based accelerator with configurable parameters. The idea is to

generate custom systolic arrays for different deep learning workloads.

Thus we look to build an open source DNN hardware accelerator which will

act as a co-processor interfacing with Shakti C-Class processor (1).

The rest of the thesis is organized as follows:

• Literature survey on two popular systolic array based accelerators - TPU
and Gemmini in Chapter 2.

• The overall micro-architecture of the accelerator and the ISA will be briefed
in Chapter 3.

The Contributions of this work are as follows:

• The design and implementation of the load module in different versions of
the accelerator and doing the preliminary verification for the same. Imple-
mentation of double buffering in the initial version of the design. More on
this will be discussed in Chapter 4

• Design trade-off analysis on the on-chip memory(buffer module) of the accel-
erator, discussing how can the port contention in buffers reduced. Trade-off
analysis on using RISC or the CISC based ISA (Chapter 5)
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CHAPTER 2

BACKGROUND

A Deep neural network is a neural network with multiple layers between the in-

put layer and output layer. A common version of DNN is Convolution neural

network(CNN) which consists of multiple convolution layers, pooling layers and

fully connected layers. Data coming from each layer is termed as a feature map

(fmap) which is sent as an input to the next layer. The convolution layer performs

convolution operation on its inputs and sends the outputs to the next layer. Con-

volution layer is the most computationally intensive part of CNN. Pooling layer

compresses the feature maps before sending it to the next layer. Two common

pooling methods are max pooling and average pooling. Fully connected layers

generally form the last layers of the CNNs and are memory bandwidth limited,

rather than compute resource limited. The convolution layers and fully connected

layers are generally followed by non-linear activation functions such as ReLU,

sigmoid, etc.

2.1 Convolution layer

In 2D convolution, an output pixel is generated by performing element wise multi-

plication of 2D weight matrix and a part of input fmap, with the same dimension

as weight matrix, and accumulating the values. The output fmap is generated by

sliding the weight matrix over the 2D input fmap and performing this operation.

In case of 3D input feature maps (C channels of H x W 2D fmaps), weights are

of the form C x R x S where C is the number of channels, each channel of input

convolves with corresponding channel of weight to generate C 2D output maps.

These C channels are accumulated to get a single 2D output fmap (E x F). Mul-

tiple 3D filters(M) can be convolved with the input maps to generate 3D output

fmap of the dimensions MxExF. The 3D inputs can often be sent as batches (N x

C x H x W) to convolve with weights (M x C x R x S) and the outputs are of the



dimensions N x M x E x F. This operation is a compute bound as it involves high

reuse of data.

2.2 Fully connected layer

The input to this layer is either from the final convolution layer or pooling layer.

The fmaps are unrolled to form a 1D vector and are passed to the fully connected

layer. The 1D input is element wise multiplied with a 1D weight vector and accu-

mulated to form an output element. Multiple weight vectors are multiplied with

the same input to generate the output values. This layer is memory bandwidth

limited but still offers some data reuse.

2.3 Systolic arrays

A systolic array is a network of interconnected processing elements(PE) that can

accelerate compute bound operations like convolutions. Systolic array accelerates

operations by reducing main memory accesses and reusing the data as much as

possible. In CNNs there is scope for lots of data reuse thus we can reduce the

main memory accesses in turn reducing overall latency and energy consumption.

Convolution as such is not suitable for systolic arrays therefore it is converted

into matrix multiplication operation and then computed by the systolic array. We

use a 2D grid systolic array where each PE performs a multiply and accumulate

(MAC) operation. There are different ways to reuse data in convolution and based

on the reuse, the dataflow of the systolic arrays will be chosen. The data flows

for convolution in 2D systolic arrays are input stationary, weight stationary and

output stationary.

In our work we implement the weight stationary dataflow. In this setup, each

PE stores a weight value, multiplies it with an input received from its left neighbour

and adds it to the output of the PE present above and sends the result below.

The inputs are being sent to PE present at the right. By this we try to make

maximum reuse of the data and try to reduce the memory access as much as

possible. In this dataflow only the inputs and outputs move whereas the weights

4



once loaded remain in the PE, thus named as the weight stationary dataflow. The

I/O movement only happens at the sides of the 2D array.
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CHAPTER 3

LITERATURE REVIEW

In this chapter, we will discuss about two popular systolic-array based accelerators.

One is the Gemmini accelerator from the University of California, Berkeley and

other accelerator is the Tensor processing Unit (TPU) from Google, Inc. We will

compare and analyse both the works based on their system architecture and the

design choices behind it.

3.1 Tensor Processing Unit

In 2013, when Google (6) realized that people use voice search for 3 minutes a

day, using speech recognition DNNs, would require their datacenters to double to

meet the computation demands, which would be very expensive to satisfy with

the conventional CPUs. They realized the need for a custom ASIC that would

accelerate the inference workloads. The goal of the project was to improve the

cost-efficiency by 10x over GPUs.

Figure 3.1: A system overview of the TPU from (6)



3.1.1 System Architecture:

Figure 3.1 shows the system overview of the TPU. The Matrix Multiply unit is

the heart of the accelerator. It is a 256x256 sized systolic array that has PEs or

MACs that can perform 8-bit multiply-and-adds on signed or unsigned integers.

The reason for choosing 256x256 being, scaling further up (512*512) reduced the

performance instead of increasing it.

TPU has a 24 MiB unified buffer that can store the inputs and intermediate

results. One reason for having a unified buffer is that the intermediate results can

be fed back to the systolic array as inputs. A programmable DMA controller is

present and will act as a load and store modules to transfer data to and from host

CPU memory to Unified buffer. For the weights, TPU has a on-chip FIFO that

reads from a 8GiB off-chip DRAM. The weight FIFO can store upto four tiles of

weights(4*256*256).

TPU has 4MiB of 32-bit Accumulators which will store the 16-bit products

from the systolic array. The 4MiB represents 4096, 256-element, 32-bit accumula-

tors. 256-element accumulators because 256 columns of the matrix unit send 256

values each cycle. The reason behind 4096 entries being, based on the roofline

model the number of operations needed to reach peak performance was 1350,

rounding off to 2048 entries, and the accumulators are duplicated so that compiler

could use it for double buffering.

The TPU has support for 8-bit and 16-bit weights and activations. The array

uses a weight stationary dataflow where it holds one 64KiB tile (256*256) of

weights and another tile for double-buffering. TPU has hardware for performing

non-linear activation functions and pooling.

3.1.2 Accelerator interfacing with the processor:

The TPU was designed to be a co-processor on the PCIe I/O bus allowing it to

plug into the existing servers just like how GPU does. To simplify the hardware

design and debugging, the host processor sends the instructions to the accelerator

rather than the TPU fetching from the memory itself.
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As instructions are sent over the relatively slow PCIe bus, TPU instructions

follow the CISC tradition, including a repeat field. The average clock cycles per

instruction (CPI) of these CISC instructions is typically 10 to 20.

Key TPU instructions are:

• Read_Host_Memory reads data from the CPU host memory into the
Unified Buffer (UB).

• Read_Weights reads weights from Weight Memory into the Weight FIFO
as input to the Matrix Unit.

• MatrixMultiply/Convolve causes the Matrix Unit to perform a matrix
multiply or a convolution from the Unified Buffer into the Accumulators.

• Activate performs the nonlinear function of the artificial neuron, with op-
tions for ReLU, Sigmoid, and so on. Its inputs are the Accumulators, and
its output is the Unified Buffer. It can also perform the pooling operations
needed for convolutions using the dedicated hardware on the die, as it is
connected to nonlinear function logic.

• Write_Host_Memory writes data from the Unified Buffer into the CPU
host memory.

3.1.3 Software:

The portion of the application run on the TPU is typically written in TensorFlow

and is compiled into an API that can run on GPUs or TPUs. The TPU stack

is split into a User Space Driver and a Kernel Driver. The Kernel Driver is

lightweight and handles only memory management and interrupts. It is designed

for long-term stability. The User Space driver changes frequently. It sets up and

controls TPU execution, reformats data into TPU order, translates API calls into

TPU instructions, and turns them into an application binary. The User Space

driver compiles a model the first time it is evaluated, caching the program image

and writing the weight image into the TPU’s weight memory; the second and

following evaluations run at full speed.

3.2 Gemmini

Gemmini (9) was an attempt to build a systolic array generator rather than a

fixed accelerator itself. The motive being different use-cases for DNN, from edge

8



devices to cloud, can’t be catered by a single type of systolic array accelerator.

Thus Gemmini is a systolic array generator that enables systematic evaluations

of deep learning architectures. The goal is to build a systolic array accelerator

where we can tune important parameters like dataflow, precision, on-chip memory

capacity and banking strategy and do a Design space exploration to figure out the

right architectural parameters for common NN workloads.

Figure 3.2: A system overview of the Gemmini systolic array generator from (9)

3.2.1 System Architecture:

Figure 3.2 shows the system overview of the Gemmini accelerator. The PEs in

the systolic array are arranged in a combinational grid to form a tile, and the tiles

are arranged in a pipelined grid to form the systolic array itself. This is done so

that the pipeline depth of the array can be varied by changing the size of the tile.

The PEs are double-buffered so that the weights can be loaded for next compute

operation.

Gemmini supports two data-flows, weight stationary and output stationary,

with a choice of either having one of them or both. The PEs also support different

bit-widths for input, outputs and internal buffer.

Gemmini has a banked scratchpad made of SRAMs that store the inputs,

weights and output fmaps(feature maps). A DMA controller is present to take care

of data transfer to and from the host processor to the scratchpad. A Dependency

9



Mgmt unit is present to take care of dependencies between the instructions. A

higher bit-witdh accumulator buffer made of SRAMs is present to store the result

of the matrix multiplication. Adders are present in inputs of accumulators to

perform partial sum accumulations.

Additional hardware is present to support non-linear activation functions such

as ReLU, ReLU6, hardware to scale the outputs to lower bit-width to feed into

the next layer. Peripheral circuits are present to perform transpose of the weight

matrix which is needed for output stationary data-flow.

3.2.2 Accelerator interfacing with the processor:

The accelerator is integrated with the Rocket System-on-chip generator, which

can be configured to interface with either the Rocket in-order core or the BOOM

out-of-order core. The accelerator communicated with the host processor through

the Rocket Co-processor (RoCC) interface, which enables the host to send the

accelerator a stream of custom instructions. The Gemmini ISA provides three

instructions:

• mvin instruction to load the data from the main memory to the accelerator’s
scratchpad.

• mvout instruction stores the data from the scratchpad or the accumulator
to the main memory.

• compute instruction configures the parameters like activation, dataflow and
starts with the systolic operation and stores the output in the accumulator
or the scratchpad.

3.2.3 Software:

To make it easier for the programmers to use Gemmini accelerator, a software

library has been provided that implements hand-tuned, tiled GEMM functions

such as matrix multiplication of any size, multi layer perceptron (MLP), CNNs,

non-linear activation and quantizations. Tiling is performed along the size of

the systolic array and the accelerator scratchpad. These tiling parameters are

generated by the Chisel generator and are included as a header file in software

libraries.

10



3.3 Summary

In this section, we will summarise the design choices made by both the accelerators.

Since Gemmini doesn’t have fixed numbers for the parameters, we will choose a

design point they chose for their physical design for this comparison.

Figure 3.3: Comparing TPU and Gemmini based on few design parameters

11



CHAPTER 4

MICRO ARCHITECTURE

In this chapter we will look at the overview of the instruction set and the micro-

architecture of our accelerator.

4.1 Overview of Instruction set

Figure 4.1: Instruction encoding

We have four CISC instructions to execute tasks in our accelerator. The general

instruction encoding is shown in Figure 4.1. The opcode is used by the decode logic

to send the instructions to respective queues. The dependency flags are set by the

compiler to let the hardware know the dependencies between the modules. The

instruction size denotes the size of the parameters for that particular instruction.

The parameters will vary from 16-18 bytes depending on the instruction. The four

instructions in the ISA are as follows:

• LOAD: Loads data from DRAM to the on-chip buffer (SRAM).

• GEMM: Reads input maps and weights from the buffer, performs im2col
on the inputs, computes on the systolic array and stores the outputs in the
output buffer.

• ALU: Performs nonlinear activation functions and pooling operation

• STORE: Stores the outputs from output buffer to DRAM



4.2 System architecture

The accelerator has five modules: frontend module, load module, compute module

(systolic-array), tensor ALU and store module. The on-chip buffers are present in

the buffer module. More about the buffer module will be discussed in Chapter 4.

Figure 4.2 gives the system overview of the accelerator. This accelerator will act

as co-processor and interface with the Shakti C-Class processor. We will briefly

look at each module in the next sections.

Figure 4.2: System overview of the accelerator

4.3 Frontend

4.3.1 Fetch and Decode:

The fetch module contains an AXI4 slave interface using which the core programs

the program counter (PC) and set bit. The fetch module sends axi requests to

read the accelerator instructions from the memory. Based on the instruction size

13



another request is sent to fetch the parameters for the corresponding instruction.

The decode logic then sends the instruction to the appropriate queue based on the

opcode.

4.3.2 Dependency resolver:

This module takes care of dependencies between instructions. The module has

queues for each instruction to which the decode logic pushes the instruction into.

The instruction has four flags, push_prev, push_next, pop_prev, pop_next.

Each module has a previous module and a next module as shown in Table 4.1.

Module Previous Next
Load - GEMM
Store ALU -

GEMM Load ALU
ALU GEMM Store

Table 4.1: Dependencies for each module

When a push flag is set in the instruction, the corresponding module pushes a

token once the execution is complete, to another module, depending on whether

push_next or push_prev is set. When a pop_prev flag is set for a module, its

previous module will have the push_next flag set, so once the previous module

pushes the token, the dependency resolver module pops that token and sends the

instruction to the current module. Each module has a FIFO through which the

dependency resolver sends the instruction(once dependencies are resolved).

4.4 Load

This module loads the feature maps and weights from the DRAM to the on-chip

memory. This module along with store is what is represented as DMA engine(in

Gemmini) or DMA controller(in TPU). It has an AXI4 master interface using

which read requests are sent to the DRAM. The module contains an address

generator logic which calculates the read and the write address for every read

request based on the parameters like DRAM base address, SRAM base address,

14



strides and sizes in different dimensions. The instruction also has a reset bit which

when set, loads an immediate value instead of loading from the DRAM. Based on

the SRAM base address the module decides to which buffer the data should be

loaded. This module will be covered in detail in the next chapter.

4.5 GEMM/Compute

This module contains the systolic array and performs the convolution operation.

The instruction contains the base address of inputs, weights and outputs. The

weights are first pre-loaded into the array by reading it from the weight buffer,

then the inputs are fed systolically by reading from the input buffer. For the partial

sum accumulation, the partial sums can be pre-loaded into the PEs if needed or

zeros will be filled, this will be decided based on a flag in the instruction. The

outputs are written into the output buffer, which can be either used by the systolic

array for next GEMM or read by the ALU to perform activation function.

4.6 ALU

The ALU module performs operations other than convolution, mainly non-linear

activation functions such as ReLU and pooling operations. ALU units are repli-

cated to create a vector ALU that can operate on multiple data. The module

fetches its inputs from the output buffer based on the address, sizes and strides

and writes the output after computing back to the output buffer.

4.7 Store

This module stores the outputs from the output buffer to the DRAM. Similar to

the load module, this module contains an AXI4 master interface through which

the data is sent to the DRAM. The module takes parameters such as DRAM

address, SRAM address, sizes and strides to store the 3D slice to the DRAM.

15



CHAPTER 5

LOAD AND BUFFER MODULE

In this chapter we will see about two key modules of the micro-architecture. One

is the load module and other is the buffer module. Under load module we will

discuss in detail what happens when the module receives the load instruction and

how the module loads a 3D slice from the DRAM and stores it in the SRAM. In

the Buffer module, we will see about the buffers present for the data storage in

the accelerator and the need for double buffering.

5.1 Load Module

5.1.1 Overview:

The task of the load module is to load the input feature maps, weights and outputs

from the DRAM into the on-chip memory. This module works similar to DMA

engine(Gemmini) or the DMA controller(TPU) by accessing the main memory

directly with minimal intervention from the processor. The 4D feature maps are

stored in the NHWC format in the DRAM and the weights are stored in the RSCM

format. The feature maps and weights are stored in this format by the software.

The feature maps and the weights are loaded by reading one 3D slice per load

instruction. The NHWC format (RSCM for weights) is retained while storing it

in the on-chip memory. The 3D slice that will be loaded can be discontinuous

in DRAM, but it will be stored continuously in SRAM. There is an option to

store immediate values instead of loading the values from DRAM. The parameters

needed for the LOAD instruction are:

• DRAM base address/ immediate constant value

• SRAM base address

• Z_SIZE - Number of channels in the 3D slice (number of filters in case of
weights)



• Z_STRIDE - Offset from start of one column to access the next column

• Y_SIZE - Number of columns to access to complete one 2D slice (number
of channels in case of weights)

• Y_STRIDE - Offset from start of 2D slice to the next 2d slice

• X_SIZE - Number of rows to access to complete one 3D slice (number of
pixels in unrolled RxS, in case of weights)

• RESET - If this bit is set, do not generate any memory request. Every
location in the SRAM to which the 3D slice will be written to is simply
written with the immediate constant value.

Figure 5.1: Block diagram of the load module
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Figure 5.1 shows the block diagram of the load module. The dependency

resolver checks for dependencies for a particular load instruction, once resolved,

pushes the instruction into the load queue. The load module then pops the instruc-

tion from the queue and sends it to the address generator. The address generator

block contains an AXI4 master interface using which read requests to the DRAM

are sent. This AXI4 master acts similar to a DMA controller where it can send

read requests to the main memory with minimum intervention from the processor

core. This logic generates the required read address and size of data to be loaded

using the DRAM base address, different sizes and strides in the instruction and

sends an axi request. We will learn more about this logic later in this section.

The reset bit in the instruction is used to decide whether we have to load from

the DRAM or just write the immediate value which is represented as a multiplexer

in the block diagram. Once the data is received by the load module, the module

sends the data, index and bank to the corresponding buffer with a valid bit. The

buffer to which the load should be done is decided based on the SRAM base

address present in the instruction. This is represented as a de-mux in the block

diagram. Once the load instruction is completed, the module sends a finish signal

to the dependency resolver module. The load module was coded in Bluespec HDL

and basic verification was done using a testbench. Code below shows the interface

of the load module written in Bluespec HDL.

Listing 5.1: Interface of Load module in Bluespec HDL

1

2 i n t e r f a c e Ifc_load_Module#(numeric type addr_width , numeric type

data_width ) ;

3 i n t e r f a c e AXI4_Master_IFC#(addr_width , data_width , 0 ) master ;

4 // to get parameters from the dependency module

5 i n t e r f a c e Put#(Bit #(128) ) subifc_get_loadparams ;

6 i n t e r f a c e Get#(Bool ) sub i f c_send_load f in i sh ;

7 //methods to send wr i t e r eque s t s to bu f f e r s

8 method Vector#(TDiv#(data_width , ‘INWIDTH) , Tuple4#(Bool , Bit#( ‘

IBUF_INDEX) , Bit#( ‘IBUF_Bankbits ) , Bit#( ‘INWIDTH) ) ) ibuf_wr_data ;

9 method Vector#(TDiv#(data_width , ‘INWIDTH) , Tuple4#(Bool , Bit#( ‘

WBUF_INDEX) , Bit#( ‘WBUF_Bankbits) , Bit#( ‘INWIDTH) ) ) wbuf_wr_data ;

10 method Vector#(TDiv#(data_width , ‘OUTWIDTH) , Tuple4#(Bool , Bit#( ‘

OBUF_INDEX) , Bit #( ‘OBUF_Bankbits ) , Bit#( ‘OUTWIDTH) ) ) obuf_wr_data ;
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11

12 end i n t e r f a c e

5.1.2 Loading a 3D slice - example:

We will now see through an example, how a 3D slice of a feature map is loaded from

the DRAM, what exactly does the sizes and strides in the instruction parameters

map to.

Figure 5.2: An example 1x64x4x4 feature map

Figure 5.3: Layout in the DRAM in NHWC format

Let us consider a feature map example to be loaded as in Figure 5.2 with the

dimensions of 1 x 64 x 4 x 4. This feature map will be stored in the NHWC format

in the DRAM as shown in Figure 5.3. DIM_0 represents the innermost dimen-

sion channels(C), DIM_1 represents width(W), DIM_2 represents height(H) and

DIM_3 represents batch(N).
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Let us load a 3D slice of dimensions 1 x 2 x 2 x 32 from the original feature

map. The load parameters for this slice would be:

• Z_size - no. of channels which will be 32 for this example.

• Z_stride - Offset from one column to another which will be the number of
channels of the actual feature map i.e., 64, independent of the 3D slice to
be loaded

• Y_size - no. of columns to complete one 2D slice – 2 for this example

• Y_stride - Offset from start of one 2D slice to next which will be equal to
W*C of the actual feature map i.e., 4*64 = 256, independent of the 3D slice
to be loaded

• X_size - no.of 2D slices to be loaded – 2 for this example

Since the module loads a 3D slice from the actual 3D fmap, the data will not

be continuous in the DRAM. So the AXI4 master cannot load the 3D slice from a

single read request. A number of read requests are being sent by the AXI master

to load the 3D slice completely. We will load Z_SIZE number of values per request

since they are continuous in the memory. The address generator logic calculates

the DRAM address, SRAM address for every read request. Each set of Z_SIZE

elements are stored in the SRAM in a continuous manner. The pseudo-code below

gives the logic for the address generation module.

1

2 for i = 0 to X_SIZE: // Nested loop unrolled in time

3 for j = 0 to Y_SIZE:

4 dram_addr = dram_base + j * Z_STRIDE + i * Y_STRIDE

5 sram_addr = sram_base + j * Z_SIZE + i * Z_SIZE * Y_SIZE

6 // Z_SIZE loaded per axi request

7 load(dram_addr , Z_SIZE , sram_addr)

8

Listing 5.2: Psuedo-code for address generation logic

5.2 Buffer module

This module contains all the on-chip memory made of SRAM required for data

storage inside the accelerator. The current design of our accelerator has three
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buffers, input buffer, weight buffer and the output buffer. The number of banks

for the buffer is decided based on the systolic array dimensions. The systolic array

reads number of inputs per cycle equal to its number of rows, so the number of

banks of the input buffer should be at least equal to the number of rows of the

array. Similarly for weights and output buffers, systolic reads weights equal to its

number of columns and write partial outputs equal to number of its columns into

the output buffer. This means the minimum number of banks needed in weights

and output buffers will be equal to the number of columns in the systolic array. A

buffer for storing the parameters was added initially but is removed now(discussed

in section 6.2). The sizes of each buffer will be determined based on the compute

capacity of the accelerator and memory bandwidth available. Detailed design

space exploration for the buffers has been done in the next chapter, section 6.1.

5.2.1 Double buffering:

This is one of the important optimizations that can be done to improve through-

put. In case of load and compute instruction, the load module loads the input

buffer while the systolic array reads from it. Loading from main memory can take

several cycles and the systolic has to wait till the load has been completed, this

would affect the overall latency of the inference. One way to improve this is to

try to overlap these tasks so that they can run in parallel. This is done by repli-

cating the buffers so that each module can use one buffer at a time and swap in

the next cycle of instruction (also popularly known as ping pong buffer). When

buffers have high contention on its ports, it forces us to execute tasks serially thus

increasing the latency and reducing the utilization of hardware. In section 6.1 we

will see how double buffering, in particular for the output buffer, can help execute

tasks in parallel. Double buffering can either be implemented in hardware or by

the compiler after exposing the address space, For the initial version of the design,

double buffering was implemented in hardware (coded in Bluespec HDL).
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CHAPTER 6

DESIGN SPACE EXPLORATION

6.1 Data storage in the accelerator

As seen in section 5.2, the buffer module consists of three buffers each for input,

weight and output. Deciding the amount of buffers and the size is crucial for an

accelerator. Having limited on-chip memory can create high contention on the

buffers thus forcing us to serialize operations and see reduction in performance

whereas having excess memory can lead to increased area and cost. In this section

we will analyse two design choices on the buffers.

6.1.1 Having separate buffers for input, weight and output:

Buffer Load Store GEMM ALU
Input Buffer Write - Read -
Output Buffer Write Read Read and Write Read and Write
Weight Buffer Write - Read -

Table 6.1: Overview of Buffers and how different modules use them

For the input buffer, the load module writes input fmaps into it and the com-

pute module reads the data from it. Having a buffer with simultaneous read/write

can ensure loading input fmaps and compute operations executing in parallel, thus

giving us the benefits of double buffering.

Similarly for the weights buffer, the load module writes weights into it and the

compute module reads from the buffer. Parallel execution can be ensured with

simultaneous read/write buffer.

From the Table 6.1 it is clear that the output buffer has the most contention

in its ports since all four modules (load, alu, compute, store) try to access the

buffer. The tasks leading to these contentions are as follows:



• The load module writes the partial sums into the buffer – write.

• The compute module reads the partial sums from the buffer and stores it in
the PEs before starting the systolic operation – read.

• The compute module then writes the partial results into the buffer every
cycle till the systolic operation is completed – write.

• The ALU then reads the outputs from the buffer, performs operations like
activation functions, pooling (if required) and then writes it back to the
buffer – read and write.

• The store module then reads from the output buffer and stores it into DRAM
– read.

Since we have separate queues for all these instructions we can execute all these

operations in parallel if they do not have any dependencies. But since the output

buffer can do only one read and write at the same time, there is contention in the

ports of the output buffer forcing us to execute these instructions sequentially.

This is where having multiple buffers (double or triple buffering) can help.

To solve the contention due to the ALU and systolic array reading the partial

sums, we can go with double buffering. Along with the output buffer we can have

another accumulator buffer/scratchpad made of SRAM which will be used by the

compute module to cycle the partial sums by writing and reading it again.

One more additional optimization is double buffering the accumulator buffer

into Tensor ALU scratchpad and Systolic scratchpad. With this setup, the com-

pute module will write the partial sums into this Systolic scratchpad which will

be read back by the compute module again. The ALU will read the output from

the Tensor ALU scratchpad, perform activation functions and pooling if required

and write it to the unified buffer from which the store operation will write it to

the DRAM. This can ensure the compute operation and ALU executing in parallel

thus giving the maximum parallelism.

Having three buffers for outputs, one each for compute, ALU and store gives

us the ability to perform three reads and three writes at the same time, using

which we can achieve parallel execution.
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6.1.2 Shared Buffer:

From the previous design choice we had to have five buffers. Another design

choice is to see if we can have a unified or global buffer with the number of banks

being thrice the number of rows/columns of the systolic array. One idea is to

combine input, weights and output buffers as a single unified buffer and have two

scratchpads each for Tensor ALU and Systolic array.

Two key advantages with this setup are as follows:

In separate buffers, the output fmaps once computed is stored in the output

buffer which is then stored back to the DRAM by the store instruction. When

the next convolution layer starts, the output fmap of the previous layer is loaded

back again into the input buffer and is read by the systolic array. With the shared

buffer, we can have the output fmaps of the current layer in the shared buffer

itself which can be directly fed as inputs for the next layer. This saves us on the

latency and energy consumption of additional load and store operation. However

the whole output fmap of a layer cannot be stored in the buffer due to restrictions

in the size of the buffer, so this can be done for a part of fmap and rest being

stored in DRAM and loaded back as in the previous setup.

Another advantage is when we consider a compute fold, there will be very

less number of load input instructions when compared to the number of compute

instructions. Due to this, with a separate buffer for inputs, the write port of the

input buffer is under utilized. Whereas in the shared buffer case this will lead to

overall reduced contention in the ports.

Recalling the design choices on on-chip memory of Gemmini and TPU from the

literature survey in Chapter 2: TPU has an unified buffer for inputs and outputs,

a dedicated off-chip memory and FIFOs inside the accelerator for weights. TPU

also has a dedicated accumulator SRAM which are double buffered. Gemmini has

a unified buffer for inputs, weights and outputs and a single accumulator SRAM.
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6.2 Parameters for the instruction

As we have seen in Chapter 3, every instruction or module will need a set of

parameters to execute their tasks. The size of these parameters vary from 16-18

bytes depending on the instruction. One design choice is to go with the CISC

type instruction with parameters within the instruction itself and other is having

a RISC instruction without parameters. In this section we will look at the trade-off

analysis between these two choices.

6.2.1 RISC:

The idea here is to have instructions with small size (around 8 bytes) without

parameters in it. For loading the parameters we will have a separate instruc-

tion called LOAD_PARAMS. The instruction encoding for this setup is shown in

Figure 6.1.

Figure 6.1: Instruction encoding in RISC setup

With a single load_params instruction, parameters for next 12-16 instructions

will be loaded. A dedicated buffer called param_buffer is added to store the

parameters. The param_buffer is a 4-banked 1KiB SRAM. This load_params

instruction will be treated like just another load instruction and will be sent to

the load module by the dependency resolver module. The load module then loads

the parameters from the DRAM into the parameter buffer.

As seen in Chapter 3, there are FIFOs present from the dependency resolver

module to every other module to send the instruction or the parameters. In this

setup, the dependency resolver module sends only the address of the param_buffer

to the modules. For the load module, it sends the whole instruction to perform

load_params operation. The other modules will fetch the parameters from this

25



buffer, using the param_buffer index received from the FIFO, before executing

their tasks.

6.2.2 CISC:

The other option is the CISC instruction type which is implemented in the cur-

rent version of the design and has been discussed in Chapter 2. The instruction

encoding is as shown in Figure 4.1. We now have all the parameters as part of the

instruction itself. The dependency resolver module sends the parameters through

FIFOs to every module.

6.2.3 RISC vs CISC:

In CISC, the fetch module has to fetch 16-20 bytes for every instruction as com-

pared to 8 bytes for the RISC model. This reduces the instruction fetch rate for

the CISC setup. In RISC, having a load_param instruction increases the work-

load for the load module. The module loads parameters of size around 256 bytes

per load_param instruction.

In terms of on-chip memory requirements, In RISC setup we will need a

param_buffer of size 1KiB which will not be required in CISC. In terms of FIFOs

present between the dependency resolver module and the other modules, CISC

setup will need FIFOs of bigger bit width, reason being, we have to send parame-

ters which will need 16-18 bytes of bit width for each instruction. In RISC setup,

only param_buffer index is sent to the modules(except for load module), which

means required bit width is less than 4 bytes per FIFO entry. The total size of

FIFOs can be determined only after we know the number of entries in each FIFO

which is not decided yet.

To see the difference of number of bytes loaded from the memory in both

cases, we will evaluate them for computing a sample convolution layer. Consider

the following parameters for the systolic array and the convolution layer:

• Array dimensions: 64 x 64

• Input dimensions: 1 x 512 x 13 x 13
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• Weight dimensions: 384 x 512 x 3 x 3

• Output dimensions: 1 x 384 x 13 x 13

• Input/weights width: 1 byte

• Stride: 1

• Padding: 1

• Parameters size: 16 (It will vary little for each instruction but assumed to
be constant(16) for now)

• Instruction size for RISC: 6 bytes

• Instruction size for CISC: 18 bytes

The instruction trace for this layer had 206 instructions. A Load_param in-

struction for every 16 instructions is added in the RISC setup. The comparison

for number of bytes loaded from memory in both the setup is as follows:

Figure 6.2: Comparing RISC and CISC on Number of bytes loaded from memory

In RISC setup we had to load 934 bytes more than in CISC for this particular

convolution layer.
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CHAPTER 7

CONCLUSION

To summarise the contributions of this work, the load module was designed and

implemented in different versions of the design. Preliminary verification of the load

module was done using testbench. Future work here will be to formally verify and

perform the synthesis to estimate the hardware requirements. Double buffering

was implemented in the initial version of the design for the input buffer. All

implementations were done using Bluespec HDL. In the buffer module, currently

there are three buffers. We have done theoretical trade-off analysis for the on-chip

memory in the accelerator in Chapter 5. Future work would be to add scratchpads

for Tensor ALU and Compute modules and implement double buffering either in

hardware or by the compiler. Also simulations can be performed using simulators

to estimate the optimal choice for the on-chip memory. Another trade-off analysis

was made between RISC and CISC type ISA to decide on how the parameters for

the instructions should be loaded and stored in the accelerator.
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