
State and Parameter estimator for Erle rover

A Project Report

submitted by

SATHYA ASWATH GOVINDRAJU EE15B028

in partial fulfilment of requirements

for the award of the dual degree of

BACHELOR OF TECHNOLOGY AND MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS

June 2020

THESIS CERTIFICATE

This is to certify that the thesis titled State and Parameter estimator for Erle rover,

submitted by Sathya Aswath Govindraju, to the Indian Institute of Technology, Madras,

for the award of the degree of Dual degree of Bachelor of Technology and Master of

Technology, is a bona fide record of the research work done by him under our supervi-

sion. The contents of this thesis, in full or in parts, have not been submitted to any other

Institute or University for the award of any degree or diploma.

Dr. Ramkrishna Pasumarthy
Research Guide
Associate Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Dr. Nirav P Bhatt
Research Guide
Assistant Professor
Dept. of Biotechnology
IIT-Madras, 600 036

Place: Chennai

Date: 13 June 2020

ACKNOWLEDGEMENTS

I would like to specially thank Dr. Ramkrishna Pasumarthy and Dr. Nirav P Bhatt for

giving me an opportunity to be part of the autonomous vehicles project and for their

guidance through the whole period.

I would also like to thank Mr. Subhadeep Kumar, phD Research scholar for his support

and guidance during the period of this project.

i

ABSTRACT

KEYWORDS: Vehicle model; State estimator; Parameter estimator; Unscented

Kalman filter, Particle swarm optimization, Comprehensive learn-

ing Particle swarm optimization

A model that the describes the motion of a vehicle in a two dimensional plane has been

developed. A state estimator that is suitable for estimating the states of the model in real

time, has been implemented using a modified Unscented Kalman filter(UKF). A param-

eter estimator using Comprehensive Learning Particle swarm optimization(CLPSO),

has been implemented for estimating the immeasurable parameters in the developed

model.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES v

LIST OF FIGURES viii

ABBREVIATIONS ix

1 INTRODUCTION 1

2 Problem Statements 2

3 Vehicle model 3

3.1 Motor Model . 3

3.2 Wheel Dynamics . 4

3.3 Tire force model . 5

3.4 Car Model . 6

3.5 Double Track Model . 8

3.6 Normal Load constraints . 9

3.7 The DAE system . 9

3.7.1 The System of equations 12

4 State Estimator 14

4.1 Unscented Kalman Filter . 14

4.1.1 Unscented Transformation 15

4.1.2 Estimation of measurement noise statistics 15

4.2 Algorithm . 16

5 Parameter Estimation 20

5.1 Cost Function . 20

iii

5.2 Optimization algorithm . 21

5.3 Particle swarm Optimization . 21

5.3.1 CLPSO . 22

5.4 Nelder-Mead Optimization . 23

5.5 Switching . 24

6 Architecture 25

7 Simulations, Experiments and Results 26

7.1 Response of the DAE system . 26

7.2 State estimation with simulation model 27

7.3 Hardware for data logging . 31

7.3.1 Plots of data collected from Hardware for estimation 32

7.4 Relationship between servo input and steering angle 33

7.5 Parameter estimation with data from Erle rover 39

7.5.1 Parameter Space . 39

7.5.2 Optimizations done in code 41

7.5.3 Results . 42

7.6 State estimation with the estimated parameters. 42

7.6.1 Velocity (vx, vy) . 43

7.6.2 Angular Velocity(ωij) . 45

7.6.3 Motor Current . 48

7.6.4 Normal Loads . 48

7.6.5 Position(sx,sy) and Yaw(ψ) 49

8 Conclusion and Future work 51

LIST OF TABLES

7.1 The RMS error values between the states of the simulation model and
states of UKF, states estimated without filter. Where XxDiff is the RMS
error between the states of simulation model and UKF, XintiDiff is the
RMS error between states of simulation model and estimated states us-
ing only measurements without filter, and Compare is the difference
between XxDiff and XinitDiff. 30

7.2 Estimated parameters from the parameter estimator 42

v

LIST OF FIGURES

1.1 Erle rover . 1

3.1 A diagram of all the sub systems in the model put together 10

3.2 The frame of reference used for the model 11

4.1 Unscented Transformation . 16

4.2 Flow diagram representing the UKF algorithm 19

5.1 A two dimensional representation of particle swarm optimization algo-
rithm . 22

5.2 Flow diagram representing the algorithm of CLPSO 23

6.1 A flow Diagram representing the Data flow between processes. . . . 25

7.1 Position of the vehicle obtained from the model, the input is given in
top plot . 26

7.2 Velocity of the vehicle obtained from the model, the input is given in
top plot . 27

7.3 Yaw and Yaw rate of the vehicle obtained from the model 27

7.4 Angular velocity of the wheels obtained from the model, the input is
given in top plot . 28

7.5 Current in the coil of the rear drive motor obtained from the model, the
input is given in top plot . 28

7.6 Normal Load on the wheels obtained from the model, the input is given
in top plot . 29

7.7 Flow diagram representing the implementation of simulations 29

7.8 Position and Yaw angle in state estimation. Red plot represents the
states from simulation model, blue plot represents the estimated states
from UKF and Yellow plot represents states when they are directly
without filter. 30

7.9 Velocity in state estimation. Red plot represents the states from simu-
lation model, blue plot represents the estimated states from UKF and
Yellow plot represents states when they are directly without filter. . . 31

vi

7.10 Angular Velocity of the wheels in state estimation.Red plot represents
the states from simulation model, blue plot represents the estimated
states from UKF and Yellow plot represents states when they are di-
rectly without filter. 32

7.11 Normal Load in the wheel in state estimation. Red plot represents the
states from simulation model and blue plot represents the estimated
states from UKF. 33

7.12 Erle Rover used for data logging 34

7.13 Communication among sensors, Micro-controllers, PC and Rc con-
troller . 34

7.14 Figure with sensors and micro-controllers on Erle Rover. 1) IR Wheel
encoders 2) RC receiver 3) Motor Driver 4)Hall Effect Wheel encoders
5) Arduino Mega . 35

7.15 Angular velocity data of front left wheel, from the rover. 35

7.16 Angular velocity data of front right wheel, from the rover. 36

7.17 Angular velocity data of rear left wheel, from the rover. 36

7.18 Angular velocity data of rear right wheel, from the rover. 37

7.19 Yaw rate data from the rover. 37

7.20 Acceleration along x direction w.r.t body frame, from the rover . . . 38

7.21 Acceleration along y direction w.r.t body frame, from the rover. . . . 38

7.22 Current in the coil of the rear drive motor, from the rover. 39

7.23 Experimental Setup for Steering angle model estimation 39

7.24 Plot of servo input vs steering angle with collected data and the esti-
mated model . 40

7.25 The progress of simulation over iterations. 43

7.26 Velocity along X direction w.r.t body frame and the input voltage to the
motor . 44

7.27 Velocity along X direction w.r.t body frame and the input voltage to the
motor . 45

7.28 Velocity along Y direction w.r.t body frame and the input steering angle 46

7.29 Velocity along y direction w.r.t body frame and the input steering angle 46

7.30 Velocity along y direction w.r.t body frame and the input steering angle 47

7.31 Angular velocity estimated by UKF 47

7.32 Motor current estimated by UKF 48

7.33 Normal Loads on the wheels estimated by UKF 49

7.34 Estimated position of the vehicle by UKF 50

vii

7.35 Estimated position and Yaw of the vehicle by UKF 50

viii

ABBREVIATIONS

IITM Indian Institute of Technology, Madras

UKF Unscented Kalman Filter

PSO Particle Swarm Optimization

CLPSO Comprehensive Learning Particle Swarm Optimization

NM Nelder Mead algorithm

RSSE Root Sum Square Error

ROS Robot Operating System

EB3 Erle Brain 3

ESC Electronic Speed Controller

ix

CHAPTER 1

INTRODUCTION

This is a part of autonomous vehicles project under Dr. Ramkrishna Pasumarthy, As-

sociate Professor,department of Electrical Engineering, IIT Madras. The aim of the

autonomous vehicles project is to build intelligent systems for the maneuver of on-road

autonomous vehicles. This includes developing the infrastructure and driving systems

for the vehicles. Driving systems include developing local controllers, for which model

based controllers were proposed to be used. The reliability and performance of these

controllers depends on the model. These driving systems are implemented on scaled

vehicles for testing their performance.

The aim of this project is to build a model for Erle rover figure(1.1), that is good enough

for predicting the dynamics of the vehicle for a given input but simple enough so that it

can simulated online in an embedded micro-controller. The model built has some states

and parameters that cannot measured directly. So, these are estimated using a parame-

ter estimator and a state estimator. The parameter estimation is done using CLPSO-NM

algorithm(Cao et al. (2019)) . The state Estimation is done using a modified Unscented

kalman filter(Wan and Van Der Merwe (2000)). The state estimator is suitable for being

run on an embedded micro-controller on the Erle rover and the parameter estimator runs

offline which provides the state estimator with parameters for the model.

Figure 1.1: Erle rover

CHAPTER 2

Problem Statements

1. Model for the vehicle: A model that describes the dynamics of the vehicle for a
given input is required. The model has to be reasonably accurate and simple so
that it is suitable for simulating in real time on an embedded micro-controller.A
model is built using some sub-models already present and using basic laws of
physics to integrate them.

2. State Estimator: The model built has some states that can not be sensed directly
using a sensor. The states that can be sensed using a sensor will also be distorted
with noise. A state estimator using the model developed for the vehicle has been
implemented.

3. Parameter Estimation: The model built has some parameters that can only be
measured by using complex methods and sophisticated equipment, which are ei-
ther hard to conduct or not easily available. So, a parameter estimation method
which uses the data collected from the available sensors on the vehicle to estimate
the parameters has been implemented.

CHAPTER 3

Vehicle model

A model that describes the movement of vehicle in a 2 dimensional plane has been

built. The motion along the third dimension has been neglected. The model is built as

a combination of sub-models that already exist and combined together using basic laws

of physics to form a Differential algebraic equations system that describes the motion

of the vehicle in a 2 dimensional space.

3.1 Motor Model

The vehicle being used for the experiments is a buggy which is driven by a brushed

motor attached to the rear two wheels with an open differential in between. For the

motor, second order model is considered.

Jmω̇m +Bmωm + Tm = Kmim (3.1a)

Lmi̇m +Rmim +Kmωm = Vm (3.1b)

Where,

Jm - Moment of inertia of the rotor.

Bm - Friction coefficient.

Tm - Drive torque given by the rotor.

Km - represents the torque constant and back emf constant which are taken as to be the

same.

Lm - Inductance of the motor coil.

Rm - Resistance of the motor coil.

Im - Current in the motor coil.

Vm - Voltage applied to the motor across its terminals.

3.2 Wheel Dynamics

The rotor of the motor is attached to the open differential through gears of gear ratio G.

So,

GTm = Td

ωm = Gωd

Where Td and ωd are the torque and angular velocity at the differential. In an open

differential the speed of the crown gear is shared by the wheels and the torque given to

both the wheels will be equal,

ωd =
ωrL + ωrR

2

TL = TR

Where, ωrL and ωrR are the angular velocities of the rear left and rear right wheels

respectively. TL and TR are the torques at the rear left and right wheels. Combining

the above equations and balancing the torques on the rear wheels gives the following

equations,

Jwω̇rj = Tj −Rwfrjx (3.2a)

2(ωd) = ωrR + ωrL (3.2b)

ωm = Gωd (3.2c)

Balancing the torques on the front wheels gives,

Jwω̇fj = −RwFxfj (3.3)

Where,

Jw - Moment of Inertia of the wheels.

Fxrj - frictional force acting on the rear tires tires in x direction.

j - L or R which represents left or right.

4

Combining the equations (3.1), (3.2), (3.3) and assuming no power loss during the

transfer in open differential leads to the following set of equations.

ω̇rL =
Km

GJm + 2Jw
im +

(
GJmRw

2Jw(GJm + 2Jw)

)
FxrR +

[
GJmRw

2Jw(GJm + 2Jw)
− Rw

Jw

]
FxrL

− Bm

GJm + 2Jw
ωm

ω̇rR =
Km

GJm + 2Jw
im +

(
GJmRw

2Jw(GJm + 2Jw)

)
FxrL +

[
GJmRw

2Jw(GJm + 2Jw)
− Rw

Jw

]
FxrR

− Bm

GJm + 2Jw
ωm

ω̇fL = −Rw

Jw
FxfL

ω̇fR = −Rw

Jw
FxfR

i̇m = −Rm

Lm
im −

Km

Lm
ωm +

1

Lm
Vm

3.3 Tire force model

In this sub model, the frictional forces generated are modelled using slips at each wheel

as given in You and Tsiotras (2017)

Longitudinal Slip

Sxij =
(vxij −Rw ∗ ωij)
max(vxij, Rw ∗ ωij)

Special cases:

1. vxij = Rw ∗ ωij then slip is made zero to avoid the 0/0 case.

2. ωij = 0 and vxij < 0 then according to the definition slip becomes -∞. So, the
slip is made -1(limiting the slip).

3. vxij = 0 and ωij < 0 then according to the definition slip becomes∞. So, the
slip is made 1(limiting the slip).

Lateral Slip

Syij =
vyij

(Rw ∗ ωij)

Special Cases:

5

1. vyij = Rw ∗ ωij and ωij = 0 then the vehicle is stationary. So, the slip is made
zero.

2. ωij = 0 then vehicle is skidding. So, the slip is as the sign(vyij).

Total Slip

Sij =
√
(Sx2ij + Sy2ij)

where,

vxij - velocity of the ijth tire in x direction w.r.t the body frame.

vyij - velocity of the ijth tire in y direction w.r.t the body frame.

i - f,r represents if it is front or rear and j - L, R represents if it is Left or Right.

Parameters for Tire model

These parameters used here are from magic formula given in(You and Tsiotras (2017))

Seij = Sij − Sh

µij = D ∗ sin(C ∗ atan(B ∗ Sefl − E ∗ (B ∗ Sefl − atan(Sefl)))) + Sv

where, B,C,D,E, Sh, Sv are constants from the magic formula.

Frictional Forces

Fxij = −
((

Sxij
Sij

)
∗ µij ∗ Fzij

)
(3.4a)

Fyij = −
((

Syij
Sij

)
∗ µij ∗ Fzij

)
(3.4b)

Special Cases:

1. When the total slip is zero the frictional forces are made zero.

3.4 Car Model

Using the rigid body dynamics of the vehicle the relationship between velocity at the

center of mass and the velocity at the wheels are found. The equations are given below,

6

vyrR = vy − ψ̇lr (3.5a)

vxrR = vx+ ψ̇wr (3.5b)

vyrL = vy − ψ̇lr (3.5c)

vxrL = vx− ψ̇wr (3.5d)

vyfR = − sin(δ)(ψ̇wf + Vx) + cos(δ)(ψ̇lf + vy) (3.5e)

vxfR = cos(δ)(vx+ ψ̇wf) + sin(δ)(ψ̇lf + vy) (3.5f)

vyfL = − sin(δ)(−ψ̇wf + vx) + cos(δ)(ψ̇lf + vy) (3.5g)

vxfL = cos(δ)(vx− ψ̇wf) + sin(δ)(ψ̇lf + vy) (3.5h)

(3.5i)

where,

vx - velocity in x direction of vehicle’s center of mass w.r.t body frame.

vy - velocity in y direction of vehicle’s center of mass w.r.t body frame.

ψ - Yaw of the vehicle about the center of mass w.r.t global frame.

δ - Steering angle of the vehicle.

lr - Distance of center of mass of the vehicle to the rear axle.

lf - Distance of center of mass of the vehicle to the front axle.

wf - half track width of the front axle.

wr - half track width of the rear axle.

7

3.5 Double Track Model

The Double track model from (You and Tsiotras (2017)) is used here,

v̇x =
(Fxf cos(δ)− Fyf sin(δ) + Fxr)

Mv
+ vyψ̇ (3.6a)

v̇y =
(Fxf sin(δ) + Fyf cos(δ) + Fyr)

Mv
+ vxψ̇ (3.6b)

ψ̈ =
((Fyf cos(δ) + Fxf sin(δ))lf − Fyrlr)

Jz
(3.6c)

where

Fxf - total frictional force acting on the front wheels in x direction w.r.t body frame.

This is the sum of individual frictional forces acting in x direction w.r.t body

frame on each of the front wheels.

Fyf - total frictional force acting on the front wheels in y direction w.r.t body frame.

This is the sum of individual frictional forces acting in y direction w.r.t body

frame on each of the front wheels.

Fxr - total frictional force acting on the rear wheels in x direction w.r.t body frame.

This is the sum of individual frictional forces acting in x direction w.r.t body

frame on each of the rear wheels.

Fyr - total frictional force acting on the rear wheels in y direction w.r.t body frame.

This is the sum of individual frictional forces acting in y direction w.r.t body

frame on each of the rear wheels.

Jz - Moment of inertia of the vehicle about z-axis w.r.t body frame.

Mv - Mass of the vehicle.

8

3.6 Normal Load constraints

The Normal load on a vehicle at any instant is found using the following constraints.

These are obtained by balancing moments about the pitch axis(Limebeer and Rao (2015)).


FzrR

FzrL

FzfR

FzfL

 =
1

2


− lfMg+aAFaz

aA+aB
− (Dr−1)hFy

(1−Dr)wr+Drwf
− hFx
aA+aB

− lfMg+aAFaz

lf+lr

(Dr−1)hFy
(1−Dr)wr+Drwf

− hFx
aA+aB

− lrMg+aBFaz

aA+aB
(Dr)hFy

(1−Dr)wr+Drwf

hFx
aA+aB

− lrMg+aBFaz

aA+aB
− (Dr)hFy

(1−Dr)wr+Drwf

hFx
aA+aB

 (3.7)

where,

Fzij - The force acting in the z direction or the normal load on the ijth wheel.

aA - distance of the front axle from the center of gravity.

aB - distance of the rear axle from the center of gravity.

h - height of center of gravity from the ground.

Fx - Total frictional acting on the vehicle in x direction w.r.t body frame.

Fy - Total frictional acting on the vehicle in y direction w.r.t body frame.

Faz - Total aerodynamic drag force acting on the vehicle.

Dr - roll coefficient

3.7 The DAE system

All the equations obtained from the sub-models, when put together give an index 1

semi-explicit DAE system.

States of the model are,

1. Differential states:
(a) Position: Position of the vehicle w.r.t 2 dimensional global frame.

(b) Velocity: Velocity of the vehicle w.r.t 2 dimensional body frame.

(c) Yaw angle: Yaw angle of the vehicle w.r.t 2 dimensional global frame.

9

Figure 3.1: A diagram of all the sub systems in the model put together

(d) Yaw rate: Yaw rate of the vehicle w.r.t 2 dimensional body frame.

(e) Wheel Angular Velocity: Angular velocities of each wheel.

(f) Motor Current: Current in the coil of the rear drive motor.

2. Algebraic states:
(a) Normal Loads: Normal loads on each of the wheels.

The inputs to the model are:

1. Voltage: Input voltage to the rear drive motor.

2. Steering Angle: Steering angle input for the steering servo.

10

Figure 3.2: The frame of reference used for the model

11

3.7.1 The System of equations

ODE’s

ṡx = vx ∗ cos(ψ)− vy ∗ sin(ψ)− sy ∗ ψ̇ global frame

ṡy = vx ∗ sin(ψ) + vy ∗ cos(ψ) + sx ∗ ψ̇ global frame

v̇x =
(Fxf ∗ cos(δ)− Fyf ∗ sin(δ) + Fxr)

Mv
+ vy ∗ ψ̇ body frame

v̇y =
(Fxf ∗ sin(δ) + Fyf ∗ cos(δ) + Fyr)

Mv
+ vx ∗ ψ̇ body frame

ψ̇ = ψ̇

ψ̈ =
(Fyf ∗ cos(δ) ∗ lf + Fxf ∗ sin(δ) ∗ lf + Fyr ∗ lr)

Jz

ω̇fL = −(Rw ∗ FxfL)
Jw

ω̇fR = −(Rw ∗ FxfR)
Jw

ω̇rL =

(
((Km ∗G)

(G2 ∗ Jm + 2 ∗ Jm))

)
∗ im +

(
(G2 ∗ Jm ∗Rw)

(2 ∗ Jw ∗ (G2 ∗ Jm + 2 ∗ Jw)

)
∗ FxrR

+

((
(G2 ∗ Jm ∗Rw)

(2 ∗ Jw ∗ (G2 ∗ Jm + 2 ∗ Jw))

)
−

(
Rw

Jw

))
∗ FxrL

−

(
(Bm ∗G)

(G2 ∗ Jm + 2 ∗ Jw)

)
∗ ωm

ω̇rr =

(
((Km ∗G)

(G2 ∗ Jm + 2 ∗ Jm))

)
∗ im +

(
(G2 ∗ Jm ∗Rw)

(2 ∗ Jw ∗ (G2 ∗ Jm + 2 ∗ Jw)

)
∗ FxrL

+

((
(G2 ∗ Jm ∗Rw)

(2 ∗ Jw ∗ (G2 ∗ Jm + 2 ∗ Jw))

)
−

(
Rw

Jw

))
∗ FxrR

−

(
(Bm ∗G)

(G2 ∗ Jm + 2 ∗ Jw)

)
∗ ωm

i̇m =
(Vm −Rm ∗ im −Km ∗ ωm)

Lm

12

Algebraic Constraints

0 = FzfL −
(lr ∗Mv ∗ g + aB ∗ Faz)

(2 ∗ (aA+ aB))
− (Dr ∗ h ∗ Fy)

(2 ∗ ((1−Dr) ∗ wr +Dr ∗ wf))
+

(h ∗ Fx)
(2 ∗ (aA+ aB))

0 = FzfR −
(lr ∗Mv ∗ g + aB ∗ Faz)

(2 ∗ (aA+ aB))
+

(Dr ∗ h ∗ Fy)
(2 ∗ ((1−Dr) ∗ wr +Dr ∗ wf))

+
(h ∗ Fx)

(2 ∗ (aA+ aB))

0 = FzrL −
(lf ∗Mv ∗ g + aA ∗ Faz)

(2 ∗ (aA+ aB))
+

((Dr − 1) ∗ h ∗ Fy)
(2 ∗ ((1−Dr) ∗ wr +Dr ∗ wf))

− (h ∗ Fx)
(2 ∗ (aA+ aB))

0 = FzrR −
(lf ∗Mv ∗ g + aA ∗ Faz)

(2 ∗ (aA+ aB))
− ((Dr − 1) ∗ h ∗ Fy)

(2 ∗ ((1−Dr) ∗ wr +Dr ∗ wf))
− (h ∗ Fx)

(2 ∗ (aA+ aB))

The Frictional forces are found by using the relationship in section(3.3).

13

CHAPTER 4

State Estimator

The model built for the vehicle is index 1 semi explicit non-linear DAE system. The

measurements available from the rover are:

1. Acceleration: Acceleration of the vehicle w.r.t 2 dimensional body frame.

2. Yaw angle: Yaw angle of the vehicle w.r.t 2 dimensional global frame.

3. Yaw rate: Yaw rate of the vehicle w.r.t 2 dimensional body frame.

4. Wheel angular Velocity: Angular velocities of each wheel.

5. Motor Current: Current in the coil of the rear drive motor.

There are some states in the model that can’t be directly measured from the vehicle

and the available measurements of these states are not noise free. Therefore, a state

estimator is required.

The most commonly used state estimator for linear systems Kalman Filter and its

various extensions are used for non-linear systems . Some of them for non-linear sys-

tems are Extended Kalman Filter(EKF) and Unscented Kalman Filter(UKF), both of

them have their advantages and disadvantages. EKF linearizes the system by taking

the Jacobian at every operating point for finding a prediction of states at the next time

instant. Linearizing the model built in section(3) is very cumbersome and the model

has operating points where a Jacobian is not defined for it. UKF uses the non-linear

model directly for the prediction which makes it suitable for our model. Usually for

highly non-linear systems UKF is mostly used((Wan and Van Der Merwe (2000))). The

problem with UKF is that it highly dependent on its hyper parameters.

4.1 Unscented Kalman Filter

An algorithm of any variant of Kalman filter can be divided into two basic steps. They

are,

Prediction: Model is used to make prediction of the states at the next instant using a

given model for the system using the current states and inputs.

Update: The measurements obtained from the real system are then used to update the

predicted states of the system, using the process and measurement noise covari-

ance matrices given by the user.

Unscented Kalman Filter(UKF), uses unscented transformation for prediction.

4.1.1 Unscented Transformation

When a Gaussian random variable with a known mean and covariance undergoes a non-

linear transformation, the statistics of the transformed random variables can be found

accurately upto third order using unscented transformation. If the random variables

do not follow a Gaussian distribution then the estimation of the statistics of the output

random variable would be accurate upto second order(Wan and Van Der Merwe (2000)).

Using the mean and covariance of the random variables, a minimal set of points

are generated that represent the random variable, called sigma points(If the random

variable follows gaussian then these points represent it accurately as first two moments

accurately describe a gaussian random variable). These sigma points then undergo the

non-linear transformation which are then used to find the mean and covariance of the

transformed random variable. Figure(4.1) represents the procedure of Unscented trans-

formation for a two dimensional case.

In UKF, the states are assumed to be random variables and the unscented transfor-

mation is performed on them to get a prediction of the state’s mean and covariance at

next instant.

4.1.2 Estimation of measurement noise statistics

As the covariance of the noise present in the measurements can be unknown . It is

also estimated along with the states of the system. This done by storing the difference

in measurements obtained from the real system to the measurements obtained from

15

Figure 4.1: Unscented Transformation

the state estimator after updating. This is called residual based R-AUKF algorithm as

mentioned in Das et al. (2014).

4.2 Algorithm

1. Unscented transformation parameter initialization:

λ = α2(L+ κ)− L

Wm
o =

λ

L+ λ

W c
o =

λ

L+ λ
+ 1− α2 + β

Wi =
0.5

L+ λ
, i = 1, 2L

γ =
√
L+ λ

16

where L is the number of the states in the state vector (both differential and al-
gebraic), α is a parameter that defines the spread of the sigma points, κ and β
are hyper parameters of UKF which are usually set to 0 and 2 respectively (op-
timal for gaussian), Wm

o and W c
0 are the coefficients for the first sigma point

while calculating mean and covariance, respectively, and W i is coefficient for
the remaining sigma points for calculating mean and covariance. Increasing the
parameter α increases the spread of the sigma points.

2. Sigma Point Calculation:

χk−1 =
[
x̂k−1 x̂k−1 + γ

√
Pk−1 x̂k−1 − γ

√
Pk−1

]
where x̂k−1 is the estimated mean of the states(both differential and algebraic) in
the previous iteration and χk−1 denotes the matrix with sigma points as columns.√
Pk−1 is the square root (cholesky decomposition) of the covariance matrix. In

some cases, Pk−1 can be negative definite for which an approximate square root
is found.

3. Estimating Algebraic states from Differential states: The sigma points are
calculated by adding a column of the square root of covariance matrix to the pre-
vious estimated state. This might not be consistent with algebraic constraints in
the model. Therefore, the algebraic states are determined from the differential
states for each of the sigma points upon solving the algebraic constraints, (Man-
dela et al. (2009)). The algebraic constraints can be written as,

AFz = b

where Fz is a column vector representing the normal load on each wheel. A and
b are calculated using differential states from each sigma point and the system of
equations are solved to find the normal load at each wheel. These algebraic states
are then appended to the differential states and are used in state prediction.

4. State Prediction:

χ−k|k−1 = f(χk−1, uk−1)

x̂−k =
2L∑
i=0

Wm
i χ

−
i,k|k−1

P−k =
2L∑
i=0

W c
i (χ

−
i,k|k−1 − x̂

−
k)(χ

−
i,k|k−1 − x̂

−
k)

T +Qk

where, f(x, u) is the DAE model used for predicting the states at next instant.
χ−k|k−1 is the matrix containing the sigma points post transformation as columns.
x̂−k is the predicted mean of the state vector at time instant k and P−k is the pre-
dicted error covariance matrix of the state vector at instant k. Qk is the process
noise covariance matrix at instant k which has to be initialized by the user.

17

5. Measurement Update 1:

χk|k−1 =
[
x̂−k x̂−k + γ

√
P−k x̂−k − γ

√
P−k
]

Yk|k−1 = h(χk|k−1, uk−1)

ŷ−k =
2L∑
i=0

Wm
i Yi,k|k−1

P ∗ykyk =
2L∑
i=0

W c
i (Yi,k|k−1 − ŷ−k)(Yi,k|k−1 − ŷ

−
k)

T +Rk

P ∗xkyk =
2L∑
i=0

W c
i (χi,k|k−1 − x̂−k)(Yi,k|k−1 − ŷ

−
k)

T

K∗ = P ∗xkykP
∗−1

ykyk

x̂∗k = x̂−k +K∗(yk − ŷ−k)
P ∗k = P−k −KPykykK

T

h is the measurement function.The predicted state vector at time instant k, x−k
and P−k are used to find sigma points which are represented together in by the
matrix χk|k−1. These sigma points are used in the measurement model to find
predicted measurements, Yk|k−1. The measurement sigma points are then used
to find the mean y−k . The covariance matrix yk and the cross-covariance matrix
between xk and yk are found to find kalman gain(K∗) which is then used to find
the preliminary updated state vector(x∗k) and its error covariance matrix(P ∗k).

6. Measurement noise covariance estimation: The measurement noise covariance
matrix is estimated using the available measurements and updated states(Das
et al. (2014)).

χ+
k =

[
x̂∗k x̂∗k + γ

√
P ∗k x̂∗k − γ

√
P ∗k
]

Y +
k = h(χ+

k , uk−1)

ŷ+k =
2L∑
i=0

Wm
i Yi,k/k−1

resk = yk − ŷ+k

The residual(resk) is a measure of the difference in the estimated measurement
and the measurement from the vehicle. Calculate the residual covariance as:

Pres =
1

kw

k∑
i=k−kw+1

resi res
T
i

(if, ws is the window size then, kw = k if k < ws and kw = ws if k ≥ ws)

R̂k = Pres +
2n∑
i=0

W c
i (Y

+
ki
− y+k)(Y

+
ki
− y+k)

T

R̂k is the estimated measurement noise covariance matrix.

18

7. Measurement Update 2:

Pykyk =
2L∑
i=0

W c
i (Yi,k|k−1 − ŷ+k)(Yi,k|k−1 − ŷ

+
k)

T + R̂k

Pxkyk =
2L∑
i=0

W c
i (χi,k|k−1 − x̂∗k)(Yi,k|k−1 − ŷ+k)

T

K = PxkykP
−1
ykyk

x̂k = x̂∗k +K(yk − ŷ+k)
Pk = P ∗k −KPykykKT

The estimated measurement noise covariance matrix is used to update the states
and the error covariance matrix again. Steps 6 and 7 can be performed multi-
ple times to make the estimates better. Here, it is only performed once because
estimation has to performed real time.

8. Finding algebraic states from differential states: The algebraic states are again
found from the differential states for maintaining the consistency of algebraic
states in the model.

Figure 4.2: Flow diagram representing the UKF algorithm

19

CHAPTER 5

Parameter Estimation

All the parameters in the model built in chapter(3), can not be estimated using conven-

tional methods because of various reasons. For example, the parameters B,C,D,E, Sh

and Sv need sophisticated equipment for estimating them. For this reason the estima-

tion of parameters is done using measurements obtained from the vehicle. That is by

using the response of the vehicle for a known input given to it. The estimation is done

by solving an optimization problem in parameter space.

5.1 Cost Function

The cost function used for the optimization problem is the root sum square error(RSSE)

between the measurements from the rover and the estimated measurements from the

model.

min
θ

√√√√ Pn∑
j=1

(R
N∑
i=1

(Yij − ŷij)2)

s.t. ẋ = f(x, z, u, θ, t)

z = g(x, z, u, θ, t)

y = h(x, t)

θmin ≤ θ ≤ θmax

where

x ∈ IR11X1

z ∈ IR4X1

u ∈ IR3X1

y ∈ IR9X1

θ ∈ IR17X1

R ∈ IR9X9

(5.1)

Where Pn is the total number of parameters to be estimated,N is the number of mea-

surement samples, Y j
mesi

and Y j
esti are measurements from the rover and estimated mea-

surements, of the ith measurement for the jth parameter. f(x, z, u, t) and h(x, z, u, t)

represent the DAE model for the vehicle. L and U are the upper and lower bounds for

the parameters. R is a matrix used for scaling the error in preferred measurements.

With a given initialization of parameters and known initial states the DAE model is

solved for N time intervals and at every interval the difference between the estimated

measurement from the model and the measurements from the vehicle are squared and

summed over all the measurements and time instants for computing its cost.

5.2 Optimization algorithm

The optimization is divided into two stages,

Particle Swarm Optimization: This is a global search method for finding the region

in parameter space where the optimal parameters lie. A set of parameters that lie

in the region are given as an initialization to the local search method.

Nelder-Mead(NM): This is a local search method that uses the initialization given by

the global search algorithm and converges to the optimal parameters.

5.3 Particle swarm Optimization

The Particle swarm Optimization(PSO) is a swarm intelligence algorithm in which a

swarm of particles are initialized stochastically (Kennedy and Eberhart (1995)). All

the particles communicate with each other. Each particle has a position and a velocity

which are updated at every iteration. The updation for every particle occurs at every

iteration in such a way that the particles move in the direction which is the vector sum

of the vectors from the particle and the best position reached by the particle, the best

position reached among all the particles. A pictorial representation of this in two di-

21

mensions is shown in figure(5.1).

V n+1
id = V n

id + c1 × r1 × (pbestnid − xnid) + c2 × r2 × (gbestnd − xnid)

xn+1
id = xnid + V n+1

id

Where, V is the velocity of the particle and x is its position. i is the particle number, n is

Figure 5.1: A two dimensional representation of particle swarm optimization algorithm

the iteration number and d is the dimension in the particle.r1 and r2 are random numbers

that are uniformly distributed in the range[0,1]. c1 and c2 are learning factors. gbest

indicates the best position in the whole swarm and pbest indicates the best position of

the particle.

One of the problem with this algorithm is that it may prematurely converge to local

minima. This problem will be very prominent in our case because of the stiffness in

the model i.e. for most of the positions of particles(parameters) the cost function goes

to infinity. Therefore, an extension to PSO, Comprehensive learning particle swarm

optimization (CLPSO) is used ,(Liang et al. (2006)).

5.3.1 CLPSO

In this method the velocity is updated using a different position of particle for each

dimension instead of the globally best position and the particle’s best position. The

22

Figure 5.2: Flow diagram representing the algorithm of CLPSO

update policy is,

V n+1
id = w ∗ V n

id + c× r1 × (pbestnfi(d) − xnid) (5.2)

Where, pbestnfi(d) is the position that dth dimension of particle iwill move towards. This

is selected differently for every dimension in each particle. The process of selecting

pbest is followed as given in (Liang et al. (2006)).A brief flow diagram of the algorithm

used is shown in figure(5.2).

5.4 Nelder-Mead Optimization

This is a method is used for local search of parameters. The reason for using this method

is because it does not require the calculation of derivatives.

The position of the globally best particle from the global search method is given as the

initial value to it and a simplex with (n+1) particles is generated, where n is the number

of parameters to be estimated. Then the vertices of this simplex are moved to obtain

parameters that reduces the cost function(5.1). The algorithm used here is as given in

(Singer and Nelder (2009)).

23

5.5 Switching

The switching can’t be done after CLPSO converges because the amount time taken for

it to occur is very large. So, a measure is used for finding the point where switching

has to occur. Quasi-entropy(Qn), (Cao et al. (2019)), a measure of how far off are the

particles from the globally best particle. The measure is defined as follows,

Qn
E = −

N∑
i=1

P n
i log(P n

i) (5.3)

where,

P n
i =

Un
i∑N

i=1 U
n
i

and Un
i is the cost of particle i at time instant n. The algorithm switches from global to

local search after the Qn
E is less than a fraction of the initial quasi entropy.

Qn
E ≤ θ.Q0

E

θ is a parameter to be tuned.

24

CHAPTER 6

Architecture

All the things discussed till now are put together for the estimation of model offline and

state estimation.

1. Measurements and inputs are collected from the vehicle’s sensors.

2. This data is used for the estimation of parameters.

3. Using the estimated parameters in the model, state estimation is done.

Figure 6.1: A flow Diagram representing the Data flow between processes.

CHAPTER 7

Simulations, Experiments and Results

The simulations were carried out in stages.

1. The performance of state estimation was checked using a simulation model built
on matlab.

2. Available hardware was modified for data logging.

3. The data collected from an erle rover was used to test the complete architecture.

7.1 Response of the DAE system

Figures(7.1) - (7.6) are the state trajectories obtained for different inputs given to DAE

system built in chapter(3). The DAE system was solved in Matlab using ODE15s

solver.It was observed that the model is behaving ideally for the inputs given. So, this

is model was used in parameter estimation and state estimation.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

X (m)

-2

-1

0

1

Y
 (

m
)

Position

0 1 2 3 4 5 6 7 8 9 10

time (secs)

0

5

10
Inputs

Input Voltage (V)

Steer Angle (rad)

Figure 7.1: Position of the vehicle obtained from the model, the input is given in top
plot

0 1 2 3 4 5 6 7 8 9 10

time (secs)

0

0.2

0.4

0.6

0.8
V

x
 (

m
/s

)
Velocity x

0 1 2 3 4 5 6 7 8 9 10

time (secs)

-0.1

0

0.1

0.2

V
y
 (

m
/s

)

Velocity y

0 1 2 3 4 5 6 7 8 9 10
time (secs)

0

5

10
Inputs

Input Voltage (V)

Steer Angle (rad)

Figure 7.2: Velocity of the vehicle obtained from the model, the input is given in top
plot

0 1 2 3 4 5 6 7 8 9 10

time (secs)

-1

-0.5

0

0.5

Yaw angle

Yaw angle (rad)

Steer Angle (rad)

0 1 2 3 4 5 6 7 8 9 10

time (secs)

-0.5

0

0.5

1
Yaw rate

Yaw rate (rad/sec)

Steer Angle(rad)

Figure 7.3: Yaw and Yaw rate of the vehicle obtained from the model

7.2 State estimation with simulation model

A simulation model built in section(7.1) was used to give the measurements at every

time instant and noise was added to these measurements. These noise measurements

and the inputs given to the simulation model are given to UKF in which the state es-

timation is performed. A flow diagram depicting this is shown in figure(7.7). The

estimation results obtained are shown in figures (7.8) - (7.11). In the figures, the red

curve represents the states from the simulation model, blue curves represent the states

from UKF and yellow curves represent states estimated from the measurements of the

27

0 1 2 3 4 5 6 7 8 9 10

time (secs)

0

5

10

15

20
Angular Velocities

Front Left (rad/sec)

Front Right (rad/sec)

Rear Left (rad/sec)

Rear Right (rad/sec)

0 1 2 3 4 5 6 7 8 9 10

time (secs)

0

5

10
Inputs

Input Voltage (V)

Steer Angle (rad)

Figure 7.4: Angular velocity of the wheels obtained from the model, the input is given
in top plot

0 1 2 3 4 5 6 7 8 9 10

time (secs)

-20

-10

0

10

20

30

I m
 (

A
)

Motor current

0 1 2 3 4 5 6 7 8 9 10

time (secs)

0

2

4

6

8

10
Inputs

Input Voltage (V)

Steer Angle (rad)

Figure 7.5: Current in the coil of the rear drive motor obtained from the model, the input
is given in top plot

simulation model without any filter by using only the measurements. It can be observed

that the estimation of filter is much better when compared to the case without filter. The

RMS error values between the states of the simulation model and states of UKF, states

estimated without filter are given in table(7.1, it can be observed that most of the RMS

errors between states of simulation model and UKF are almost zero this because the

simulation model and the model in UKF are identical. It can also be observed that the

RMS error of position and velocity of the case without filter is large but in the case of

UKF it is very small, this indicates that having a good model for the system improves

28

0 1 2 3 4 5 6 7 8 9 10

time (secs)

8.5

9

9.5

10

10.5

11
Normal Load on the Front

Front Left (N)

Front Right (N)

0 1 2 3 4 5 6 7 8 9 10

time (secs)

13.5

14

14.5

15

15.5

16
Normal Load on the Rear

Rear Left (N)

Rear Right (N)

0 1 2 3 4 5 6 7 8 9 10

time (secs)

0

2

4

6

8

10
Inputs

Input Voltage (V)

Steer Angle (rad)

Figure 7.6: Normal Load on the wheels obtained from the model, the input is given in
top plot

Figure 7.7: Flow diagram representing the implementation of simulations

the estimation. Although, in real case the model built for the vehicle and the behaviour

of the vehicle in real world will not be identical as in the case of these simulations

but the model built is closer to real world behaviour than the case of without the filter.

Therefore, using UKF for estimation does improve the accuracy of state estimation.

29

Table 7.1: The RMS error values between the states of the simulation model and states
of UKF, states estimated without filter. Where XxDiff is the RMS error be-
tween the states of simulation model and UKF, XintiDiff is the RMS error
between states of simulation model and estimated states using only mea-
surements without filter, and Compare is the difference between XxDiff and
XinitDiff.

State XxDiff XintiDiff Compare
sx 0.0032 2.4587 -2.4555
sy 0.0033 2.5806 -2.5772
vx 0.0000 0.0944 -0.0944
vy 0.0000 0.0932 -0.0932
ψ 0.0000 0.0001 0.0003
ψ̇ 0.0000 0.0000 -0.0000
ωfL 0.0000 0.0004 -0.0003
ωfR 0.0000 0.0004 -0.0004
ωrL 0.0000 0.0004 -0.003
ωrR 0.0000 0.0004 -0.004

-20 -15 -10 -5 0 5 10 15 20

sx (m)

-40

-20

0

20

40

s
y
 (

m
)

Position

estimate

actual

without filter

0 10 20 30 40 50 60

Time (secs)

-4

-2

0

2

4

6

 (
ra

d
)

yaw angle

estimate

actual

without filter

Figure 7.8: Position and Yaw angle in state estimation. Red plot represents the states
from simulation model, blue plot represents the estimated states from UKF
and Yellow plot represents states when they are directly without filter.

30

0 10 20 30 40 50 60

Time (secs)

0

1

2

3

4

5

v
y
 (

m
/s

e
c
)

Velocity X

estimate

actual

without filter

0 10 20 30 40 50 60

Time (secs)

-1

-0.5

0

0.5

1

v
y
 (

m
/s

e
c
)

Velocity Y

estimate

actual

without filter

Figure 7.9: Velocity in state estimation. Red plot represents the states from simulation
model, blue plot represents the estimated states from UKF and Yellow plot
represents states when they are directly without filter.

7.3 Hardware for data logging

The vehicle used for the experiments is Erle rover(7.12). It is a rear drive vehicle, it

comes with a micro-controller, Erle brain3(EB3) which is raspberry pi based. Steering

of vehicle is done using a servo motor.

Erle brain 3 has an IMU in it which was used for obtaining accelerations, yaw rate and

yaw angle. For controlling the motor an ESC was provided which was replaced with a

motor driver from Pololu. This motor driver has a current sensor to it which was used

for getting the current in the motor coil. For angular velocities infrared sensors and hall

effect sensors were fixed to the wheels as wheel encoders.

An Arduino mega micro controller is used to collect the data from wheel encoders, mo-

tor current from motor driver, given inputs to motor driver and inputs to servo motor for

steering.This data is then sent to Erle brain 3 for data logging.

Erle-brain 3 receives the inputs to be given to the motor and servo from a RC transmit-

ter. It then sends this data to Arduino mega and receives the sensor information from

31

0 10 20 30 40 50 60

0

5

10

fL
 (

ra
d
/s

e
c
)

Angular Velocity Front Left

estimate

actual

without filter

0 10 20 30 40 50 60

0

5

10

fR
 (

ra
d
/s

e
c
)

Angular Velocity Front Right

estimate

actual

without filter

0 10 20 30 40 50 60

0

5

10

rL
 (

ra
d
/s

e
c
)

Angular Velocity Rear Left

estimate

actual

without filter

0 10 20 30 40 50 60

Time (secs)

0

5

10

rR
 (

ra
d
/s

e
c
)

Angular Velocity Rear Right

estimate

actual

without filter

Figure 7.10: Angular Velocity of the wheels in state estimation.Red plot represents the
states from simulation model, blue plot represents the estimated states
from UKF and Yellow plot represents states when they are directly without
filter.

it. This sensor information appended with the acceleration, yaw rate and yaw angle

data from IMU are logged into a file in a USB attached to it. The Erle-brain 3 can

be accessed wirelessly through WIFI by using ssh. All the programs on it run as ROS

nodes, this is done because the data logging and input to the vehicle has to be done

simultaneously. Arduino mega and EB3 communicate with each other using a serial

communication. A pictorial representation of this system is shown in figure(7.13).

The data from the USB is then used for Parameter estimation and testing the perfor-

mance of UKF offline.

7.3.1 Plots of data collected from Hardware for estimation

The data collected from the rover after smoothening and removing bias are shown in

figures (7.15) - (7.22).

32

0 10 20 30 40 50 60
5

10

15

F
z

fL
 (

N
)

Normal Load on Front Left Wheel

estimate

actual

0 10 20 30 40 50 60
5

10

F
z

fR
 (

N
)

Normal Load on Front Right Wheel

estimate

actual

0 10 20 30 40 50 60
10

15

20

F
z

rL
 (

N
)

Normal Load on Rear Left Wheel

estimate

actual

0 10 20 30 40 50 60

 Time (secs)

10

15

20

F
z

rR
 (

N
)

Normal Load on Rear Right Wheel

estimate

actual

X 11.01

Y 14.87

Figure 7.11: Normal Load in the wheel in state estimation. Red plot represents the
states from simulation model and blue plot represents the estimated states
from UKF.

7.4 Relationship between servo input and steering angle

The inputs to the model are steering angle and motor voltage. The input to the Erle

rover is servo ppm input and not steering angle. A relationship between servo input and

steering angle was found. This was found by curve fitting.

The steering angle response of the vehicle for a given servo input was collected. This

data is used to find mathematical model that depicts the relationship between them.

The steering angle was measured by finding the yaw angle at each of the wheels for a

given servo input. This was done because measuring the steering angle directly was not

possible. These measurements are done on each wheel for 5 times with inputs to servo

motor going from a lower bound to upper bound and the reverse. Data collected from

multiple experiments was averaged and used for curve fitting.The experimental setup

used for this is shown in figure (7.23)

As it can be seen from figure(7.24) that there is hysteresis in the response. There-

33

Figure 7.12: Erle Rover used for data logging

Figure 7.13: Communication among sensors, Micro-controllers, PC and Rc controller

fore, a switching model was used for the response, i.e. two different models, one for

increasing servo input and the other for decreasing servo input.

δ = −0.000073(x− 55)3 + 10, when servo input is decreased from its current value

(7.1a)

δ = 0.000077(124− x)2.9 − 10, when servo input is increased from its current value

(7.1b)

Where, δ is the steering angle and x is the servo input. Figure(7.24), shows the estimated

model and the true data collected from the experiments.

34

Figure 7.14: Figure with sensors and micro-controllers on Erle Rover. 1) IR Wheel
encoders 2) RC receiver 3) Motor Driver 4)Hall Effect Wheel encoders 5)
Arduino Mega

0 20 40 60

t(secs)

15

20fl

Angular velocity of Front Left Wheel

0 50

t(secs)

0.3
0.4
0.5
0.6
0.7

V
m

Motor input voltage

0 50

t(secs)

-0.2

0

0.2
Servo input angle

Figure 7.15: Angular velocity data of front left wheel, from the rover.

35

0 20 40 60

t(secs)

20

25

30

fr

Angular velocity of Front Right Wheel

0 50

t(secs)

0.3
0.4
0.5
0.6
0.7

V
m

Motor input voltage

0 50

t(secs)

-0.2

0

0.2
Servo input angle

Figure 7.16: Angular velocity data of front right wheel, from the rover.

0 20 40 60

t(secs)

20

25

30

rl

Angular velocity of Rear Left Wheel

0 50

t(secs)

0.3
0.4
0.5
0.6
0.7

V
m

Motor input voltage

0 50

t(secs)

-0.2

0

0.2
Servo input angle

Figure 7.17: Angular velocity data of rear left wheel, from the rover.

36

0 20 40 60

t(secs)

20

25

30

rr

Angular velocity of Rear Right Wheel

0 50

t(secs)

0.3
0.4
0.5
0.6
0.7

V
m

Motor input voltage

0 50

t(secs)

-0.2

0

0.2
Servo input angle

Figure 7.18: Angular velocity data of rear right wheel, from the rover.

0 20 40 60

t(secs)

-1

-0.5

Yaw rate body frame

0 50

t(secs)

0.3
0.4
0.5
0.6
0.7

V
m

Motor input voltage

0 50

t(secs)

-0.2

0

0.2
Servo input angle

Figure 7.19: Yaw rate data from the rover.

37

0 20 40 60

t(secs)

-0.2

-0.1

0
a

x

Acceleration x body frame

0 50

t(secs)

0.3
0.4
0.5
0.6
0.7

V
m

Motor input voltage

0 50

t(secs)

-0.2

0

0.2
Servo input angle

Figure 7.20: Acceleration along x direction w.r.t body frame, from the rover

0 20 40 60

t(secs)

-2

-1

a
y

Acceleration y body frame

0 50

t(secs)

0.3
0.4
0.5
0.6
0.7

V
m

Motor input voltage

0 50

t(secs)

-0.2

0

0.2
Servo input angle

Figure 7.21: Acceleration along y direction w.r.t body frame, from the rover.

38

0 20 40 60

t(secs)

3
3.5

4
4.5

I m

Motor Coil current

0 50

t(secs)

0.3
0.4
0.5
0.6
0.7

V
m

Motor input voltage

0 50

t(secs)

-0.2

0

0.2
Servo input angle

Figure 7.22: Current in the coil of the rear drive motor, from the rover.

Figure 7.23: Experimental Setup for Steering angle model estimation

7.5 Parameter estimation with data from Erle rover

7.5.1 Parameter Space

The parameters present in the model built in chapter(3) are,

39

Figure 7.24: Plot of servo input vs steering angle with collected data and the estimated
model

B,C,D,E, Sv, Sh - Tire parameters to be estimated and bounds are set as [0,10].

Rw - Radius of the tires is given in the data sheet of Erle rover but it is in resting

condition with no additional load on it. So this value was used for setting the

bounds as [0.01, 0.1] and the effective radius of the wheel was estimated.

Jw - Moment of Inertia of wheels was estimated and the bounds are set as [0.000001,

0.1].

Dr - Roll coefficient, was estimated and can’t be measured using conventional tech-

niques. While modelling it was know to vary between 0 and 1. So, the bounds

are set as[0,1].

Mv - Mass of the vehicle, was measured to be 2.385 Kg.

lf , lr - The distance of center of mass to the front and rear axles. The wheel base

of the rover was given as 29.5 cm in the data sheet of the vehicle. Therefore,

one of these two parameters was estimated and the other was found by using the

constraint that sum of the two parameters has to be equal to wheel base.

h - Height of center of gravity from the ground, was estimated and the bounds are set

as [0.01, 0.2].

40

aA, aB - The distance of center of gravity from the front and rear axles, can be found

if the normal loads on each wheels in rest condition is known. The normal loads

are substituted in normal load constraints to find the parameters. In the model aA

and aB only appear along with total aerodynamic drag force Faz, this is assumed

to be zero in the experiments. Therefore, they are not estimated

wf , wr - Half track widths of front and rear axles. The values given in the datasheet are

used for this, which is 13.6 cm.

Jm, Bm, Lm, Km, Rm, - Motor Parameters are estimated as there was no data sheet

given for the motor. The bounds are set as [0, 1] for all the parameters.

G - Gear ratio, was given in the data sheet which was 11.93 and the same was used.

Jz - Moment of inertia of the vehicle about z axis, was estimated and the bounds are

set as [0.001, 2].

So, a total of 17 parameters were estimated.

For Initial states, the vehicle was always started from rest condition. So, all the initial

states except normal loads can be taken as zero. As for the initial normal loads they

are calculated based on the lf and lr chosen for the particle and using the normal load

constraints.

7.5.2 Optimizations done in code

When the cost function is calculated, it involves solving the DAE for N time instants.

This process occurs serially and can not be done in parallel. Usually, N is set as 6500.

This has to be done for every particle at every iteration. The number of particles are set

around 40 and The number of iterations are around 5000. So, the evaluation of DAE is

done for 6500x40x5000 times i.e. 1.3×109 and all the other operations do not take that

significant time. This made the code to take days to complete.

For speeding up or optimizing the code two methods were employed. They are,

1. Evaluating the cost functions of particles in parallel. This was done by using
multiple cores available on the PC. Each particles cost function was made to be
evaluated in one core. The speedup achieved is dependent on the number of cores
present in the PC.

41

2. Using Cython and optimizing the evaluation of DAE system. The function that
evaluates and returns the cost was written in Cython and appended to the main
code. The time taken by the code for one iteration was brought down from around
600 seconds to around 50 seconds.

7.5.3 Results

The estimated parameters are given in table(7.2). The CLPSO algorithm was run for

5000 iterations and then switched to NM local search. Figure(7.25) shows the progress

of CLPSO algorithm. The plot on the top is the least cost function or the cost of globally

best particle after every iteration. The plot on the bottom is the plot of entropy of the

particles over iterations.

Table 7.2: Estimated parameters from the parameter estimator

S.no Parameter Estimated value
1 B 1.000e+01
2 C 2.355e-03
3 D 2.315e-03
4 E 1.928e-03
5 Sv 2.458e+00
6 Sh 4.048e-03
7 Jw 8.045e-02
8 Rw 1.089e-02
9 Dr 1.210e-02

10 lf 1.475e-02
11 h 1.000e-02
12 Jm 3.486e-04
13 Bm 1.014e-08
14 Lm 2.225e-01
15 Km 2.405e-03
16 Rm 5.514e-02
17 Jz 1.059e+00

7.6 State estimation with the estimated parameters.

The UKF state estimator described in section(4.1), has been tested here using real data.

The parameters estimated in the previous section, shown in table(7.2), have been used

to complete the model of the vehicle used in the state prediction step in the algorithm

42

Figure 7.25: The progress of simulation over iterations.

in section(4.1). The real data used here is from a different experimental run than the

one used for estimating the parameters. The vehicle starts from rest and the inputs are

given such that it maintains a uniform motion along a predetermined path. The results

obtained are discussed for each state in the following subsections.

7.6.1 Velocity (vx, vy)

The estimated velocities of center of mass w.r.t to body frame of the vehicle have been

shown in figures(7.26 - 7.30). In figures(7.26), (7.28) two cases have been shown,

yellow plot labelled as ‘without filter’ represents the states estimated by using a basic

model for estimating velocities i.e. by integrating the obtained accelerations along each

directions and blue plot labelled as ‘estimate’ represents the estimated velocities from

UKF. It can be observed that the velocities in the case of without filter are increasing

almost linearly along one direction with time, this is because of the noise in the ac-

celeration data used. Whereas, the estimated velocities from UKF are contained and

not increasing with time. Figures(7.27, 7.29) represent the estimated states alone. The

validity of the estimated states can be checked by using some sanity checks as velocity

43

0 10 20 30 40 50 60

t(secs)

-4

-2

0

2

v
x
(m

/s
e
c
)

Velocity X

without filter

estimate

0 10 20 30 40 50 60

t(secs)

0

0.2

0.4

0.6

0.8

1

V
m

(V
)

input voltage

Figure 7.26: Velocity along X direction w.r.t body frame and the input voltage to the
motor

of the vehicle was not available as a measurement.

Velocity along x direction(vx)

It can be said that velocity along x direction has to to mimic the input voltage given

to the motor and the experiments were performed, the vehicle was operated such that

the speed of the vehicle is maintained almost constant in periods of time. Observing

figure(7.27), it can be said that the velocity of the vehicle does satisfy the conditions

mentioned. Therefore, the estimate may be close to the actual value.

The vehicle was always operated in forward direction, therefore vx has to be positive

always but when the vehicle starts from rest around 5 secs, it can seen in figure(??), the

velocity is negative and in figure(7.29), it can be seen that the vy reaches a peak value

of around 0.6 m/sec which is not possible because the vehicle has just started.When the

vehicle starts from rest the transients that occurs are not accurately represented by the

model built in chapter(3) because of this vx is estimated as negative and there is a spike

in estimated vy.The estimate of vy from 10 seconds has been shown in figure(7.30) to

clearly represent the variation of vy during uniform motion.

44

0 10 20 30 40 50 60

t(secs)

-0.2

0

0.2

0.4

v
x
(m

/s
e
c
)

Velocity X

estimate

0 10 20 30 40 50 60

t(secs)

0

0.2

0.4

0.6

0.8

1

V
m

(V
)

input voltage

Figure 7.27: Velocity along X direction w.r.t body frame and the input voltage to the
motor

Velocity along y direction(vy)

The velocity along y direction has to mimic the steering angle input and longer the

steering angle input is applied the higher magnitude of velocity reached along the di-

rection of steering. It can observed that velocity along y direction shown in figure(7.30)

does satisfy these conditions. Therefore, the estimates might be true.

7.6.2 Angular Velocity(ωij)

Figure(7.31), represents the angular velocity of the wheels of the vehicle. Yellow plot

represents the measurements labelled as ‘measurements’, obtained from the wheel en-

coders directly and blue plot labelled as ‘estimate’ represents the estimates from UKF.

It can be observed that measurements are noisy and has spikes at various locations,

whereas the estimate plot is smooth with no irregularities in the middle as mentioned

earlier regarding the transients when the vehicle starts from rest, the model is not accu-

rate for that situation but it can be seen that the estimates are close to the measurements.

This is because of the adaptive estimation of measurements noise covariance matrix,

when the model is not accurate noise covariance was reduced to give more weight to

the measurements when compared to model.

45

0 10 20 30 40 50 60

t(secs)

-40

-30

-20

-10

0
v
y
(m

/s
e
c
)

Velocity Y

without filter

estimate

0 10 20 30 40 50 60

t(secs)

-0.2

-0.1

0

0.1

0.2

 (
ra

d
)

Steering angle

Figure 7.28: Velocity along Y direction w.r.t body frame and the input steering angle

0 10 20 30 40 50 60

t(secs)

-0.2

0

0.2

0.4

0.6

0.8

v
y
(m

/s
e
c
)

Velocity Y

estimate

0 10 20 30 40 50 60

t(secs)

-0.2

-0.1

0

0.1

0.2

 (
ra

d
)

Steering angle

Figure 7.29: Velocity along y direction w.r.t body frame and the input steering angle

46

10 20 30 40 50 60

t(secs)

-0.1

0

0.1

0.2
v
y
(m

/s
e
c
)

Velocity Y

estimate

10 15 20 25 30 35 40 45 50 55 60

t(secs)

-0.2

-0.1

0

0.1

0.2

 (
ra

d
)

Steering angle

Figure 7.30: Velocity along y direction w.r.t body frame and the input steering angle

0 10 20 30 40 50 60
0

50

100

fL
 (

ra
d
/s

e
c
)

Angular Velocity Front Left wheel

measurements

estimate

0 10 20 30 40 50 60
0

20

40

fR
 (

ra
d
/s

e
c
)

Angular Velocity Front Right wheel

measurements

estimate

0 10 20 30 40 50 60
0

20

40

rL
 (

ra
d
/s

e
c
)

Angular Velocity Rear Left wheel

measurements

estimate

0 10 20 30 40 50 60

t(secs)

0

10

20

30

rR
 (

ra
d
/s

e
c
)

Angular Velocity Rear Right wheel

measurements

estimate

Figure 7.31: Angular velocity estimated by UKF

47

0 10 20 30 40 50 60

t(secs)

-5

0

5

10

15

Im
(A

m
p
s
)

Motor current

measurements

estimate

0 10 20 30 40 50 60

t(secs)

0

0.2

0.4

0.6

0.8

1

V
m

(V
)

input voltage

Figure 7.32: Motor current estimated by UKF

7.6.3 Motor Current

Figure(7.32), represents the current in the coils of the motor and the input voltage given

to the motor. The yellow plot labelled as ‘measurements’, represents the measurements

obtained from the current sensor on the motor driver and the blue plot labelled as ‘es-

timate’ represents the estimate from UKF. It can be observed that the measured values

are fluctuating a lot whereas the estimate is smooth.

It can also be observed that the measurements are always positive but this is not true

because when the vehicle is decelerating the input voltage will be less and the voltage

generated by the rotation of the rotor will be large which makes the current negative

and the power flows from the motor into driver. This power will be dissipated as heat

in one of the components. This can be seen in estimate plot.

Some more sanity checks would be that when the vehicle starts from rest there will

large current flowing into the motor for generating the required torque and later it re-

duces while it is in uniform motion. If the input voltage is increased to the motor, then

the speed of motor increases by generating torque for this the current flow into the motor

increases. The estimate satisfies these conditions.

7.6.4 Normal Loads

Figure(7.33), represents the estimate of normal load on each wheel of the vehicle.

48

0 10 20 30 40 50 60

5

6

F
z

fL
(N

)

Normal Load on Front Left wheel

estimate

0 10 20 30 40 50 60

5

6
F

z
fR

(N
)

Normal Load on Front Right wheel

estimate

0 10 20 30 40 50 60

4

6

8

F
z

rL
(N

)

Normal Load on Rear Left wheel

estimate

0 10 20 30 40 50 60

t(secs)

4

6

8

F
z

rR
(N

)

Normal Load on Rear Right wheel

estimate

Figure 7.33: Normal Loads on the wheels estimated by UKF

7.6.5 Position(sx,sy) and Yaw(ψ)

Figure(7.34), represents the position the vehicle estimated in two cases. Yellow plot

represents the case when a basic model i.e. by double integrating the acceleration mea-

surements, for estimating position of the vehicle. Blue plot represents the position

estimate obtained from UKF. It can be observed that the position of the vehicle in the

case of using basic model, has grown exponentially over time and reached values of

thousands of meters. This is because of the error in the acceleration measurements are

integrated twice and added. This makes the error in the estimate grow exponentially

over time. Figure(7.35), shows the estimated position and the Yaw angle from UKF. It

can be seen that that position of the vehicle is contained in a region and not growing ex-

ponentially over time. This shows that the estimate is much better compared to the case

with basic model. However, the estimate is not correct because it does not represent the

path in which the rover was driven. Currently the estimate of velocity is differentiated

to find the acceleration which is then used to update the predicted position and velocity

after state prediction.This can be improved if there is a measurement of either velocity

or position of the vehicle which can be directly used to correct the predictions.

49

-1500 -1000 -500 0 500 1000 1500 2000

X(m)

-2000

-1500

-1000

-500

0

500

1000

1500

2000
Y

(m
)

Position

without filter

estimate

Figure 7.34: Estimated position of the vehicle by UKF

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

X(m)

-1

-0.5

0

0.5

Y
(m

)

Position

estimate

0 10 20 30 40 50 60

t(secs)

-4

-2

0

2

4

 (
ra

d
)

yaw angle

without filter

estimate

Figure 7.35: Estimated position and Yaw of the vehicle by UKF

50

CHAPTER 8

Conclusion and Future work

A model that represents the dynamics of a vehicle in a two dimensional space has been

built. It is a index 1 semi explicit non-linear DAE system. In this model some states and

parameters can not be measured. Hence, a state estimator and parameter estimator have

been built. The state estimation was done using an Unscented Kalman filter and the

parameter estimation was done by solving an optimization problem. For testing these

methods experiments were conducted using Erle rover from which data was logged and

simulations were performed. This logged data was used for estimating parameters and

testing the performance of the UKF. The estimated parameters were used in UKF where

the states were estimated.

The estimate of position was not accurate and it can be improved by including sensors to

get the measurements of velocity. If these measurements are also included in parameter

estimation then the parameter estimation can be done with greater accuracy.The model

estimated can be used to check the accuracy of its predictions of the dynamics of the

real system. The estimated model along with the state estimator can be used in model

based controllers for predicting the states of the vehicle and finding the optimal inputs

for performing specific tasks.

REFERENCES

1. Cao, Y., H. Zhang, W. Li, M. Zhou, Y. Zhang, and W. A. Chaovalitwongse (2019).
Comprehensive learning particle swarm optimization algorithm with local search for
multimodal functions. IEEE Transactions on Evolutionary Computation, 23(4), 718–
731.

2. Das, M., A. Dey, S. Sadhu, and T. K. Ghoshal, Joint estimation of states and pa-
rameters of a reentry ballistic target using adaptive ukf. In 2014 Fifth International
Symposium on Electronic System Design. 2014.

3. Kennedy, J. and R. Eberhart, Particle swarm optimization. In Proceedings of
ICNN’95 - International Conference on Neural Networks, volume 4. 1995.

4. Liang, J. J., A. K. Qin, P. N. Suganthan, and S. Baskar (2006). Comprehensive learn-
ing particle swarm optimizer for global optimization of multimodal functions. IEEE
Transactions on Evolutionary Computation, 10(3), 281–295.

5. Limebeer, D. J. N. and A. V. Rao (2015). Faster, higher, and greener: Vehicular
optimal control. IEEE Control Systems Magazine, 35(2), 36–56.

6. Mandela, R. K., R. Rengaswamy, and S. Narasimhan (2009). Nonlinear state es-
timation of differential algebraic systems. IFAC Proceedings Volumes, 42(11), 792 –
797. ISSN 1474-6670. URL http://www.sciencedirect.com/science/
article/pii/S1474667015303724. 7th IFAC Symposium on Advanced Con-
trol of Chemical Processes.

7. Singer, S. and J. Nelder (2009). Nelder-Mead algorithm. Scholarpedia, 4(7), 2928.
Revision #91557.

8. Wan, E. A. and R. Van Der Merwe, The unscented kalman filter for nonlinear es-
timation. In Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing,
Communications, and Control Symposium (Cat. No.00EX373). 2000. ISSN null.

9. You, C. and P. Tsiotras, Vehicle modeling and parameter estimation using adaptive
limited memory joint-state ukf. In 2017 American Control Conference (ACC). 2017.

52

http://www.sciencedirect.com/science/article/pii/S1474667015303724
http://www.sciencedirect.com/science/article/pii/S1474667015303724

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	INTRODUCTION
	Problem Statements
	Vehicle model
	Motor Model
	Wheel Dynamics
	Tire force model
	Car Model
	Double Track Model
	Normal Load constraints
	The DAE system
	The System of equations

	State Estimator
	Unscented Kalman Filter
	Unscented Transformation
	Estimation of measurement noise statistics

	Algorithm

	Parameter Estimation
	Cost Function
	Optimization algorithm
	Particle swarm Optimization
	CLPSO

	Nelder-Mead Optimization
	Switching

	Architecture
	Simulations, Experiments and Results
	Response of the DAE system
	State estimation with simulation model
	Hardware for data logging
	Plots of data collected from Hardware for estimation

	Relationship between servo input and steering angle
	Parameter estimation with data from Erle rover
	Parameter Space
	Optimizations done in code
	Results

	State estimation with the estimated parameters.
	Velocity (vx, vy)
	Angular Velocity(ij)
	Motor Current
	Normal Loads
	Position(sx,sy) and Yaw()

	Conclusion and Future work

