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1 Aim of the project

To find the surface currents on a grounded sphere placed near a circular loop
antenna from measuring the magnetic fields very close to the surface of the
grounded plane.

2 Apparatus

A thin metallic sphere of radius ’a’ is placed with its centre at origin. The
sphere is then grounded. A circular loop/arc antenna with radius ’r0’ with its
centre also located at origin is placed in x-y plane. Assume the feed in point for
the antenna is on x-axis at the point (r0, 0, 0). Take circumference of the loop
antenna as one wavelength, i.e 2πr0 = λ0 . And the difference between the radii
of antenna and sphere is taken as ’λ0/20’.

r0 − a = λ0/20

a = r0 − λ0/20

a = λ0

(
1

2π
− 1

20

)

3 Motivation

The idea behind estimating surface currents from the magnetic fields close to the
surface of the grounded sphere comes from Ampere’s law. For the tangential
magnetic field to be continuous at a material discontinuty, there should not
be any surface currents at the interface.If there is a surface current, then it
should give rise to its own magnetic field making the magnetic fields on both
sides discontinuous and the discontinuty exactly equals to the surface current.
Now the discontinuty is at/on the sphere because there will be no fields inside
the sphere and there are fields just outside the sphere. As there is current
on the antenna, there appears to be an image current inside the sphere. The
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discontinuty at the surface can be assumed to be cause by the image current.
Since every current element on the antenna is equidistant from centre of the
sphere, the image current will also be a circular loop. Let us take the current on
antenna as Note:Here we omitejωtin the equations and assume it will
always be a multiplier to the expressions from now

I0 (r, θ, φ) = I0 (φ) δ (r − r0) δ
(
θ − π

2

)
φ̂

From The Method of Images we can find image current as

I1 (r, θ, φ) = −
(
a

r0

)
I0 (φ) δ

(
r − a2

r0

)
δ
(
θ − π

2

)
φ̂

and the radius of image current is = a2

r0
. This is just is an approximate solution.

The Green’s Function solution of the wave equation is the right one to use.
The method we use for magnetostatics cannot be applicable for radiation be-
cause it cannot satisfy the boundary condition, potential on the surface of the
sphere should be constant.

Now this is just a superposition problem. Find the radiated magnetic fields
due to both the currents at any point(r > a) and add them vectorially. We can

now evaluate magnetic vector potential
(
~A
)

due to a circular loop in spherical

coordinates as (Note: source coordinates are primed)[Reference: Pg
235,Balanis, Antenna Theory, Analysis, and Design 3rd edition].

A0 (r, φ, θ) =
µ0

4π

(˚
V

J (r′, θ′, φ′)
e−jβR

R
dv

)
φ̂

A0 (r, φ, θ) =
µ0r0
4π

 2πˆ

0

I0 (φ′)
(
φ̂ · φ̂′

) e−jβR
R

dφ′

 φ̂

A0 (r, φ, θ) =
µ0r0
4π

 2πˆ

0

I0 (φ′) cos (φ− φ′) e
−jβR

R
dφ′

 φ̂

where R =
√
r2 + r20 − 2rr0sinθcos(φ− φ′)

Similarly for image current,

A1 (r, φ, θ) = −
(
a3

r20

)(µ0

4π

) 2πˆ

0

I0 (φ′) cos (φ− φ′) e
−j.β.R1

R1
dφ′

 φ̂

where R1 =

√
r2 +

(
a2

r0

)
2 − 2r

(
a2

r0

)
sinθcos(φ− φ′)

So, the net magnetic vector potential at a point(r > a) is
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−→
Anet =

−→
A0 +

−→
A1

Now Magnetic field is given by, B = ∇×A. Since
−→
A has only φ̂ component,

∇×A =
1

rsinθ

(
∂(Aφsinθ)

∂θ

)
r̂ − 1

r

(
∂(r.Aφ)

∂r

)
θ̂

Since only θ̂ component of the magnetic field is tangential to the sphere and
involved in calculating the currents, we only use it

Magnetic field for first loop is given by

Hθ = − 1

µ0r

(
∂(r.Aφ)

∂r

)
θ̂

Hθ = −1

r

∂(r. r04π

(´ 2π
0
I0 (φ′) cos (φ− φ′) e

−jβR

R dφ′
)

)

∂r

 θ̂

Hθ = −1

r

 r0
4π

2πˆ

0

I0 (φ′) cos (φ− φ′)
∂(r. e

−jβR

R )

∂r
dφ′

 θ̂

First evaluate
∂(r. e

−jβR
R )

∂r

∂(r. e
−jβR

R )

∂r
=
e−jβR

R
+ r.

(
Re−jβR (−jβ)− e−jβR

R2

)(
r − r0cos (φ− φ′) sinθ

R

)

⇒
∂(r. e

−jβR

R )

∂r
=
e−jβR

R

(
1− r

(
jβ +

1

R

)(
r − r0cos (φ− φ′) sinθ

R

))

⇒ −1

r
.
∂(r. e

−jβR

R )

∂r
=
e−jβR

R

(
−1

r
+

(
jβ +

1

R

)(
r − r0cos (φ− φ′) sinθ

R

))
That gives

Hθ (r, φ, θ) =
r0
4π

 2πˆ

0

I0 (φ′) cos (φ− φ′) e
−jβR

R

(
−1

r
+

(
jβ +

1

R

)(
r − r0cos (φ− φ′) sinθ

R

))
dφ′

 θ̂

Field for image current is given by

Hθ1 (r, φ, θ) = − 1

4π

(
a3

r20

) 2πˆ

0

I0 (φ′) cos (φ− φ′) e
−jβR1

R1

−1

r
+

(
jβ +

1

R1

)r −
(
a2

r0

)
cos (φ− φ′) sinθ

R1

 dφ′

 θ̂
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Since there are no fields inside the sphere, the surface currents(
−→
K) on the

sphere is given by
−→
K (φ, θ) =

[−→
Hθ −

−−→
Hθ1

]
r=a

for this arrangement,
−→
K is given by

[−→
Hθ (r + dr, φ, π/2)−−→Hθ (r − dr, φ, π/2)

]
r=r0

Let’s validate this with a cirular loop antenna without the grounded sphere,
so there is no image current. The antenna is placed in x-y plane. Take the
current distribution on the antenna as

I0 (r, θ, φ) = cos (φ) δ (r − r0) δ
(
θ − π

2

)
φ̂

−→
Hθ

(
θ = π

2

)
=
−−→
Hθ1

(
θ = π

2

)
= 0 and To apply this(Ampere’s Law) to the loop

we also need to calculate the Displacement current
(−→
D
)

.

˛
C

H.dl =

¨
S

(
J +

∂D

∂t

)
· ds

˛
C

H.dl =

¨
S

(
J + ε0

∂E

∂t

)
· ds

˛
C

H.dl =

¨
S

(
J − jωε0

∂A

∂t

)
· ds

That gives

¨
S

J · ds = I0 (r, θ, φ) =

˛
C

Hθ.dl −
¨
S

(
jωε0

∂Aφ
∂t

)
· ds

We descretize this problem by taking I0 (φ) as vector of 360 elements. Ther-
fore φ is divided into 360 divisions. For calculating Magnetic field at every grid
point, it becomes a matrix problem

Hθ (r, φi, θ) =
r0
4π

∑
j

I0 (φj) cos (φi − φj)
e−jβRij

Rij

(
−1

r
+

(
jβ +

1

Rij

)(
r − r0cos (φi − φj) sinθ

Rij

))

where Rij =
√
r2 + r20 − 2rr0sinθcos(φi − φj)

Take kij = r0
4π cos (φi − φj) e

−jβRij

Rij

(
− 1
r +

(
jβ + 1

Rij

)(
r−r0cos(φi−φj)sinθ

Rij

))
and Hθ vector(dimensions 360x1) is given by, K = [kij ]

Hθ (r, φi, θ) = KIi

For Displacement Current

ID =

¨
S

(
−jωε0

∂Aφ
∂t

)
· ds
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ID =

¨
S

(
−ω2ε0Aφ

)
· ds

Since calculation of Displacement current exactly is cumbersome, we approxi-
mate it by taking average of two values at at distance 4r on either side of the
loop. Take area of cross-section for discretizing as 4s = 2 · r0 · 4θ · 4r

IDj = −ω2ε0Aφi · 4s

IDj = −ω2ε0

(
Aφi (r0 +4r, φi, θ) +Aφi (r0 −4r, φi, θ)

2

)
(2r0) ·

(
24θ

2

)
· 4r

IDj ' −ω2ε0 (Aφi (r0 +4r, φi, θ) +Aφi (r0 −4r, φi, θ)) (r0) · (4θ) · 4r

IDi = dijIj

where D = [dij ] is Displacement current Matrix.
We can neglect the contribution due to displacement current as it is order

of 10−3of the original current. We will prove this after the simulation. So the
Ampere’s law around the loop becomes

I (φi) = Hθ

(
r0 +4r, φi,

π

2

)
(r0 +4r)−Hθ

(
r0 −4r, φi,

π

2

)
(r0 −4r)

Let

bij = kij (r +4r, φj , θ) (r +4r)− kij (r −4r, φj , θ) (r −4r)

where B = [bij ]. Call ’B’ as Estimation Matrix.
Therefore current inside the circular loop antenna can be estimated as

Ii = bijIj

We simulate this using the following python code.
NOTE: There are two problems with my current code.

1. There is a spatial phase shift of 2π in the fields due to the indexing which
I cannot debug. But I corrected it with rotating the obtained Estimation
matrix by a spatial shift of 2π. It is named as ’Rot matrix’ in the code.
It is an identity matrix of order n× n rotated n

2 times row wise.

2. There also seen to be a need for a scaling factor of 1.4983731750083773
to make atleast one of the eigen values go on to the unit circle and for the
Estimated and actual currents to match.

import numpy as np

import pylab as pl

import matplotlib.pyplot as plt

scaling factor = 1.4989436575087889
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n = 360 # n = size(phis), number of phi (or) theta divisions

mu = 4*pl.pi*10**-7

eps = 8.85*10**-12

c = 3*10**8

phis = pl.linspace(0,2*pl.pi,n+1) # ’phi’ array

phis = phis[:-1]

dphis = phis[1]-phis[0];

thetas = pl.linspace(0,pl.pi,n+1) # ’theta’ array

thetas = thetas[:-1]

dthetas = thetas[1]-thetas[0]

r0 = 1.0 # radius of antenna

N = 1#0.61*2*pl.pi # dimension of the antenna , 2*pi*r0 = N * wavelength

w0 = N*c/r0

k = 2 # 1- full wave, 2- half wave, 4-quarter wave

I = pl.zeros(pl.size(phis))

# current array initialization for arbitary currents

iphis = phis[0 : n/(k*N)]

# ’iphis’ are the values of phi where current is zero

I[ 0:n/(k*N) ] = pl.cos(N*iphis)

#I = pl.ones(pl.size(phis))

# current array initialization for constant current

H = pl.zeros((n,n),dtype=np.complex)# H theta = H*I

E = pl.zeros((n,n),dtype=np.complex)# E phi = E*I

theta = pl.pi/2

r = (1+2*pl.pi/n)*r0

r1 = (1-2*pl.pi/n)*r0

for i in range(pl.size(phis)):

for j in range(pl.size(phis)):

R = (r**2+r0**2+2.0*r*r0*(pl.cos(phis[i]-phis[j]))*(pl.sin(theta)))**(0.5)

R1= (r1**2+r0**2+2.0*r1*r0*(pl.cos(phis[i]-phis[j]))*(pl.sin(theta)))**(0.5)

E[i,j] = (np.cos(phis[i]-phis[j]))*(((np.exp(1j*N*R))/R)+ \
((np.exp(1j*N*R1))/R1))/2

H[i,j] = (np.cos(phis[i]-phis[j]))*((np.exp(1j*N*R))/R)*(-1/r + (1/R+1j*N)* \

((r-r0*(np.cos(phis[i]-phis[j]))*(np.sin(theta)))/R))*r*dthetas*2- \
(np.cos(phis[i]-phis[j]))*((np.exp(1j*N*R1))/R1)*(-1/r1 + (1/R1+1j*N)* \
((r1-r0*(np.cos(phis[i]-phis[j]))*(np.sin(theta)))/R1))*r1*dthetas*2

H = scaling factor*(pl.pi/2)*(r0/(4*pl.pi))*H*dphis # H theta = H*I

E = -1j*w0*mu*(r0/(4*pl.pi))*E*dphis # Displacement # E phi = E*I

D = -scaling factor*1j*w0*eps*E*r0*(r-r1)*dthetas*2 # I D j = D*j

ID n = np.identity(n)

Rot matrix = -np.roll(ID n,n/2,axis=0)

Est matrix = scaling factor*np.matmul(Rot matrix,H-D)
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Iest = np.matmul(Est matrix,I)

# H discontinuity at every theta or Iest

#Iest = np.matmul(H,I)-np.matmul(D,I)

# H discontinuity at every theta or Iest

EV,EV matrix = np.linalg.eigvals(Est matrix) #eigen values

eigen real = EV.real

eigen img = EV.imag

#plt.plot(eigen real,eigen img,’o’,color=’red’)

plt.plot(phis,Iest,’o’,color=’red’,label=’I estimated’)

plt.xlabel("phi ")

plt.ylabel("Current")

plt.plot(phis,I,’x’,color=’blue’,label=’I actual’)

plt.legend(loc=’upper right’)

plt.grid()

plt.show()

*Use k =1 for fullwave current, k=2 for halfwave and k=4 for quarter wave
current in line no.13 of the code

(a) Full wave current
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(b) Full wave current Error

(c) Halfwave current

8



(d) Half wave current Error

(e) Quarter wave current
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(f) Quarter wave current Error

(g) Displacement Current for a Full wave current Input

Inferences

• The estimated current agrees with the actual current.
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4 Estimation Matrix(B)

Solving for eigen values of B

B − λI = 0

where I is identity matrix of order n× n.
Eigen values of B when plotted along with unit circle, look like

Rank of matrix B is ’n’. It is a row full rank matrix.All eigen values lie
inside the unit circle.So, the system is stable.Maximum of the eigen values is
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λmax = (0.99862427481785354 + 0.052436225498374532j) ≈ 1. We expect all
the harmonics of cos (φ) to be the solutions. It implies that B matrix should
have a low rank than n. That implies most of the eigen values to be either zero
or unity. But that is not the case, we do not know why it is happening.

Now we will see the eigen values corresponding to the Displacement ma-
trix.

The eigen values of Displacement current matrix seem to be concentrated
near origin, they have a very less contribution to the displacement current. The
very less value of the this may be because of the small size of the cross section
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around the loop we’re calculating displacement current. We have to verify it
varying the cross sectional area of the loop integral for displacement current.

The actual estimation matrix should be (B-D). Since the eigen values of
Displacement Matrix (D) are very close to zero, they have a very
little effect on the eigen values of (B-D) matrix and most of the eigen
values of (B-D) matrix lie very close the eigen values of B matrix.
The eigen modes supported by this system are

Figure: Eigen Modes supported by this system

Figure: Eigen Modes supported by this system
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5 Directivity

The fields calculated are agreeing with literature
[Reference: Pg 235,Balanis, Antenna Theory, Analysis, and Design

3rd edition]
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Figure: Normalized Elevation plane patterns(dB) for constant current from
0.1λ to 0.5λ (from left to right, blue to green)

Figure: Normalized Elevation plane patterns(linear) for constant current
from 0.1λ to 0.5λ (from left to right, blue to green)
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Figure : r0 = 0.61λ

As the radius goes on increasing from 0.1λ, the field intensity along the plane
of the loop(θ = 90o) diminishes and eventually forms a null when r0 ' 0.61λ.
Beyond r0 ' 0.61λ, the radiation along the plane of the loop begins to intensify
and the pattern attains a multilobe form.

[Reference: Pg 249,Balanis, Antenna Theory, Analysis, and Design
3rd edition]
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C = 5λ

The above plot of normalized fields agrees with Figure 5.8
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6 PEC Sphere

Figure: Elevation plane pattern(in dB) for PEC sphere surrounded by a
circular loop antenna( 2πr0 = λ)
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