Second-Order Methods for Policy Search in
Reinforcement Learning

A Project Report

submitted by

SHREYAS CHAUDHARI

in partial fulfilment of the requirements
for the award of the degree of

BACHELOR OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY, MADRAS.
May 2019

THESIS CERTIFICATE

This is to certify that the thesis entitled Second-Order Methods for Policy Search
in Reinforcement Learning, submitted by Shreyas Chaudhari (EE15B019), to the
Indian Institute of Technology, Madras, for the award of the degree of Bachelors of
Technology is a bona fide record of the research work carried out by him under my
supervision. The contents of this thesis, in full or in parts, have not been submitted

to any other Institute or University for the award of any degree or diploma.

Dr. Prashanth L.A.
Research Guide
Assistant Professor

Dept. of Computer Science and Engineering
IIT-Madras, 600 036

Place: Chennai

Date:

ACKNOWLEDGEMENTS

I express my sincere gratitude towards my guide, Prof. Prashanth L.A. who
introduced me to reinforcement learning in the elective course taught by him. His
guidance at various stages of the project has helped me a lot, and his approach to

problem solving has been an important learning experience for me.

I would also like to thank my co-guide, Prof. Puduru Viswanadha Reddy, for
making the courses on control systems and game theory immensely interesting,

which formed the stepping stones to certain concepts in reinforcement learning.

ABSTRACT

KEYWORDS: Policy Search, Second Order Methods, Newton Method,

Markov Decision Processes, Function Approximation

Function approximation is essential to reinforcement learning - both in meth-
ods that approximate the value function as well as in methods that use a function
approximator for the policy. In this work, the latter is considered. Numerous
algorithms that use the gradient information already exist - examples being RE-
INFORCE (Williams| [1992]) and actor-critic methods (Sutton et al. [1999]]). These
fall under the class of Policy Gradient Methods and have supporting theoretical
guarantees. We look to exploit the benefits of methods that use second order in-
formation. The Newton Method (Tibshirani| [2018]]) is one such iterative method,
which enjoys a significantly faster convergence rate as compared to gradient based
methods. Although, these methods come with numerous drawbacks too; which
have been addressed in the work. We hope to exploit the desirable properties using
approximations of the Newton Method, and show mildly promising results for the
same. A significant insight is in the derivation of the expressions for gradient and
Hessian, which may lay the path for future work in this fairly unexplored domain

for reinforcement learning.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

ABSTRACT

LIST OF FIGURES

1__Introduction!
(I.1 Reinforcement Learning|
(1.2 Policy Gradient Method|
1. n hodl.

2 Background|

1 r Decision Process|.

2.2 Gradient and Hessian Expressions|

2.2.1 Gradientexpression|

2.2.2 Hessianexpression|

LWL W N =

4 Analysis

|2,3 I Jatulal Gladiellt ,‘ L:icelltl
2.3.1 Fischer Information Matrix|

Methods and Approximations|

4.2 Properties|

iii

O 0 N O O U = s e

10

11
11
12
14

[5 Experiments and Results|

p.1 Cartpole-v0l 00
P11 Set-up| o
5.1.2 Expressions for V,J(w) and Vi J(w)

P2 Experiments| 0 000000
..........................
022 Full Hessian Method|
p.2.3 Approximate Newton Method|
p.2.4 Diagonal Approximation|

0.3 Implementational Issues|

6 Conclusion and Future Workl

15
15
15
16
20
20
21
21
22
23

24

LIST OF FIGURES

.1

Cartpole Set-up|

52

REINFORCE algorithm|.

53

Newton Method (H;(w) + H,(w))|

54

Approximate Newton Method (Hy(w))|

55

Diagonal Approximation (D,(w))|

15
20
21
22
23

CHAPTER 1

Introduction

This chapter broadly introduces the relevant domain, namely policy search meth-

ods, and motivates exploration of second-order methods for the task.

1.1 Reinforcement Learning

As aptly described in[Barto and Sutton![1998] - “Reinforcement learning is learning
what to do -how to map situations to actions - so as to maximize a numerical reward
signal. The learner is not told which actions to take, but instead must discover
which actions yield the most reward by trying them.” In most if not all cases,
the problem reduces to decision making under an incompletely-known Markov

Decision Process.

The methods employed handle a delicate exploration-exploitation trade off. They

can be broadly divided into two categories:

e Action-value methods: learn the values of actions and select actions based
on their estimated action values

e Parametrized policy methods: select actions without consulting a value func-
tion

This work concentrates on parametrized policy search methods, as described

below.

1.2 Policy Gradient Method

The policy gradient methods target at modeling and optimizing the policy directly.
The policy is usually modeled with a parameterized function respect to w, mt(als; w).
The policy can be parameterized in any way, as long as m(als; w) is differentiable

with respect to its parameter.

In gradient-based methods the update of the policy parameters take the form:
Wn+1 = Wy + aM(w)Vy,] (w)

and pre-conditioning matrix (M(w)) is taken as identity.

Two critical steps in the process are policy paramterization (7t(.)) and feature
generation (¢(s, a)). If the action space is discrete and not too large, then a natural
and common kind of parameterization is the Gibb’s/softmax policy. The actions
themselves might be geenrated by the hidden layers of a neural network, or may

be linear in features - as in employed in the experiments for this work.

The numerous advantages of these methods are succintly described in Barto

and Sutton [1998] and Furmston and Lever|[2015]. The gradient takes the form:

H
Vol @) = Y Erepeno[G0V log (@i s:)]
i=1

as derived the the sections later.

1.3 Newton Method

It is an iterative method that converges to a local optima by using second-order

information. The update equation takes the form:

Wy1 = Wy + (XM(ZU)VW](ZU)

where M(w) is the inverse of the Hessian matrix. Conditions on the semi-definiteness

ensure the increase/decrease of the objective function with iterations.

The primary advantage that this method offers is its rate of convergence, which
is significantly faster that gradient based methods. But the constraints on the
concavity of the objective function and Hessian, and the computational efficiency
serve as major drawbacks in using this method. The being said, the parameteri-
zation used in experimental set-ups for this work provides a simple work around

for the computational cost.

1.4 Problem Statement

The project aims to include the advantages provided by second-order methods for
policy search in Markov Decision Processes. This area has been vastly unexplored,
and rightly so for the drawbacks that it comes with. We aim to find the best
methods in the domain, and analytically and empirically survey them - in some

cases against gradient based methods.

CHAPTER 2

Background

This chapter will give a more detailed background on the topics covered, and will

also serve to introduce a large part of the notation used.

2.1 Markov Decision Process

The discrete time Markov Decision Process (MDP) is a very general mathematical
framework with which to model optimal control problems. This framework has
numerous applications in the fields of robotics, automatic control, economics and

manufacturing.

2.1.1 Preliminaries and Notation

In our setup, MDPs serve to consider the optimality of an agents controlled move-
ments through a given environment. Formally an MDP is described by the tuple
S, A, T,p1,p, 1, R, where S and A are sets known respectively as the state and action

space, T € N is the planning horizon and p;,p, 7, R are functions that take the

following form:

pi(s) : S —[0,1] initial state distribution
p(s’ls,a) : S*x A — [0,1] transition dynamics
mt(als) : AXx S — [0,1] policy
R(s,a): S XA — R reward function

The transition probabilities follow the Markov Property in that they are condi-
tionally independent of previous state and action trajectories given the previous

state-action pair, i.e,

p(s'ls,a) = Pr(sy1 = slsy = s,a; = a)

2.1.2 Policies and Value Functions

A policy is a mapping from states to probabilities of selecting each possible action.
Return(G;) is simply defined as the sum of rewards. When it follows a policies, it
constitutes other value functions defined below. A discounting factor y is included

in general cases (can be 1 for the undiscounted case):

T
Gt — Z yk—t—le

k=t+1

The value function (state-value) of a state s under a policy 7, denoted v,(s), is the

expected return when starting in s and following 7t thereafter.

T
0n(5) = ExlGilS, = 51 = Ex[) | " RisialS; = 5], forall s € S

k=0

where E,[.] denotes the expected value of a random variable given that the agent
follows policy 7. Similarly, the action-value function id defined as the expected

return starting from s, taking the action a, and thereafter following policy m:

T

9(5,0) = Ex[GilS: = 5, As = a] = B[} Y RiapsalSi = 5,4 = a]
k=0

2.2 Gradient and Hessian Expressions

The derivations that follow are essential to the estimators used in the algorithms

that follow.

2.2.1 Gradient expression

We define the the performance measure (J(w)) of the policy as the value of the start

state of the episode. Assuming some start state sy:

J(w) = v, (s0)

where v, is the true value function for 7, the policy determined by w. Some
notation for the gradient derivation: Lett = 51,4, ..., sy, ay be a trajectory sampled
according to p(t;m,). Define 1, = sy,a1,...,5,,a5. For the sake of derivation,
consider a non-discounted episodic case. The derivation below follows steps that are
similar to ones in [Furmston and Barber, 2012], though modified to match further

derivations. We have:

H H
J@) = Y EeopengRGw)] = Y Eoy o [R1 1)]
h=1 h=1

where the second equation follows from the Markov property. Using the "log-
trick”:

Vp(Th/' Tly) = p(Th;)V 108 p(Th} Tlw)

The gradient of the evaluation measure can then further be simplified:

H
Vo] (w) = Z B, ~p(eime) [R (51, an)V 10g p(Th; 110)]

h=1

H &k
=Y) EepmalR(si, @)V log p(as;)]

h=1 i=1

where the second equation comes by splitting the trajectory probability. Exchang-

ing the summations and clubbing one of them to the reward function:

H H
Vo @) = Y Y Beopem [R(s, @)V log plas;)]

h=t

—_

Y Eww[(z R(sh, a)V 1og p(a;;s)]
h=i

—_

H
H

Z Erpiem)|[Gi(T)V log pla;;)]

Vw](w) = Z ET~p(T}Rw)[Gi(T)V log nw(ai; Si)]

i=1

The last equation follows given that policy 7, is employed. Note that, G;(t) =

Yol R(sy, an).

2.2.2 Hessian expression

For ease of notation, define a shorthand form

H
D(w; 1) = Z Gi(1) log my(ailsi)

i=1

Thus, the gradient expression is denoted as:

Vo] (w) = Er~p(f;nw)[v®(w} 7)]

= fp(f;) VO(w; T)dT
Taking the second derivative with respect to w:
V2 J(w) = fVCD(w; T)\VP(T;)" + p(T; T0) VO(w; T)dT

= fp(T;) [VO(w; T)Vp(T; 710) T + V2O(w; 7)]dT

= Erpirm) [VO(w; T)VP(T; 1) T + VD(w;)]

The second derivative of J(w) is called its Hessian matrix. Denoting the matrix by

H(w), the Hessian takes the form
H(w) = Hi(w) + Hy(w)

where

H
Hi(@) =) Eeopam [GA(T)V log p(ti;)V log p(ti;)]

i=1

H
Ha(w) = Y Eepen[Gi(T) V2 log pl(11; 71,)]

i=1

by expanding @(.) and using the definition of p(ty; 1ty).

2.3 Natural Gradient Ascent

Natural gradient ascent techniques originated in the neural network and blind

source sepration literature, and were introduced into the policy search literature

in Kakade [2002]. Though we do no use this method, we draw a parallel to one
of the terms (H(w)) of the Hessian matrix derived. In natural gradient, the Fisher

Information Matrix is used as the pre-conditioning matrix.

2.3.1 Fischer Information Matrix

The Fisher Information Matrix takes the form:

G(w) = Epy("t;ﬂw)[vz 108 P(Th} 7—Cw)]

where p, (7; 11,,) is scaled probability with discount factor. Compared against H,(w):

H
Ho(@) = Y By, o) [Q1,2:) V2 log ply; 70,
i=1

it can be seen that the difference between the two methods lies in the non-negative
function w.r.t. which the expectation is taken. In the Fisher information matrix
the expectation is taken w.r.t. to the geometrically weighted summation of state-
action occupancy marginals of the trajectory distribution, while in H,(w) there
is an additional weighting from the state-action value function. Hence, H,(w)
incorporates information about the reward structure of the objective function,
whereas the Fisher information matrix does not, and so it will generally contain

more information about the curvature of the objective function.

CHAPTER 3

Related Work

Policy gradient based methods are quite commonly used, showing great results
on various tasks. The most common ones are REINFORCE [Williams, 1992] and
Actor Critic Algorithms [Konda and Tsitsiklis, 1999]. The methods use first or-
der derivative information for policy search. Though second order methods have
performance benefits, they have numerous drawback that make them impractical
for use. Trust Region Policy Optimization [Schulman et al} 2015] is one method
that uses the Hessian information, but not in the classic way that Newton Method
[Tibshirani, 2018] does. Some interesting work along the latter direction can be
found in Furmston and Barber| [2012], [Furmston et al. [2016] and Furmston and
Lever|[2015] where Gauss-Newton and Approximate Newton methods have been
proposed, some of which are also used in this work. These works draw an inter-
esting parallel to the Natural Gradient Method [Kakade, 2002], by referring to the
form of the Fisher Information Matrix [Ly et al., 2017]. Thus, with minimal work
and literature in this domain, this prospectively potent domain of work becomes

especially exciting to explore.

CHAPTER 4

Analysis

This chapter addresses the implementational details for the experiments in Chapter

and the theoretical analysis from references.

4.1 Second Order Methods

A second order algorithm is any algorithm that uses any second derivative. For
example, the Newton Method requires the use of the Hessian matrix w.r.t. the

parameter.

In the current setting, the performance measure that is being maximized is J(w)
- the policy performance metric, which is paramterised by w. The expressions for
the gradient and Hessian are derived in Sections[2.2.T|(gradient) and[2.2.2|(Hessian)
respectively. The sections below consider a stochastic setting with a per trajectory

update. In the sections that follow, a batched variant too is considered.

For the stochastic updates, the estimates for gradient and Hessian can be sam-
pled from inside the expectation of the expression and taking S; and A; as random

variables.

The stochastic policy gradient at time step i takes the form:

Vo (w) = G()V 1og 1t,(a; 5)

and the stochastic policy Hessian at time step i takes the form:
V2J(®) = GV log m(ails;; w)V " log m(als;; w) + V2 log m(aisi; w)]

The two terms of the Hessian - H;(w) and H,(w) will be defined accordingly.

4.1.1 Methods and Approximations

The Newton Method (described wonderfully in [Iibshirani| [2018]]) uses second
order derivative information for parameter search. One of the requirements of
Newton’s method is to have a semi-definite (positive or negative depending on

maximization or minimization) Hessian.

X1 = X+ (V2 F(200)) 7V ()

Newtons method is way faster in terms of convergence than Gradient descent
because of extra information from Hessian but still it is not usable in many cases
because the Hessian of the objective/loss function is not semi-definite there.
Another requirement is for the Hessian matrix to be invertible - which is turn

requires it to have non-zero eigenvalues.

For cases as general as policy optimization, these conditions are rarely satisfied.
Also, various practical constraints lead to instability, as it further elaborated in

Chapter 5, Thus the properties required of the Hessian can be summarized as:

e Must be positive or negative semi-definite in the policy parameterization
w.r.t. the policy parameter (positive eigen values)

e Must have non-zero eigenvalues to ensure invertibility

12

In general, the objective is not concave, which means that the Hessian will not
be negative-definite over the entire parameter space. In such cases the Newton
method can actually lower the objective and this is an undesirable aspect of the
Newton method. Thus the right policy function selection plays a crucial role in

employing this method.

For the experimental part of this work, we consider a widely used policy that
is either log-concave or blockwise log-concave. The most commonly used one is

the softmax/Gibb’s policy:

i(als; w) oc exp wr(a, s)

where ¢(a,s) € R? is a feature vector. This policy is widely used in discrete systems
and is log-concave in w, which can be seen from the fact that it is the sum of a
linear term and a negative log-sum-exp term, both of which are concave. Since the
cartpole-v0 environment considered is a discrete system, we proceed with with

policy function.

Full Hessian Method

The algorithm considers the non-approximated Newton method H;(w) + Ha(w).
Given the paramterization, in theory the term H,(w) should be negative semi-
definite w.r.t. the parameters, but there is no such guarantee on the term H;(w).
Although, this method shows a significant improvement in convergence rate, but

suffers badly from instability (5.3). Thus in the form:

W1 = Wy + CYM(ZU)VW](ZU)

13

M(w) = —H }(w) and the update is done iteratively.

Approximate Newton Method

As superbly presented in Furmston and Lever| [2015], H,(w) is negative semi-
definite w.r.t. the parameters when a soft-max policy is used. in experiments, we
find that that is not the case. But, because in a vast number of cases, it does hold true,

we consider an optimization method with M(w) = —H,; Yw).

Diagonal Approximation

What can be seen from the expression for H,(w) derived in the subsequent sections,
the diagonal elements do form a matrix with negative eigenvalues. This property
is highly desirable, and the performance is reflect when M(w) = —D;*(w) is taken;

where D,(w) is a matrix with the diagonal entries of H,(w).

4.2 Properties

A couple of interesting properties about the terms involved are:

e That Hy(w) isnegative-semidefinite over the entire parameter spaceis a highly
desirable property of a preconditioning matrix - the proof for the same follows
in Furmston et al. [2016].

Although, we discovered that in the practical implementation, that was not
the case, leading to an underwhelming performance.

e The choice of softmax function has constant curvature with respect to the
action space, i.e., f—;z log m(als; w) = %2 log mt(a’ls; w) for the elements of the
action space. This helps in saving computation while computing the Hessian.

14

CHAPTER 5

Experiments and Results

5.1 Cartpole-v0

Figure 5.1: Cartpole Set-up

51.1 Set-up

A poleisattached by an un-actuated joint to a cart, which moves along a frictionless
track [Barto et al.,1983]. The pendulum starts upright, and the goal is to prevent it
from falling over by increasing and reducing the cart’s velocity. The OpenAl-gym
implementation] of the same is used to generate the environment. The state is a

four dimensional vector (€ R*), of the form:

https://github.com/openai/gym/wiki/CartPole-v0

Num Observation

1 Cart position
2 Cart velocity
3 Pole angle

4 | Pole velocity at tip

and the actions are push the cart to the left or right - constituing an action space
with two elements. The reward is 1 for every step taken, including the termination
step.

Note: All observations are assigned a uniform random value between +0.05 and
-0.05 as the starting state, and this causes some instability in the Hessian compu-

tation, as described in the sections below.

The feature vector (¢(s, a)):

The feature vector is defined as a € R® vector, where the first four elements are the
state vector when the action is 1, otherwise the last four are used when the action
is 2. That is:

[sl S s3 84 0 0 O O] a=m
¢(s,a) =

lO 00O 51 Sz S3 541 a=a

5.1.2 Expressions for V,,J(w) and V2 J(w)

Considering the expressions from Section 4.1}

ﬁ](w) = G,(1)V log my(ai; si)

16

?%J(w) = Gi(7)[V log mt(ails;; w)V' log m(ajlsi; w) + V? log m(ails;; w)]
where the policy is parameterized as by the softmax function, i.e.:

exp w! ¢(s, a)
Za’ exp qub(Sr El)

mi(als, w) =

For the cartpole-v0 set up, there are two actions: push left and push right, denote

them by a;,a, respectively. The state is a four dimensional vector, denoted as

5= [Sl/ 52,83, 54]'

Introducing some notation for cleaner derivation of expressions:

x| = qu)(s, a)
Xy = w' (s, a)
01 = softmax(x;)

0y = softmax(xy)

Also note that the derivative of a softmax [Bendersky), 2016] is of the form:

ao‘i Ui(l - Oi) /i =]

ax; o
—00; JAF]

17

Derivation forV,J(w) :

Assume that action picked is a5, then derivation follows for oy:

V.. log g, = dlog oy ox1. dlog oy dxy dlog oy dxy
w g 1 | axl 'awl e axz '3w5 e axz '(9?1)3
— | (o1)(1=01)s 010281 010284
e o cen o
= (1 —01)51 cee 0251 ... (7284]

= ¢(s,a1) — 019(5,81) — 029(s, a2)

Similarly,

Vylogos = ¢(s,a2) — 01¢(s, a1) — 029(s, a)

Derivation forV2 J(w) :

As mentioned in Section[4.2} the used policy parameterization has constant curva-
ture with respect to the action space. The expression for the same is derived in the

following lines. It has a blocked matrix structure. Consider some elements:

d*logo; _ d dlogo

dw% - dZU1 dw1
_ 1 d dovdx,
B 01 dw1 t:lx1 dZU1
d(l — 01)51

dwl

= —5101(1 — 01)s1

18

d*logoy _ d dlogo;
d’wleU5 B dZU5 dwl
1 d dGl dx1

B 01 dZU5 t;lx1 dZU1

d(1 —01)s1
dZU5

_ d(o1)s1 dx,

- dx; d_wS

= 51010251

Thus, if the matrix V2 log o (both 1 and 2) is written as:

V2 1o = A
w108 012 =

C D

then,

Ajj = —s;01(1 = 01)s;
Bi]‘ = siolozsj
Cl’]‘ = Si(71625]'

Djj = =si02(1 — 02)s;

This formulation has a supreme advantage as the prospective computationally
heavy Hessian computations are reduced to scalar products with a matrix, and the
same would hold for both the possible actions (4.2).

Also notable is that we have a symmetric matrix for & log 01,2, which is the term

in Hy(w). Thus it can be seen that the diagonal approximation D,(w).

19

5.2 Experiments

Reward plots for the four algorithms considered are shown below. Due to issues
of instability in second-order methods (Section[5.3), comparative plots on the same

figure have been tough to acquire.

5.2.1 REINFORCE

REINFORCE uses only first-order (gradient) information, leading to a slightly
slow but guarenteed convergence. The implementational details are described

previously, with the learning rate being 0.0025.

REINFORCE

200

175

150

125 +

100

Reward

T
0 100 200 300 400 500
Rounds

Figure 5.2: REINFORCE algorithm

20

5.2.2 Full Hessian Method

Attaining stability in the second order methods that follow is very tough (5.3).
Thus this method converges to a good policy very fast but drops off back to 0 once

it encounters nans in the code. The learning rate used is 0.0025.

Full Hessian

200

175

150

125

100

Reward

1
0 100 200 300 400 E00
Rounds

Figure 5.3: Newton Method (H;(w) + Hy(w))

5.2.3 Approximate Newton Method

Contrary to what is proposed in Furmston and Barber|[2012], Furmston et al.|[2016]

and Furmston and Lever|[2015]], the H,(w) matrix is not semi-definite in the set-up:

this has been tested empirically. Thus, lack of guarantee of ascent in the objective
function and an approximation of the complete Hessian given a poor performance.

The learning rate used is 0.001.

21

Approximate Newton

200

180 -

160

140

120

Reward

100

1
0 100 200 300 400 500
Rounds

Figure 5.4: Approximate Newton Method (H,(w))

5.2.4 Diagonal Approximation

The diagonal entries of H,(w) constitute a negative semi-definite matrix, and this
desirable property reflects in the performance. Note again how the performance

drops once nans are encountered. he learning rate used is 0.005.

22

Diagonal approximation

200

175 +

150

125

100

Reward

25 1

0 100 200 300 400 500
Rounds

Figure 5.5: Diagonal Approximation (D,(w))

5.3 Implementational Issues

e State Scaling: As the environment returns states that are usually in the range
[0,1], the computation of Hessian that has terms of the order two of states
causes precision problems in python. The numbers drop very sharply with
iteration, leading to singular hessian matrices whereas the matrices can actu-
ally be inverted. This leads to nans in the computation. Though checks have
been set for these, they hinder with the normal iterative update rule.

e Gradient/Hessian Clipping: A commonly used method to control size of
update works well to prevent running errors, but hinders the convergence of
the algorithm to a local optima. As there are both the gradient and Hessian
terms involved, clipping them saturates all updates thereon.

e Deterministic Policy: Quite often the policy tends towards a deterministic
policy. Checking the terms in the expression for Hessian it can be
seen that this leads to a zero matrix. Though an update for this case may
be removed by heuristic checking, due to lack of incoming updates, the
algorithm remains stuck in that policy leading to termination and hence a
drop in reward.

These issues make averaging across trails tough - due to multipe runs in each

set of trials becoming unstable.

23

CHAPTER 6

Conclusion and Future Work

Second order optimization methods have immense potential advantages and im-
provements but numerous drawbacks. This domain has not been explored to a
large extent in the field of reinforcement learning, and this work serves to mildly
explore in this direction, supported by collating some existing work. The promis-

ing results could lead to numerous future directions of work like:

e This work derives a neat expression for V2 J(w), which is especially easy to
work with in a stochastic update setup.

e It side-tracks a large amount of computation with the expression for Hessian
considered. Even inversion becomes very simple in the case of diagonal
approximation.

e Experimentally the improvement in performance is visible but not consis-
tent and stable. Working on the stability of the problem can lead to more
promising results.

e The full Hessian (H; + H,) is not necessarily negative semi-definite. Working
on transformations/approximations to ensure the same could be a interesting
area of work.

e A stochastic update rule comes with a large variance, which is already high
due to second order terms. A batched version of the Newton update rule
could be an exciting direction of work.

e Implementation of a quasi-Newton method using the expression for Hessian
is another plausible approach to the problem.

In the knowledgeable words of Prof. Albus Dumbledore [Rowling), 1999] -
It is our choices, Harry, that show what we truly are, far more than our abilities. And we

choose second-order methods.

REFERENCES

Barto, A., R. Sutton, and C. Anderson, Neuronlike adaptive elements that can solve
difficult learning control problem. IEEE Transactions on Systems, Man, and Cybernetics,
1983.

Barto, A. and R. S. Sutton, Reinforcement Learning: An Introduction. MIT Press, 1998.

Bendersky, E. (2016). The softmax function and its derivative. URL https://eli.
thegreenplace.net/2016/the-softmax-function-and-its-derivative/.

Furmston, T. and D. Barber, A unifying perspective of parametric policy search methods
for markov decision processes. 25th International Conference on Neural Information
Processing Systems - Volume 2, Pages 2717-2725, 2012.

Furmston, T. and G. Lever (2015). Approximate newton methods for policy search in
markov decision processes. arXiv.

Furmston, T., G. Lever, and D. Barber (2016). Approximate newton methods for policy
search in markov decision processes. Journal of Machine Learning Research, 17, 1-51.

Kakade, S., A natural policy gradient. 14th International Conference on Neural Informa-
tion Processing Systems: Natural and Synthetic, Pages 1531-1538, 2002.

Konda, V. and J. Tsitsiklis, Actor-critic algorithms. NIPS Proceedings, 13, 1008-1014, 1999.

Ly, A., M. Marsman, J. Verhagen, R. Grasman, and E.-J. Wagenmakers (2017). A tutorial
on fisher information. URL https://arxiv.org/abs/1705.01064.

Rowling, J., Harry Potter and the Chamber of Secrets. Scholastic, 1999.

Schulman, J., S. Levine, P. Abbeel, M. Jordan, and P. Moritz, Trust region policy opti-
mization. International Conference on Machine Learning, 1889-1897, 2015.

Sutton, R., D. McAllester, S. Singh, and Y. Mansour, Policy gradient methods for re-
inforcement learning with function approximation. 12th International Conference on
Neural Information Processing Systems, Pages 1057-1063, 1999.

Tibshirani, R. (2018). Convex optimization 10-725/36-725. URL http://www.stat.cmu.
edu/~ryantibs/convexopt-S15/lectures/14-newton.pdf.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 8, 229-256.

25

https://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/
https://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/
https://arxiv.org/abs/1705.01064
http://www.stat.cmu.edu/~ryantibs/convexopt-S15/lectures/14-newton.pdf
http://www.stat.cmu.edu/~ryantibs/convexopt-S15/lectures/14-newton.pdf

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF FIGURES
	Introduction
	Reinforcement Learning
	Policy Gradient Method
	Newton Method
	Problem Statement

	Background
	Markov Decision Process
	Preliminaries and Notation
	Policies and Value Functions

	Gradient and Hessian Expressions
	Gradient expression
	Hessian expression

	Natural Gradient Ascent
	Fischer Information Matrix

	Related Work
	Analysis
	Second Order Methods
	Methods and Approximations

	Properties

	Experiments and Results
	Cartpole-v0
	Set-up
	Expressions for w J(w) and 2w J(w)

	Experiments
	REINFORCE
	Full Hessian Method
	Approximate Newton Method
	Diagonal Approximation

	Implementational Issues

	Conclusion and Future Work

