
A Novel GO-PO Based Optimization Method for

mm-Wave Antenna Lens Design

A Project Report

submitted by

SANKALP CHAPALGAONKAR

in partial fulfilment of the requirements

for the award of the degree of

BACHELOR OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

May 2019



THESIS CERTIFICATE

This is to certify that the thesis titled A Novel GO-PO Based Optimization Method

for mm-Wave Antenna Lens Design, submitted by Sankalp Chapalgaonkar, to the

Indian Institute of Technology, Madras, for the award of the degree of Bachelor of

Technology, is a bona fide record of the research work done by him under our supervi-

sion. The contents of this thesis, in full or in parts, have not been submitted to any other

Institute or University for the award of any degree or diploma.

Dr. Radha Krishna Ganti

Research Guide
Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Dr. P.H. Rao

Research Guide
Scientist
SAMEER - Centre for
Electromagnetics, 600113

Place: Chennai

Date: 10 May 2019



0.1 Proposed Contents of the Report

The outline of this report is as follows:

1. Abstract

2. Introduction

3. Design Technique

4. 3-D Lens Design using Geometric optics
• power consumption principle

• Vector’s Snells law

• Solution to problem

– Differentiation

– Linearization

– Discretization

5. Algorithm

6. Conclusion

7. References

1



0.2 Abstract

This report presents the extensive study and the optimization technique for generating

3-D Lens profile designed for transforming radiation pattern of the primary feed into

the desired amplitude shaped pattern. The design of the lens is made keeping in mind

the working frequency of operation to be 28 GHz. Hence using lens antenna we can

obtain the gain upto 15 dB by simply using 5 dB microstrip antenna. In this project, we

implement the optimization algorithm proposed by (1) for designing 3-D lens profile.

The inverse scattering problem (to determine the characteristics of an object based on

the data of how it scatters the particles or incoming radiation, in our case its radiation

from 2x2 microstrip patch antenna) is approached using techniques of geometric optics

(GO) and physical optics (PO). Firstly, we derive extensive geometry for the lens using

GO and generate second-partial differential equation which is strongly non-linear and

of Monge-AmpÃĺre (M.A) type. Then to solve this problem we use iterative algorithm

and the error is minimize by upper bounding it with required threshold. Second step is

of surface optimization and analysis based on PO to come up with a 3-D lens profile

which comply with the prescribed required radiation pattern. By varying the inputs for

radiation pattern of primary antenna and the required radiation pattern, we can obtain

the precise lens profile using the algorithm proposed.

Keywords-inverse scattering problem, Geometric optics and Physical optics, Monge-

AmpÃĺre equation, microstrip antenna, optimization

0.3 Introduction

As per the data rates promised by 5G wireless system and the proposed high band-

width of usage, antenna plays an integral role in fulfilling this requirement. Hence the

need to make advancements in the field of antenna and innovating the existing con-

ventional designs is at uppermost priority. To increase data throughput in 5G cellular

system includes improving spectral efficiency using techniques such as MIMO trans-

mission, Beam forming, beam steering, defining small cells i.e. increasing the number

of basestation in a region. Using conventional antenna for the transmission and recep-

tions require far more specification and to meet the expectations, the design becomes

too use case specific and very much complex. Plus as the frequency of operation in-
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creases the fading increases as well along the distance. Hence 5G system assumes

multiple antenna for serving in small area. The problem of cost optimization is also of

major concern. Building conventional antennas that support the required specification

and using multiple such antennas within a close range will eventually increase the total

cost of operation. Considering this factor, lens antenna solves major of the issues with

conventional antennas. Lens antenna was first used by Oliver Lodge in 1888 for his

experiments at 1mm wavelength (Lodge and Howard 1888). But it was not until World

War II that the research on lens antenna was progressed. Since then lens antennas are

used to transform the radiation pattern of primary antenna into some high gain radia-

tion pattern depending upon requirement of fixed or scanning beam applications. Lens

antennas have greater design tolerance hence the need of having precise design is not

needed. Even having design tending to the ideal required one gives the expected results.

Lens antennas can be of various types such as Di-electric lens, H-plane metal plate lens,

Delay lens (to introduce delay in the path of travelling waves using lens material), E-

plane metallic plate lens, Non-mettalic di-electric lens, etc. Feed and feed support of the

lens antenna does not obstruct it’s aperture. Moreover, dielectric lenses have wide-band

capabilities and a very low dissipative loss.

Apart from using lens as a separate entity, they can be designed to have the feed

directly in contact with the flat bottom surface and these are call as integrated lens an-

tennas (ILA). The use of integrated lens antennas started by using hemispherical lenses

added on top of integrated circuit antennas to increase radiation efficiency. Nowadays

lens antenna can be excited with a small antenna element, typically a patch antenna or

an open-ended waveguide. To provide equal amount of gain as compared to complex

conventional antenna, we use the lens which can be mounted on simple 2x2 microstrip

antenna and the original pattern of this microstrip antenna can be amplified and trans-

formed into the required far field electric field pattern.

Beam steering is required especially in two dimensions (azimuthal and elevation) to

ease the deployment and cope up with the small cell requirement in 5G cellular network.

Beam steering is done by switching between multiple feed antennas at beneath the lens.

Beam steering principle is shown along with the feeding array of antenna in Fig. 1. The

collimating part which is either hemispherical or elliptical is used to focus the radiation

from the lens and to the lens accordingly. The part of the lens between the flat part and

collimating part is known as extension and is designed so as to minimize the internal
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Figure 1: Beam-steering using planar array of antenna

reflection. Mostly this extension part is cylindrical in nature and it is very important in

low permitivity lenses. The loss through this extension part is known as spillover loss

and is responsible for the side-lobe power. Absorbers can be used around the extension

part to minimize the side-lobe levels.

0.4 Design Technique

Various lens antennas are manufactured mostly using Teflon as main material. Figure 2

shows the final product of the design process. Designing the lens antenna without strong

mathematical tool and precise optimization method seems to be quite difficult. Hence

in this project we design the mathematical tool (/method) which can be used to design

the precise 3-D lens antenna which can be manufactured using different material which

are selected based upon their relative permittivity or dielectric constant which range

from 1.2 to approximately 10. Second most important thing to consider while choosing

the material is the dielectric loss tangent (tan δ), which is the material loss. Hence

to minimize the material losses, lower loss tangent material is preferred. Mechanical

consideration such as mechanical hardness, melting temperature or fracture hardness

plays vital role in deciding the material for lens antenna.

Figure 3 and Figure 4 shows the calculation of maximum scan angle and corre-

sponding beam with main lobe and side lobe. In this report we present the method to

generate the 3-D lens profile using following algorithm as shown in figure 5. The output
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Figure 2: Example of finished lens antenna
This lens was manufactured at Sameer, Centre for Electromagnetics, Chennai
not as part of this project.

of this design process is the lens profile rk at every point (θ, φ), which finally can be pi-

loted in 3-D coordinate system. Later based on the results, the profile can be improved

by lowering the error upper-bound. This will take more iterations but will give more

precise lens profile as per requirement.

0.5 3-D Lens Design using GO

In the Fig. 6, the design of arbitrary lens with homogeneous dielectric (εr,d) is shown.

The 2x2 microstrip patched antenna is kept at bottom surface of the lens (z = 0). Then

the unknown lens profile r(θ, φ) is determined in 3 dimensional space and the central

thickness is defined as e = r(θ = 0, φ). Using GO, r(θ, φ) is calculated so that the

radiation intensity g(θ, φ) of primary feed matched with the intensity field just outside

the lens surface after refraction through the lens. We apply power conservation princi-

ple at the surface and equate the power on both the sides. The far field pattern, h(α, β)

is useful in calculating the field just outside the lens surface using reverse calculation

method. Here (θ, φ) and (α, β) are the directions of incident ray and refracted ray re-

spectively.

5



Figure 3: Hemispherical Lens with corresponding beam at central location

Figure 4: Maximum scan angle in grooved hemispherical lens antenna
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Figure 5: Algorithm used to calculate rk(θ, φ)
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Figure 6: (a) Arbitrary lens geometry (b)vector and angular notation in plane of incident
source: paper (1)
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0.5.1 Power consumption principle

As stated above, we use power consumption principle at the lens surface as follows.

Right hand side of equation (1) shows the power transmitted from primary source an-

tenna to an elementary external surface of the lens in the direction (θ, φ).

h(α, β)sin(α)dαdβ = KT (θ, φ)g(θ, φ)sin(θ)d(θ)d(φ) (1)

K =

∫ π

−π

∫ π
2

0
h(α

′

, β
′

)sin(α
′

)dα
′

dβ
′

∫ π

−π

∫ π
2

0
T (θ′

, φ
′)g(θ′

, φ
′)sin(θ′)dθ′

dφ
′

(2)

T(θ, φ) is the ratio of transmitted power to the incident power at the lens surface. LHS of

equation (1) denotes power radiated in the direction (α, β). K is normalization constant

calculated by equating the total power radiated outside the lens and the total power

radiated by the primary feeding source as given in equation (2). Further dielectric losses

can be added using exp[−2πnd

λ0

δr(θ, φ)]. where nd is refractive index of the lens and is

calculated as given in equation (3), δ is loss angle and λ0 is wavelength.

nd =
√
εr,d (3)

But in this computation we will neglect the effect of dielectric losses.

0.5.2 Vector’s Snells law

We apply snells law at the boundary of the lens as per equation (4).

nd
~kiΛ~n = ~ktΛ~n (4)

where ~n is outer vector orthogonal to the lens surface and ~ki, ~kt are normalized incident

and transmitted vectors. At the point of contact,

~n(θ, φ) =
∂~r
∂θ
Λ∂~r

∂θ

‖∂~r
∂θ
Λ∂~r

∂θ
‖

(5)
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∂~r

∂θ
=











∂r
∂θ

r

0











(êr, êθ, êφ) (6)

∂~r

∂φ
=











∂r
∂φ

0

rsinθ











(êr, êθ, êφ) (7)

Feed at point source (~ki = ~er),

~kt =











sinθcosφsinαcosβ + sinθsinφsinαsinβ + cosθcosα

cosθcosφsinαsinβ + cosθsinφcosαsinβ − sinθcosα

−sinφsinαcosβ + cosφsinαcosβ











(êr, êθ, êφ) (8)

From equation (4) and (8) we get,

∂r

∂θ
=

(sin α cos θ cos (β − φ)− cos α sin θ) r

nd − (sin α sin θ cos (β − φ) + cos α cos θ)
(9)

and
∂r

∂φ
=

sin α sin (β − φ) r sin θ

nd − (sin α sin θ cos (β − φ) + cos α cos θ)
(10)

Using schwartz condition for the smooth surface we have,

∂2r

∂θ ∂φ
=

∂2r

∂φ ∂θ
(11)

By considering axis symmetry we have β = φ. Hence equations (1), (2) and (9)

transforms into (12), (13) and (14) respectively.

h(α)sin(α)dα = K
′

T (θ)g(θ)sin(θ)d(θ) (12)

k
′

=

∫ π
2

0
h(α

′

) sinα
′

dα
′

∫ π
2

0
T (θ′) g(θ′) sin(θ′) dθ′

(13)

∂r

r
=

sin(θ − α)

cos(θ − α)− nd

dθ (14)
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0.5.3 Solution to problem

We use three steps for solving this numerical problem :- differentiation, Linearization

and Discreatization.

Differentiation

Here θ and φ are state variables and hence we consider α and β to be their functions.

So, equation (1) takes following shape.

h(α(θ, φ), β(θ, φ))sin(α(θ, φ))

[

∂α(θ, φ)

∂θ

∂β(θ, φ)

∂φ
−∂α(θ, φ)

∂φ

∂β(θ, φ)

∂θ

]

= KT (θ, φ)g(θ, φ)sin(θ)

(15)

applying theorem of implicit functions {f(θ, φ, α, β) = 0} on equations (9) and (10)

we get partial differentiation of α and β with respect to θ and φ. Let’s denote Fx = ∂F
∂x

and Fxy =
∂2F
∂x ∂y

, we obtain

αθ(θ, φ) =
f1θ f2β − f2θ f1β

f1α f2β − f2α f1β
(16)

αφ(θ, φ) =
f1φ f2β − f2φ f1β

f1α f2β − f2α f1β
(17)

βθ(θ, φ) =
f1θ f2α − f2θ f1α
f1β f2α − f2β f1α

(18)

βφ(θ, φ) =
f1φ f2α − f2φ f1α

f1β f2α − f2β f1α
(19)

where as equation for f1θ , f1φ , f1α , f1β , f2θ , f2φ , f2αandf2β are given in paper (1). So

when we substitute equations (16), (17), (18) and (19) in (15) we obtain second order

partial differential equation for r of the following form.

E : rθθrφφ − rθφ
2 − arθθ − brθφ − crφφ −H = 0 (20)

whereas, a,b,c and H are the functions of r, rθ, rφ, nd, θ and φ. For calculating these
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equation we solve the system of equation from (16) to (19) and converts into (21) to

(24)

αθ(θ, φ) =
f1θ f2β − f2θ f1β

f1α f2β − f2α f1β
=

A

E − F
rθθ +

( −C

E − F

)

rθφ +
B −D

E − F
(21)

αφ(θ, φ) =
f1φ f2β − f2φ f1β

f1α f2β − f2α f1β
=

G

E − F
rθφ +

( −I

E − F

)

rφφ +
H − J

E − F
(22)

βθ(θ, φ) =
f1θ f2α − f2θ f1α
f1β f2α − f2β f1α

=
−K

E − F
rθθ +

(

M

E − F

)

rθφ +
N − L

E − F
(23)

βφ(θ, φ) =
f1φ f2α − f2φ f1α

f1β f2α − f2β f1α
=

−P

E − F
rθφ +

(

R

E − F

)

rφφ +
S −Q

E − F
(24)

whereas A to S are the functions of r, rθ, rφ, nd, θ and φ as follows.

A = (rφ − r)

[

nd sin(α) sin(θ) sin(β − φ)− sin2(α)sin2(θ)sin2(β − φ)

2

− sin(2α)sin(2θ)sin(β − φ)

4

] (25)

B = 2rθ(rφ − r)

[

sin(2α)sin2(θ)sin(β − φ)

2
− sin2(α)sin(2θ)sin2(β − φ)

4

]

+ r(rφ − r)

[

sin2(α)sin2(θ)sin2(β − φ)

2
− sin(2α)sin(2θ)sin(β − φ)

4

] (26)
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C = rθ

[

nd sin(α) sin(θ) sin(β − φ)− sin2(α)sin2(θ)sin2(β − φ)

2

− sin(2α)sin(2θ)sin(β − φ)

4

]

+ r

[

nd sin(α) cos(θ) sin(β − φ)

− sin2(α)sin(2θ)sin2(β − φ)

4
− sin(2α)cos2(θ)sin(β − φ)

2

]

(27)

D = sin2(α)sin2(β − φ)

(

r2cos2(θ)− r2θsin
2(θ)

)

− rθrφ

[

sin2(α)sin(2θ)sin2(β − φ)

4
− sin(2α)sin2(θ)sin(β − φ)

2

]

+ r rφ

[

sin2(α)cos2(θ)sin2(β − φ)

2
− sin(2α)cos(2θ)sin(β − φ)

4

]

(28)

E = 2rθ(r − rφ)

[

sin(2α)sin2(θ)sin2(β − φ)

4
+

sin2(α)sin(2θ)sin(β − φ)

2

]

+ r(r − rφ)

[

sin(2α)sin(2θ)sin2(β + φ)

8
− sin2(α)sin2(θ)sin(β − φ)

] (29)

F = − rθrφ

[

sin(2α)sin2(θ)sin2(β − φ)

4
+

sin2(α)sin(2θ)sin(β − φ)

2

]

− rrθ
sin(2α)sin2(θ)sin2(β − φ)

2
− r2

sin(2α)sin(2θ)sin2(β − φ)

4

− rrφ

[

sin(2α)sin(2θ)sin2(β − φ)

8
+ sin2(α)cos2(θ)sin(β − φ)

]

(30)

G = A = (rφ − r)

[

nd sin(α) sin(θ) sin(β − φ)− sin2(α)sin2(θ)sin2(β − φ)

2

− sin(2α)sin(2θ)sin(β − φ)

4

]

(31)
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H =(r2 − r rφ)
sin2(α)sin(2θ)sin2(β − φ)

2
+ (r rθ − rθ rφ)sin

2(α)sin2(θ)sin2(β − φ)

+ (r rφ − r2φ)

[

sin2(α)sin(2θ)sin2(β − φ)

4
− sin(2α)sin2(θ)sin(β − φ)

2

]

(32)

I =nd rθsin(α)sin(θ)sin(β − φ) + nd r sin(α)cos(θ)sin(β − φ)

− rθ

[

sin2(α)sin2(θ)sin2(β − φ)

2
+

sin(2α)sin(2θ)sin(β − φ)

4

]

− r

[

sin2(α)sin(2θ)sin2(β − φ)

4
+

sin(2α)cos2(θ)sin(β − φ)

2

]

(33)

J =rrθ
sin2(α)sin2(θ)sin2(β − φ)

2
+ r2

sin2(α)sin(2θ)sin2(β − φ)

4

− 2rθ rφsin
2(α)sin2(θ)sin2(β − φ)− r rφsin

2(α)sin(2θ)sin2(β − φ)

(34)

K =− rφnd

(

cos(α)sin(θ)cos(β − φ) + sin(α)cos(θ)
)

− rndcos(α)sin(θ)sin(β − φ)

+ rφ

[

sin(2α)sin2(θ)cos2(β − φ)

4
+

sin(2θ)cos(β − φ)

2
+

sin(2α)cos2(θ)

2

]

+ r

[

sin(2α)sin2(θ)cos2(β − φ)

4
+

sin(2θ)cos2(α)sin(β − φ)

2

]

(35)

L =− 2rθrφ

[

cos(2α)− cos(2θ)

2
cos(β − φ) +

sin(2α)sin2(θ)sin2(β − φ)

4

]

+ 2rθr

[

sin(2α)sin2(θ)sin2(β − φ)

8
− sin2(θ)cos2(α)sin(β − φ)

]

− r2
[

sin(2α)sin2(θ)sin2(β − φ)

4
+

sin(2θ)cos2(α)sin(β − φ)

2

]

− rφr

[

sin(2α)sin2(θ)cos2(β − φ)

2
+

sin(2θ)cos(β − φ)

2
+

sin(2α)cos2(θ)

2

]

(36)
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M =− ndrθ
(

cos(α)sin(θ)cos(β − φ) + sin(α)cos(θ)
)

− ndr
(

cos(α)cos(θ)cos(β − φ) + sin(α)sin(θ)
)

+ rθ

[

sin(2α)sin2(θ)cos2(β − φ)

2
+

sin(2α)cos2(θ)

2
+

sin(2θ)cos(β − φ)

2

]

+ r

[

sin(2α)sin(2θ)

4

(3 + cos2(β − φ)

2

)

+
1 + cos(2α)cos(2θ)

2
cos(β − φ)

]

(37)

N =rθr

[

sin(2α)sin(2θ)sin2(β − φ)

4
+ sin2(α)sin(β − φ)

]

+ r2
[

sin(2α)cos2(θ)sin2(β − φ)

4
+

sin2(α)sin(2θ)

2
sin(β − φ)

]

+ r2θ

[

sin(2α)cos2(θ)sin2(β − φ)

4
+

sin2(α)sin(2θ)

2
sin(β − φ)

]

+ rφrθ

[

sin(2α)sin(2θ)cos2(β − φ)

4
− sin(2α)sin(2θ)

4
+
(

cos2(θ)− cos2(α)
)

cos(β − φ)

]

+ rφr

[

sin(2α)cos2(θ)cos2(β − φ)

2
− sin(2α)sin2(θ)

2
− cos(2α)sin(2θ)cos(β − φ)

2

]

(38)

P =− ndrφ
(

cos(α)sin(θ)cos(β − φ) + sin(α)cos(θ)
)

− ndrcos(α)sin(θ)sin(β − φ)

+ rφ
[sin(2α)sin2(θ)cos2(β − φ)

2
+

sin(2θ)cos(β − φ)

2
+

sin(2α)cos2(θ)

2

)

+ r
[sin(2α)sin2(θ)sin2(β − φ)

4
+

cos2(α)sin(2θ)sin(β − φ)

2

)

(39)

Q =rφr

[

sin(2α)sin(2θ)sin2(β − φ)

4
+
(

cos2(θ)− cos2(α)
)

sin(β − φ)

]

+ r2
sin(2α)sin(2θ)sin2(β − φ)

4
+ rθr

sin(2α)sin2(θ)sin2(β − φ)

2

+ r2φ

[

sin(2α)sin(2θ)sin2(β − φ)

4
+
(

cos2(θ)− cos2(α)
)

cos(β − φ)

]

+ rθrφ

[

sin(2α)sin2(θ)sin2(β − φ)

4
+

sin2(α)sin(2θ)sin(β − φ)

2

]

(40)
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R =− ndrθ
(

cos(α)sin(θ)cos(β − φ) + sin(α)cos(θ)
)

− ndr
(

cos(α)cos(θ)cos(β − φ) + sin(α)sin(θ)
)

+ rθ

[

sin(2α)sin2(θ)cos2(β − φ)

2
+

sin(2θ)cos(β − φ)

2
+

sin(2α)cos2(θ)

2

]

+ r

(

3 + cos2(β − φ)

2
sin(2α)sin(2θ) + cos2(α)cos2(θ)cos(β − φ)

+ sin2(α)sin2(θ)cos(β − φ)

)

(41)

S =2rφrθ

[

sin(2α)sin2(θ)sin2(β − φ)

4
+

sin2(α)sin(2θ)sin(β − φ)

2

]

+ 2rφr

[

sin(2α)sin(2θ)sin2(β − φ)

8
+ sin2(α)sin2(θ)sin(β − φ)

]

− rθr

[

sin(2α)sin2(θ)cos2(β − φ)

2
+

sin2(α)sin(2θ)cos(β − φ)

2

]

− r2
[

sin(2α)sin(2θ)cos2(β − φ)

4
+ sin2(α)sin(2θ)cos(β − φ)

]

(42)

Hence, when we simplify the equation (15) using equations (21) to (24) we get

following expression.

[

∂α(θ, φ)

∂θ

∂β(θ, φ)

∂φ
− ∂α(θ, φ)

∂φ

∂β(θ, φ)

∂θ

]

=

(

GK − AP

(E − F )2

)

rθθrθφ +

(

CP −GM

(E − F )2

)

r2θθ +

(

AP − IK

(E − F )2

)

rφφrθθ

+

(

MI − CR

(E − F )2

)

rφφrθφ +

(

I(N − L)−R(B −D)

(E − F )2

)

rφφ +

(

A(S −Q) +K(H − J)

(E − F )2

)

rθθ

+

(

P (D −B) + C(Q− S) +M(J −H) +G(L−N)

(E − F )2

)

rθφ

+
(B −D)(S −Q)− (H − J)(N − L)

(E − F )2

(43)

In the above expression we get two extra terms which are not the part of the compar-

ing equation which are rθθrθφ and rφφrθφ. For now we will neglect these terms as lens

design is allowed for little tolerance in design. So by replacing the partial derivatives
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equation in (15) by equation (43) we get following expressions for a, b, candH . We

will divide by coefficient of rθθrφφ to make it equal to 1. While doing this we assume

that coefficient of r2θφ approximates to 1.

a = −A(S −Q) +K(H − J)

AR− IK
(44)

b = −P (D − B) + C(Q− S) +M(J −H) +G(L−N)

AR− IK
(45)

c = −I(N − L) +R(B −D)

AR− IK
(46)

H =− (B −D)(S −Q)− (H − J)(N − L)

AR− IK

− KT (θ, φ)g(θ, φ)sin(θ)

h(α, β)sin(α)

[

(E − F )2

AR− IK

] (47)

Linearization

Now that we have got the second order partial differential equation, we can use iterative

method to linearize it and obtain the equation between rk+1 and rk as follows.

E(rk) +
∂E

∂rθθ
.(rk+1

θθ − rkθφ) +
∂E

∂rθφ
.(rk+1

θφ − rkθφ) +
∂E

∂rφφ
.(rk+1

φφ − rkφφ)

+
∂E

∂rθ
.(rk+1

θ − rkθ ) +
∂E

∂rφ
.(rk+1

φ − rkφ) +
∂E

∂r
.(rk+1 − rk) = 0

(48)

combining both (48) and (15) we get following equation

α1r
k+1
θθ + α2r

k+1
θφ + α3r

k+1
φφ + α4r

k+1
θ + α5r

k+1
φ + α6r

k+1 + α7 = 0 (49)

where α1 to α7 are the functions of a, b, c,H, rθθ, rθφ, rφφ, rθ, rφ and r as given in equa-

tion (50) to (56). Here we compute the profile rk+1 from the lens profile in previous

iteration i.e. rk.

α1 = rkφφ − ak (50)
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α2 = −2rkθφ − bk (51)

α3 = rkθθ − ck (52)

α4 = −
(

∂ak

∂rθ

)

rkθθ −
(

∂bk

∂rθ

)

rkθφ −
(

∂ck

∂rθ

)

rkφφ −
(

∂Hk

∂rθ

)

(53)

α5 = −
(

∂ak

∂rφ

)

rkθθ −
(

∂bk

∂rφ

)

rkθφ −
(

∂ck

∂rφ

)

rkφφ −
(

∂Hk

∂rφ

)

(54)

α6 = −
(

∂ak

∂r

)

rkθθ −
(

∂bk

∂r

)

rkθφ −
(

∂ck

∂r

)

rkφφ −
(

∂Hk

∂r

)

(55)

α7 = rkθθr
k
φφ − (rkθφ)

2 − akrkθθ − bkrkθφ − ckrkφφ − α1r
k
θθ − α2r

k
θφ − α3r

k
φφ − α4r

k
θ − α5r

k
φ − α6r

k

(56)

Discretization

To get the new profile rk+1 from the lens profile in previous iteration i.e. rk, we dis-

cretize the 3-D lens into (N+1)(2M+1) points and the angles θ and φ are also discretized

as in equation (57) and (58). And then we take i∆θ and j∆φ where i ∈ [0, 1, ..., N ] and

j ∈ [−M, ...,−1, 0, 1, ...,M ].

∆θ =
π

2N
(57)

∆φ =
π

M
(58)
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and partial derivatives of r are also discretized as in equation (60) to (63)

rθ =
ri+1,j − ri−1,j

2∆θ
(59)

rφ =
ri,j+1 − ri,j−1

2∆φ
(60)

rθθ =
ri+1,j − 2ri,j + ri−1,j

∆θ2
(61)

rφφ =
ri,j+1 − 2ri,j + ri,j−1

∆φ2
(62)

rθφ =
ri+1,j+1 − ri+1,j−1 − ri−1,j+1 + ri−1,j−1

4∆θφ
(63)

Boundary conditions must satisfy the continuity of the lens.

ri,M = ri,−M

ri,M+1 = ri,−M+1

ri,M−1 = ri,−M−1

(64)

As the central thickness of the lens is fixed to be e, we have one more condition.

r0,j = e (65)

Also maximum refraction angle is α(θ = π
2
, ) = αm(φ). When this condition is im-

posed and is replaced in equation (9) and (10) we get more boundary condition as in

equation (66)

(

α
′

4

∆θ
+ α

′

6

)

rk+1
N,j +

α
′

5

2∆φ

(

rk+1
N,j+1 − rk+1

N,j−1

)

+ α
′

7 = 0 (66)

where as expressions for α
′

4 to α
′

7 are given in paper (1)
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0.6 Algorithm

To solve M.A. type equation we use iterative algorithm proposed in paper (1). This

algorithm calculates the lens profile at each iteration and keeps on counting until the

error between current profile rk+1 and previous lens profile rk is under the threshold

value. The plane of incidence needs to be characterized for each (θ, φ), hence we use

equation (5) to calculate unit transverse vector

~t(θ, φ) =
−~n(θ, φ)Λ

(

~n(θ, φ)Λ~ki(θ, φ)
)

‖~n(θ, φ)Λ
(

~n(θ, φ)Λ~ki(θ, φ)
)

‖
(67)

Hence ~n(θ, φ) and ~t(θ, φ) denote the orthonormal basis for particular (θ, φ). Further

incident and transmitted angles can be found out as

θi(θ, φ) = arctan

(

~ki(θ, φ).~t(θ, φ)

~ki(θ, φ).~n(θ, φ)

)

θt(θ, φ) = arcsinndsinθi(θ, φ)

(68)

The normalized transmitted wave vector,

~kt(θ, φ) = cosθt(θ, φ)~n(θ, φ) + sinθt(θ, φ)~t(θ, φ) (69)

Power transmission coefficient in kth iteration is defined as follows

T k(θ, φ) = 1−
r2//.|Ei// |

2 + r2
⊥
.|Ei⊥ |

2

|Ei// |
2 + |Ei⊥ |

2
(70)

r// and r⊥ are fresnel reflection coefficients. The components of is computed as fol-

lows.

Ei⊥ = ~Ei(θ, φ).
~nΛ~ki

‖~nΛ~ki‖
(71)

Ei// =
~Ei(θ, φ)− Ei⊥ .

~nΛ~ki

‖~nΛ~ki‖
(72)

whereas, ~Ei(θ, φ) can be computed from far field pattern, ~Ef (θ, φ) as follows

~Ei(θ, φ) = ~Ef (θ, φ).
e−jkdr

k(θ,φ)

rk(θ, φ)
(73)
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angles of refraction at kth iteration is computed as follows

αk = arccos
(

~kt.êz
)

(74)

βk = arctan

(

~kt.êy
~kt.êx

)

(75)

Hence now that we know all the required terms we can proceed to the algorithm

which is described as follows

Step 1: External Data

To feed the initial data of nd, λ0,
~Ef (θ, φ), g(θ, φ), h(θ, φ), rinit(θ, φ) and the boundary

conditions, e and αm(φ)

Step 2: Initialization of variables

initialize all required variables. Start the counter, k = 0 and initial lens profile

r0(θ, φ) = rinit(θ, φ)

Step 3: Plane of Incidence Characterization

Calculation of ~n,~t, θi, θt and ~kt. Now in this step we have entered the while loop with

condition based on the error between lens profiles at successive iterations.

Step 4: calculation of transmission coefficient T k(θ, φ)

Calculate incident field from far-field Electric field pattern ~Ef (θ, φ) first and then par-

allel perpendicular components of Ei(θ, φ)

Step 5: Calculation of αk and βk

Calculate the angle of refraction at each iteration
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Step 6: Calculation of parallel derivatives of rk

This involves computing rθ, rφ, rθθ, rφφ and rθφ in discretized form

Step 7: Calculation of αi and α
′

i

This involves computing the coefficients from A to S and then calculating the a, b, c and

H .Finally we get αi and α
′

i

Step 8: Final Solution to the linear system of equations for rk+1

replace k with k + 1 and check if error defined as ǫk = max|rk+1 − rkmax| is less

than desired threshold. If it is less then end the loop and we got the final lens profile i.e.

Desired profile = rk(θ, φ). But if the error is more than threshold, loop goes back to

step 3 and next iteration starts.

0.7 Conclusions

Rapid prototyping and the trend to move into mm-waves and sub-millimeter waves are

bringing the interest on dielectric lens especially integrated lens antennas. Hence the

requirement as well as the use of such lenses into our wireless systems are going to

increase more in future. The algorithm used in this project is independent of external

desired parameters. Hence for any required field, we can use this method and obtain

the 3-D lens profile. Though the algorithm neglects the small error in the lens profile

while calculating it, still meets our expectation. Manufacturing and implementing these

lenses will extremely help 5G wireless system to achieve its capacity. The matlab code

designed in such a way as to take the parameters such as far-field pattern ( ~Ef (θ, φ)),

the incident radiation from primary source (~g(θ, φ)) and desired field pattern outside

the lens surface (~h(α, β)) as an external parameter. Hence the same code can be used

to simulate the 3-D di-electric lens profile for different requirements.
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