Resource Allocation for Wireless Streaming *

DDP final report
Atul - EE15B011
Guide: Prof.Avhishek Chatterjee

1 Introduction

Frequent buffering pauses or playout stalls during multimedia streaming is a source of
great dissatisfaction among cellular users. As multimedia is a significant part of today’s
total data consumption, operators must strive to provide a smooth streaming experience.
During video or multimedia streaming, data transmitted by the base station (BS) are
first cached in the media player buffer at the application layer. From this, the media
player consumes (plays) one multimedia frame at a time at a rate dictated by the qual-
ity, encoding and dynamics of the content. Whenever the buffer does not have enough
data to play the current frame, there is a playout stall or buffering pause. Real time
scheduling [2, 3, 4, 5, 6, 7] is a generic framework for studying delay sensitive applica-
tions like multimedia streaming, interactive video, real time sensing, and multi-player
gaming. Broadly, it concerns with scenarios where data packets become available at the
BS at different times and have to be transmitted by a deadline. This framework closely
captures interactive video, real time sensing, VolP, where the data to be transmitted
are generated sequentially.Unfortunately, this framework fails to capture some important
aspects of video streaming [8, 9, 10, 11, 12].

First, in most cases the contents to be streamed are stored in a server and the connection
from the server to the BS has high capacity. Hence, it is reasonable to assume that the BS
always has enough data to transmit to the user. Even for live streams, a constant lag of
a few hundred milliseconds to a few seconds, which we often experience in live telecasts,
is generally tolerable. In this time, sufficient content can accumulate at the BS. Second,
media player buffers at the application layer of most smartphones have enough capacity
to store media frames to be played in the future. As the BS has the data waiting there, it
can transmit that in advance if the channel conditions are favorable. Third, the process
of consumption of data by a media player from its buffer is stochastic and time-varying,
whose statistics depend on the nature of the content, multimedia encoding, and scene
dynamics. In this work, we minimize total user dissatisfaction due to buffering pause in
a multichannel cellular network. Our formulation captures buffering pause using queuing
models for the media player buffers and user dissatisfaction as a function of the frequency
of pause.

Unlike the traditional stochastic network optimization setting [13], this problem leads to
cost minimization problems with interesting non-convex structures. Exploiting combi-
natorial structures inside the apparent continuous non-convex problem, we develop near
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optimal joint admission control and channel allocation algorithms. We consider both
the scenarios where the BS knows and where the BS does not know the statistics of the
streams. The latter case is related to multi-armed bandits with non-i.i.d and delayed
cost. The algorithms require little to no feedback from the user equipment regarding the
buffer states and are easily implementable.

2 System Model and Objective

We consider the time-slotted downlink of a cellular base station (BS) with m channels.
The BS is streaming multimedia content to n users over these m wireless fading channels.
At time-slot s € {1,2,...}, user i € [n] can send h; (s) bits on channel j € [m], where
for any positive integer v, the set {1,2,...,v} is denoted by [v].

The BS decides the allocation of channels and time-slots to users every £ time-slots,
which we refer to as epochs and denote by t € {1,2,...}. We define H(¢) to be an
R™ x R™x R¢-valued process with elements {h; ;(s) : i € [n],j € [m],(t—1)E+1 < s < tE}.
The process H(t) is stationary and ergodic. The BS is infinitely backlogged, i.e., all of the
content to be served to the users is waiting at the BS. At the beginning of epoch ¢, the BS
knows H(t) and decides the allocation of m channels and the slots {(t — 1)€ + 1,...tE}
to the n users.

Once the content has been served by the BS to a user, it is stored in the user’s media
player buffer, from which every epoch the media player either reads one frame or none.
For each user 7, the time of consumption of a frame is denoted by the stochastic process
Fi(t) € {0,1}. Here Fj(t) = 1 means that the media player at user i consumes one
frame during epoch ¢. This process is stationary and ergodic with E[F;(t)] = p; € [0, 1].
Let D/ denote the amount of data (in bits) in frame f € {1,2,...} of the content
streamed to user i. For each 1, {sz : f > 1} is a stationary and ergodic process. So,

t (o
the amount of data required by the media player of user ¢ at epoch t is Fi(t)DiZT:1 ()

where Dz-ztf:1 RO o D! for f=3"_ Fi(r).

Let Q;(t) be the occupancy (in bits) of the media player buffer of user i at the end of
epoch ¢ — 1 and the amount of content (in bits) delivered to user i by the BS in epoch
t be S;(t). As the media player consumes either one frame or none at each epoch, the
evolution of the buffer at user i is given by

Qi(t+1) =Q;(t) + Si(t)—
F(t)DE="0 1(F() DE= 1) < y(1) + Si(1)).

Y

We say that the media player at user ¢ has paused at time ¢ if
LEODF " > Qult) + Si(1).

i.e., the media player attempted to play the Zizl F;(7)th frame, but there was not enough
data in the buffer.

We define a resource allocation policy a to be a sequence of maps {a¥'} such that at
each t, {S;(t) : i € [n]} = a® ({Qi(7) :i € [n]}, H(r): 1 <7 <t). Let A be the class
of all ergodic policies under which the time average of the system vector {Q;(t), S;(t) :
i € [n]} has an almost sure limit in Ry U {oo}. For any a € A we define the asymptotic



frequency of pause for user i as

= lim —Zl DZT VA S Q1) + SH(t)) ass.,

T—oo 1

where S#(t) and Q¢(t) are the service and the buffer processes under policy a € A.

For each user i there is a cost function V; : [0,1] — R, which captures the user’s
dissatisfaction as a function of its frequency of pause. The asymptotic cost for user ¢
under policy a € A is given by V;(k?). Thus, the total asymptotic cost of the n-user and
m-channel system under policy a is V™" (a) = ), Vi(k¢), where £ may possibly depend
on the channel statistics.

As our primary objective is to minimize the total user dissatisfaction due to pause,
we find an allocation a € A which minimizes the total asymptotic average cost:

in V"™ (a).
arg min (a)

2.1 Practically relevant cost function

Standard resource allocation problems in wireless networks involve either a minimization
of a convex function or a maximization of a concave function. A traditional choice of
cost function along this line would turn the above problem into a convex problem and
thus, would offer more tractability. Unfortunately, in this case, such a choice would be
impractical. For choosing the right cost functions, let us relate to our own experience
during multimedia streaming.

By definition, 0 < k; < p;, because frequency of pause cannot be more than the frame
rate. To understand the nature of the functions, it is better to first look at the two
extremes: k; = 0 and k; = p;. Naturally, we must have V;(0) = 0 and V;(p;) > 0 for
all 7. Tt is also obvious that the cost functions {V;} must be non-decreasing to capture
increased dissatisfaction at an increased frequency of pause. Near k; = p;, where almost
every frame is paused, a slight decrease in k; would have almost no impact on user’s
dissastisfaction, which is at saturation. On the other hand, near xk; = 0, where the
streaming experience is smooth, a slight increase in the frequency of pause would annoy
the user significantly. This implies that a natural choice for {V;} are monotone increasing
functions whose derivatives are non-increasing. Thus, the class of monotone increasing
concave functions is the right choice for cost.

2.2 Assumptions

So far, in describing the system model and the objective, we have made some generic
assumptions on the dynamics of the media player buffer and the fading process. For ana-
lytical tractability and simplicity of exposition, we introduce some structural assumptions.

A1: For each i, V; is a non-decreasing differentiable concave function with V;(0) = 0,
the derivative at 0 bounded by G and V;(p;) = V - p; for some positive constant V.

A2: For i € [n] and j € [m], h;;(s) are the same for all s € [(t — 1) + 1,t£&]
and is denoted by h;;(t). For each i and j, {h;;(t) : t € Z} are i.id. {0,1} with
hij == P(hi;(t) = 1) > h for some h > 0. Also, for each t and 4, {h;;(t) : 1 < j < m}
are i.i.d.



A3: For each i, F(t) € {0,1} is stationary and ergodic with P(F;(t) = 1) = p;, where
pi is of the form 2 for all i. Here Z is an integer independent of the system size and
z € [Z] for all i. For some k € Z, D! = k& for all i and f.

Assumption A1 is a consequence of the observations made in Sec. 2.1. Assumption
A2 is the standard ON/OFF i.i.d. block fading assumption which is widely used in
studying resource allocation in multi-channel wireless networks. Our algorithms and
performance guarantees can be extended to fading processes which are Markov across
time and channels.

Video is generally encoded as group of pictures (GoP), each composed of I, P, B, and
D frames placed in a certain pattern depending on the encoding scheme [14]. When the
system is overloaded, the videos are transmitted at the lowest resolution level, and hence,
it is reasonable to assume that I frames, also referred to as the key frames, carry most of
the data. The assumptions on {F}(t)} and {D/} in A3 are motivated by this fact and
analytical tractability.

The GoP structure and the frame rates are encoded in the header of the stream at
the application layer. The MAC scheduler at the BS does not have access to these end-
to-end application layer parameters. These parameters are generally used by the media
player for decoding and playing the stream. But based on certain metadata shared by
the higher network layers or the user equipment, the BS may be able to estimate the
frame rate and the GoP structure. In terms of the mathematical model in Sec. 2 and
the above assumptions, these parameters (statistics) are equivalent to {p;}. We study
resource allocation in both scenarios: the BS knows and does not know {p;} a priori.

3 Known {p;}: non-convexity and joint admission-
allocation

It is apparent that the cost minimization problem posed in Sec. 2 is quite different from
traditional utility optimization problems in communication networks, which are generally
solved via novel adaptations of convex algorithms, e.g., dual gradient descent (a.k.a.
drift plus penalty method) [13], heavy ball method [15], alternating direction method
of multipliers [15]. The cost minimization problem in Sec. 2 involves minimization of
a differentiable concave cost, and hence is a non-convex problem. Moreover, the input
variables of the cost functions are not data rates, rather frequencies of pause. It is not
clear how to write the resource constraints directly in terms of frequencies of pause so
that we can obtain a suitable static problem [13]. As a result, the widely used network
optimization techniques cannot be applied here.

We start with the case when {p;} are known at the BS a priori, since it is the simpler
case which helps to separate the complexity in cost minimization from the additional
challenges due to the lack of knowledge of {p;}.

3.1 A benchmark

To analytically compare the performance of our proposed resource allocation policies,
a benchmark is needed. The following theorem provides a universal benchmark for all
ergodic allocation schemes.



Theorem 1. Under assumptions A1-A3, the cost of any ergodic policy is lower bounded
by

n

V(”vm) —  min Vz(maX(pz -y, O)) s.1. Z a; < % (1)

{0<a;<1} 4
=1

This bound is applicable for any & > 0 in assumption A2, and thus is independent of
the fading statistics. Later, we show comparison of the cost under our proposed policy
with this lower bound. The above theorem follows from the following lemma.

Lemma 1. Under assumptions A1-A3, for any ergodic policy a € A_,a if the ergodic
service rate to user i is 5¢ 1= lim, o £ >_,_; S¥(t), then k¢ = max(p; — 7%,0).

This expression for k¢ is obtained by establishing a simple relation between the prob-
ability of buffering pause and the expected change in the buffer state at a time ¢. Please
refer to Appendix A for the details. We can see that setting % = o achieves the lower
bound in Thm. 1, where {«;} are the optimal solutions of (1). This bound might be
achievable in the absence of fading or when the system is underloaded. However, for an
overloaded system, i.e., when ) . p; > 7, especially in the presence of fading, it is not

possible to achieve Z_g = «f for all ¢ simultaneously, since this would otherwise require

that > . % = 7, i.e., the total ergodic service rate should not be impacted by fading at

all. Hence, for fading channels, a gap with the benchmark is expected.

3.2 No fading case: an important building block

For designing resource allocation schemes, we first consider channels without fading, i.e.,
h; j(t) =1 for all 4, j, ¢ followed by channels with fading. This incremental approach helps
to separate the issue of non-convex allocation from the uncertainty due to fading, and
offers insights which are useful later. As discussed before, the lack of a convex structure
does not allow us to use the traditional network optimization techniques [13].

We take an indirect approach which harnesses a combinatorial structure inside the
continuous non-convex problem and gives an optimal joint admission control and channel
allocation scheme. Our approach is motivated by the following simple observation based
on Thm. 1 and Lem. 1. If we can find {¢;} that solve the optimization problem in Thm. 1

a
S

7=, then @ is an optimum

and can also obtain an allocation scheme a such that o) =
resource allocation scheme.

CoNCcMIN (Alg 1) is proposed to solve the optimization problem in Thm. 1. In the
case of an under-loaded (resource rich) network, i.e., Zie[n] pi < P, o = p; for all i
is the obvious optimal solution (Step 1). The main challenge lies in the overloaded or
resource constrained network, i.e., Zie[n] pi > 7. In this case, CONCMIN searches over a
collection of extreme points of the constraint set and picks one with the minimum cost.
Here the extreme points are the set of tuples {«; : @ € [n]} such that for some S C [n]
and S| =n—1, oy € {0,p;} for all i € S. This search is carried out in Steps 4-24.

To find the best extreme point, for each k € [n], CONCMIN searches for the subset
S¢ C [n] \ k and the best oy € (0,pi) so that if o = p; for i € S} and a; = 0 for
i ¢ 8§ U{k}, then the cost is minimized (for loop in Step 4). Finally, it picks the best k
and the corresponding S by comparing cost of {S} : k € [n]} (Steps 23-24).

The search for &} is a combinatorial subset selection problem. CONCMIN finds Ly,
which maximizes Zies\k p; and Ry which minimizes Zies\kpi subject to Zies\k pi >

>



Algorithm 1 ConcMIN

Input: {Vi}, {pi},c=7%
Output: {&;}
Lif } 0, pi < c then
a; + p; for all i € [n]
else
for all k € [n| do
Ly, + SUuBSETSUM([n] \ &, ¢)

6: L+ V. Z p,-—Zpi +Vk(pk+zpi_c)

ic[n)\k i€l i€Ly
7: {L is cost if a; = p; for i € L}
8: Ry, < SUBSETSUM([n| \ k, > p; —¢)
el
9: R+ V. Zpi —i—Vk(Zpi—Zpi—c)
1IERy, i€[n] i€ERy
10: {R is cost if a; =0 for i € Ry}
11: if L < R then
12: ozf +— p; forallie Ly
13: ag <= C— Y icp, Di
14: af < 0foralli¢ L, U{k}
15: Jp L
16: else
17: af <0 for all i € Ry,
18: af < c— D ek Pi T 2 icr, Pi
19: af < p; for all i ¢ R, U{k}
20: Jp < R
21: end if

22: end for

23: k¥ < argming Jy

24:  @; + o for all i € [n]
25: end if




1 —pi. The one with lower cost among them is picked as S}. Finding Ly, is related to the
well known subset sum problem (Step 5) [16]. It turns out that the problem of finding
Ry, can be written in an alternate form, which is also a subset sum problem with different
parameters (Step 8).

We use the SUBSETSUM routine to solve the subset sum problem. SUBSETSuM(W, ¢),
for some W C [n], returns the set S C W so that ), ¢p; is maximized subject to
Y icgPi < c. For SUBSETSUM the standard dynamic programming based algorithm [16]
can be used. Though that algorithm does not solve any general subset sum problem in
polynomial time, in our case it does. This is because, for our problem, across all instants
the sack sizes are at most Z - max(m,n). Further, as subset sum is a special case of the
knapsack problem and the weights {p;} C {%Z : z € [Z]} for Z = O(1), there exists an
accurate algorithm with O(n) complexity [16].

We have the following guarantee on the computational complexity and the correctness
of CONCMIN.

Theorem 2. In O(n?) steps CONCMIN obtains an optimal solution for the optimization
problem in Theorem 1, i.e., a; = o for all i € [n].

Interestingly, the optimization problem in Thm. 1 involves continuous variables with
no integer or combinatorial constraint. However, the particular non-convex structure of
the problem leads to an optimal combinatorial algorithm. (In Sec. ?? we briefly mention
some related non-convex problems with other interesting structures.) Details of proof
of Thm. 2 which uses this combinatorial structure can be found in Appendix B. The
following is a simple but useful observation.

Lemma 2. The optima of the optimization problem in Thm. 1 lie in the finite set

H{os:ien]}:|{i:a; €(0,p)} <1} C[0,1]™

This result is related to the fact that the minimizer of a concave function over a convex
set lies at an extreme point. Lemma 2 can be proved by starting with a feasible solution
and constructing another solution with a lower cost which also lies in the above set, using
Jensen’s inequality iteratively. Lemma 2 formally proves that searching for S C [n] \ k,
as described above, is a correct approach. Hence, to prove a; = «of for all i € [n] it is
sufficient to prove the following lemma.

Lemma 3. Steps 5-21 of CONCMIN finds S; for a given k € [n] in O(n) steps.

Proof builds on the following insight. Observe that at any Sy, that could potentially
be S;, cost for users {i € Sy} is 0 and the cost for users {i ¢ Sy U{k}} is V - p;. As at
the optimum, ), o; = ¢, oy, can be written as a function of ) ;. s, Di» or equivalently, as
a function of } ;s pi, since } ., p; is a constant. Thus, the total cost can be written
as a function of ) . s, Pi- Further, this function is concave due to the concavity of V.
So 8y, = &j; either maximizes or minimizes (subject to > .. pi > 1 —pk) D ;s pi Over
all 8. This justifies the approach taken in CONCMIN for finding Ly and Rj.

Based on CONCMIN, we design a simple randomized channel allocation algorithm
RANDALLOC in Alg. 2. In fact, effectively, RANDALLOC simply allocates channels using
independent rolls of an n-sided die with biases {«;} output by CoNcMIN. For a fading
channel, this procedure does not succeed as one also has to take states of the channels
into account in that case. However, as we discuss later, CONCMIN is useful in the case
of fading channels and also in the scenario where {p;} are not known a priori.
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Algorithm 2 RANDALLOC
Pre-computation at time 0: obtain {a;} from CONCMIN

1: At any epoch t: initialize C = [m]

2: while C # () do

3:  Pick X; ~ exp(«;) for all i € [n] independently

4 1" = arg min;ep,) X;

5. Allocate min(k, |C|) channels for the entire epoch to user i*
6: C « C\ {those min(k,|C|) channels}

7: end while

Note that RANDALLOC works as a joint admission control and channel allocation
scheme for an overloaded or resource constrained network. Since the solution obtained
from CONCMIN gives an automatic admission control by blocking the users with o = 0.
Moreover, the following result shows that this scheme also minimizes the asymptotic
average cost.

Proposition 1. Under assumptions A1-A3 and h =1 in assumption A2, RANDAL-
LOC has an asymptotic average cost V™™ and per epoch computational complezxity O(mn).

This implies that the resource allocation scheme RANDALLOC is optimal in the ab-
sence of fading. Along with the analytical performance guarantees, RANDALLOC and
particularly the subroutine CONCMIN have interesting implications. First, RANDAL-
LOC offers a quality of experience aware admission control in an overloaded network
as well as a simple channel allocation procedure. Second, communicating media player
buffer states from the application layer of the user equipment back to the MAC layer
of the BS is resource consuming. As RANDALLOC does not need this feedback and is
computationally inexpensive, it can be easily implemented.

3.2.1 Comparison with standard routing schemes

It is not hard to see that the problem considered here is similar to routing jobs in a
multi-server system. For £ = 1 and £ = 1, the problem is equivalent to a discrete
time routing problem, where in each epoch m jobs arrive and have to be routed to n
queues with binary stationary service processes. As we observe above, for the current
problem the optimal scheme does not use {Q;(¢)}. This is in contrast to the well known
high performance routing algorithms like join the shortest queue [17], power-of-d [18, 19],
batch-filling [20], where {Q;(t)} are useful even when {p;} are the same and known a
priori. The reason behind this is the totally different objectives of the traditional routing
problems and the problem considered here. Qualitatively, in the traditional setting the
goal of the router is to keep {Q;(t)} small, whereas here the goal is to ensure that the
buffers are non-empty. The concave cost is another important difference between these
two scenarios. Interestingly, as would be apparent in Sec. 4, when {p;} are not known
to the BS a priori, even infrequent one bit feedback regarding the buffer states have a
strong impact on the performance.

4 Unknown {p;}

As discussed in Sec. 2, {p;} are application layer parameters and hence, not always known
to the MAC scheduler of the BS a priori. Moreover, two videos with the same quality



(i.e., HD, 4k) can have different {p;} depending on their dynamism, e.g., sports versus
news. Hence, even the application layer may not know accurate values of {p;} a priori.

Unlike the case when {p;} are known a priori, the buffer state information, which
indirectly captures {p;}, can be useful in this context. Consider a simple setting with
n=2 m=1k=1 & =1and h = 1. Let us also assume that we know the
ordering between {p;} (let p; > py), but not their values. As CONCMIN needs {p;},
ALLOCATECHANNELS cannot be used here. But, it turns out that the following simple
scheme achieves optimal asymptotic average cost: allocate the channel to user 1 whenever
Q1(t) < B for some B > 0, else allocate to user 2. Though this seems promising, questions
remain. Does this scheme extend to general n and m? In a multimedia streaming
application, sending {Q;(t)} back to the BS every epoch is resource intensive. Can we
use simple and infrequent feedback? It is easy to see that the feedback in the above
scheme can be simplified: user 1 sends one bit only when Q;(¢) < B. But, unfortunately,
this scheme does not extend to general n and m.

In practice, all multimedia sessions are of finite duration. Hence, it is also important
that the allocation scheme performs well not only in terms of the asymptotic average
cost, but also in terms of average cost over all reasonable time windows. Under a policy
a € A, let k¥(T') be the empirical frequency of pauses over T" epochs. Ideally, we should
have a policy a with low >, Vi(x{) and low >, Vi(x{(T")) for all T'. More precisely,
if A is the class of ergodic policies which minimize asymptotic average cost, ideally, we
would like to have the policy a* € A, if it exists, such that for all sufficiently large 7" and
any a € A,

STE Vit ()] < Y EVi(sH(T))]. (2)

i€[n] i€[n]

Note that for all sufficiently large T', V™™ is still a benchmark for >icq B Vi(s1(T))].
Hence, (2) is equivalent to finding a € A for which

(@, T) =Y BVi(s{(T)] - V"

1€[n]

is minimum for all sufficiently large T. Clearly, for any @ € A as T — oo, v(a,T) — 0.
As the above multi-objective problem is intractable, we find a policy for which the rate
(with respect to T') at which v(a,T") goes to 0 is the maximum.

4.1 Infrequent buffer feedback and bandits

Using Jensen’s inequality to move the expectation inside V; and then using concavity of
V; and assumption A1, it follows that

(2

v(a,T) <G Z max(E[x{(T)] — &, 0).

i€[n]

Thus, for upper bounding the rate of decay of v(a,T) it is sufficient to upper-bound the
rate of decay of E[k¢(T")] — k¥ for each i. Let ¢%(T") denote the number of pauses for user
i over T epochs under policy a. Then, upper-bounding the rate of decay of E[x%(T)] — k¥
is equivalent to upper-bounding the rate of growth of E[f(T")].

It may be tempting to use the following simple approach. At the beginning, the user

estimates p; by observing the evolution of the media player buffer for some time and
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reports it to the BS, then the BS uses ALLOCATECHANNELS. Though this is a possible
approach, it is sub-optimal. This is because for the above estimation steps, the buffers
of the users need to have enough frames, for which the BS needs to transmit sufficient
contents to all the users. However, during this estimation period, transmissions to the
users who are not part of the optimal schedule in CONCMIN are in a sense wasted, which
could have been used to improve experience of the other users. This implies that we need
to strike a balance between exploration and exploitation.

This naturally brings us to the setting of multi-armed bandits [21] with non-i.i.d.
cost (instead of reward), where a cost of 1 is incurred for a user every time its stream is
paused. The cost is non-i.i.d. because the cost depends on the past states of the buffer,
even when {Fj(t)} are i.i.d. Moreover, for an action taken at time ¢, the cost may be
incurred at a later time. Though there is a similarity in terms of the non-i.i.d. nature
of the system, the dynamics and the costs in this problem are different from the queuing
bandits studied in [22, 23, 24].

Drawing intuition from the bandit literature [21, 22, 23, 24] and the analysis of CON-
CMIN and ALLOCATECHANNELS, we develop an algorithm called infrequent Feedback,
ESTimate, solve, and ALlocate (iFESTIVAL), which takes infrequent one bit feedback
about the buffer states, estimates {p;} based on that, and allocates using CONCMIN and
ALLOCATECHANNELS.

Algorithm 3 ‘FESTIVAL
Input: {V;} and r,w € {2,3,...}
Output: Allocation at each epoch
Initial computation: Define phases 7 = 1,2,... where 7th phase consists of epochs
(7= ) (w+1D[2E] + 1 to 7(w + 1)[ 2]
1: while System is ON do
2:  if for some ¢ € Z, U {0}, current phase 7 = r? then
3: Between epochs (7 — 1)(w + 1)[25] + 1 to (7 — 1)(w + 1)[22] 4+ w[2E]: allocate
users k channels each in a work conserving round-robin manner (each user is
chosen for w epochs and allocated k-channels in each one of them)
4: Between epochs (7 —1)(w+1)[ 2] + w[22] +1 to 7(w + 1)[2£]: each user sends
{1,0}" feedback about increment of {Q;(¢)} or not, respectively, in the w epochs
they are allocated in Step 3
5: For each i € [n], based on feedback in Step 4 update p; by the total number of
Os received from user i (since ¢t = 1) divided by w - ¢

6: Run CoNcMIN with {p;} to obtain {&;}

7. else

8: Run ALLOCATECHANNELS with the latest {&;}
9: end if

10: end while

iFESTIVAL, described in Alg. 3, divides time into phases of length (w+1) mn—k} epochs,
where w € Z,. For r € Z, and r > 2, at phases 7,72, 73, ..., iFESTIVAL serves each user
in turn over k channels of an entire epoch and the users record the change (increase
or same) of their buffer states at the end of that epoch. In each phase this is done
w times in a round-robin fashion over the first wf”—nﬂ epochs of this phase. From the
(w["] + 1)th epoch to (w + 1)[“£]th epoch of this phase, the BS collects all the w

one bit feedback regarding change of buffer states. Based on this feedback, it estimates
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{p;} and runs CONCMIN with these estimates. For any ¢ € Z, between phases r¢ and
rit1 i FESTIVAL runs ALLOCATECHANNELS with {@;} returned by CONCMIN run during
phase r9.

As iFESTIVAL collects only infrequent feedback (%Zgg L bits per epoch) from the user
equipment, it can be implemented in practice for multimedia streaming in cellular net-
works. Also, feedback from each user is scheduled a priori (at particular epochs in phases
1,7,7%,...) and hence, the uplink traffic due to the feedback is well regulated.

For iFESTIVAL, we have the following guarantee on the growth of the expected number

of pauses with the horizon T'.

Theorem 3. Under assumptions A1-A3 and i.i.d. {F;(t)}, if T > r*(w+ 1)[22], and
w > L‘, then in the absence of fading, i.e., H(t) = 1,

min;,j [pi—p;

E[w'iFESTIVAL (T)] < maX(pi — Oc:, O)T + C’log T,

(2

for all i € [n], where C is independent of T. In addition, if T = ¢°™) and n = O(m),
then the above bound is also true for any H(t) satisfying A2.

Proof of this theorem has two main steps. First, we show that after ¢ epochs, the
estimations of {p;}, which take values in {Z : z € [Z]}, are exact with probability at
least 1 — tl%g for some 8 > 0. Second, we show that between r?th and r?*'th phases,
the expected number of pauses is upper-bounded by max(p; — o, 0)r?(r — 1) + O(1) if
the estimate at the end of the r%th phase is accurate. Combining these two along with
some standard probability computations the result follows. Proving the first part is a
standard application of Azuma-Hoeffding inequality. The second part requires bounding
the expected number of returns to state 0 by the Markov chain @Q;(¢) over a finite time
window. This Markov chain is positive or null recurrent depending on the value of o;.
In the null recurrent case this is obtained by bounding the evolution of the probability
of state 0 with time, starting from state 0 itself.

The following result is a consequence of Thm. 3 and the discussions on v(a,T) in the
beginning of Sec. 4.1.

Proposition 2. Under assumptions A1-A3, i.i.d. {F;(t)} and H(t) =1, if T > r*(w +
1)[2£], and w > 2 —

min; ; [p;—p;|

logT'
v(iFESTIVAL,T) = O ( 0? ) .

In addition, if T = e°™ and n = ©(m), then the above bound is also true for any H(t)
satisfying A2.

It can be argued that there are systems for which it is impossible to have a faster
decay in an order sense, and thus, implying the (order) optimality of the decay rate
under ;FESTIVAL. The intuition is that the current problem is more involved than regret
minimization in i.i.d. multi-armed bandits and hence, a logT" lower bound on the regret
is unavoidable.
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A Proofs of Lemma 1 and Theorem 1

Let X;(t) = Q,;(gt), where @Q;(t) is the buffer evolution process defined in Sec. 2. Using

assumption A3, we can write the buffer evolution compactly as

Xi(t+1) = (Xi(t> + S,ig) - E(t)) : (3)

where ()T denotes max(+,0). Since we schedule in units of k&, we have Szig-:t) € {0,1,...}.

Following the discussion in Sec. 2, using assumptions A1-A3, we can express the
frequency of pause as

ki =E {1 (Xi(t) + S;S) — Fy(t) < 0>

Using the buffer evolution in Eq. (3), this can equivalently be written as

ki =E [1 (Xz-(t +1)— (X,;(t) + S];g) —~ E(t)) > o)] . (4)
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This is because whenever X;(t) + S,ig) — Fi(t) > 0, X;(t + 1) would be equal to this

expression and the argument of the indicator in the above equation for x; would be 0.
The only way for it to be positive is when X;(t) + S]ig) — Fi(t) < 0.

Further, observe that since X;(t) € {0,1,2,...}, S}g—g) € {0,1,2,...}, and Fi(t) €
{0,1}, we have

X;(t+1) — (Xi(t) + Sk—? - E(t)) € {0,1}.

This implies that the indicator in Eq. (4) is redundant as its argument is always 0 or 1.
So we get

k; = E [Xi(t+ 1) — (Xi(t) + S];S) — E(t))] .

When the buffer evolution is positive recurrent, i.e., E[F;(t)] > E [S;g)

are all stationary, and we have E[X;(t + 1)] = E[X;(t)], and this gives us

] , the processes

s =BlR0] - B 5.

Using the definition of 5; in Lem. 1, and the definition of p; in assumption A3, we get

S;
Ki = Pi — e
which concludes our proof for the positive recurrent case.
When the buffer evolution is null recurrent or transient, i.e., when p; <
show that the frequency of pause is 0 using drift arguments.

Si

TE, We can

A.1 Proof of Theorem 1

Let S} (t) be the service under an optimal policy a*, and let the buffer evolution under
such a policy be Q7 (t) for each user i. At any epoch, we have a total of m& slots that
can be scheduled, and this means

> Si(t) <mée

i€[n]

for every epoch t.
Since this hold for every epoch, the time average must satisfy this inequality as well,
giving us

> s <mé,
i€[n]
where 57 are the ergodic service rates under an optimal policy. This implies that

5 m
i
kE — k (5)

i€[n]

%
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Using Lem. 1, we get

Since the optimal policy must satisfy Eq. (5), the solution of the program in Thm. 1
(Eq. (1)), can only have a lower value. This gives us

Vn,m(a*) Z me‘

B Proof of Theorem 2

First we shall prove that CONCMIN indeed finds the optimal service rates {a}}. The
optimization problem we are trying to solve can be written as:

minimize Z Vilpi — o)

{ai}
subject to Zo‘i <c (6)
and 0<a; <p; Vie]ln| (7)

Recall that ¢ = 7. Since {V;} are all concave functions, the optimal solution happens
at a corner point of the region defined by constraints (6) and (7). We have a total
of 2n + 1 linear inequations defining the feasible region (1 in constraint (6) and 2n in
constraint (7)). Since there are n optimization variables {a;}, at every corner point, n of
the inequations will hold with equality. However, a; can’t be equal to both 0 and p;, and
so at most n of the inequalities in constraint (7) can hold with equality. As we just have
one other constraint in (6), we need at least n — 1 of the constraints to hold with equality
in constraint (7). Therefore, in the optimal solution to the optimization problem, there
is at most one user who gets a non-zero rate but is not fully satisfied. This is essentially
a proof of Lem. 2.

Let P =), pi. When P < ¢, the optimal solution is trivial and we get of = p; for
all . This case is handled in line 1 of CONCMIN. Now consider the case P > c¢. Let
k* be such that for all i # k*, either of = 0 or «f = p; in the optimal solution {«;}.
The preceding arguments guarantee that there is at least one such k*. We find this k*
by looping over all of [n] in line 4 of CONCMIN. For each k € [n], we find the optimal
solution {a¥} that satisfies, for all i # k, a¥ = 0 or o = p;. Then we take the best
among these over all values of k.

When P > ¢, given a fixed k, define Sy, Q. C [n] \ k so that the “optimal” solution
{ak} satisfies the following properties:

asz VZES]C
of =p; VieQy
SkﬂQk:¢ and SkUQkU{k}:[n]
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Since Vi(p;) =V - p;, Sk (or equivalently @) can be found by solving

mmé{mze V. Zpi + Vi (77 —c— sz)

1€S 1€Sk

subject to P —c—pp < Zpi <P -—c
1€Sy

The objective is a concave function of . s, i and so the minimum objective occurs at
the maximum or minimum feasible value of . s, pi- We find maxg, Y ic s, Pi by solving
SuBseTSUM([n] \ k, P — ¢)(= Ry) on line 8 of CONCMIN. ming, >, s p;i subject to
ZiGSk pi > P — ¢ — py is the same as solving maxg, Zz‘er p; subject to Zier pi < c.
This we do by SUBSETSUM([n] \ k,¢)(= L) on line 5 of CONCMIN. We then compare
the costs of Lj, and Ry, to get the solution {aF} and the correspoinding cost Jj.

Observe that the optimal solution {¢}} satisfies ) .o = ¢ when P > c. Also, we
have a} = af" for some k* € [n]. Since we are comparing amongst feasible solutions {a}
in line 23 of CONCMIN, we get the optimal £* and hence the optimal solution {c;}. This
shows that CONCMIN outputs the optimal solution.

See Sec. 3.2 for a discussion on the computational complexity of CONCMIN.
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