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ABSTRACT

Recently, learning based methods have proven to be effective in recovering a full video

sequence from a single blurred image. Although these techniques do not require any

hardware modifications, the inversion problem involved is inherently ill-posed and suf-

fers from motion ambiguity leading to poor video reconstruction. Coded exposure tech-

niques on the other hand require significant hardware modification but provide a better

posed recovery system. Recently, a novel prototype image sensor based on multiple

buckets per pixel was proposed. For the first time, these sensors have enabled the abil-

ity to acquire multiple coded images in a single exposure of the sensor. As with any

compressed sensing system, multiple measurements from the same underlying signal

make it better-posed to recover the original signal. This project proposes a system to

recover a video sequence from a single exposure of this multi-bucket sensor. The ob-

jective is to show that a better video can be recovered when we have two coded images

as input rather than one. A two-stage learning based model is proposed to recover the

original video from the compressed measurements. The first stage consists of an inver-

sion layer that extracts features of the video to be recovered. This inversion is modeled

using a single layer of convolutional neural network where the weights are allowed to

be spatially adaptive. In the second stage, the extracted features of the video are re-

fined and used to recover the complete video using a deep neural network. Through

this project, it was observed that with two coded exposure measurements, the recovered

video quality is much better than having a single coded exposure image. The proposed

model is fully-convolutional, therefore the video is reconstructed at once from the en-

tire image which avoids the artifacts from the patch-based reconstruction methods of

dictionary learning and some recent neural network based methods.
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CHAPTER 1

INTRODUCTION

Deblurring a blurred image has been a long-standing problem in the field of image pro-

cessing and computer vision. This problem is inherently ill-posed and requires strong

prior knowledge to be imposed on the restoration problem. Hence, learning based

methods which learn to impose a data-driven prior, have made a significant progress

in obtaining better deblurred images. As the blurred images encode the scene motion

information, there has been a recent interest in recovering a video sequence from a

single blurred image (Purohit et al., 2019; Jin et al., 2018). Although this is a very

challenging and highly ill-posed problem, there has been some advancement with the

help of strong priors in the form of trained neural networks. For these video recovery

techniques, motion ambiguity has been a major challenge which can be addressed by

using coded exposure compressive video sensing. Coded exposure techniques can be

broadly divided into two categories: a) global, sensor-level coding (Holloway et al.,

2012; Raskar et al., 2006; Llull et al., 2013) and b) pixel-wise coding (Reddy et al.,

2011; Liu et al., 2013; Iliadis et al., 2018, 2020; Yoshida et al., 2018; Martel et al.,

2020; Li et al., 2020).

In these methods, a single exposure to acquire the image is divided into multiple

sub-exposures. A pre-determined code on the local pixel level or the frame level is then

used to encode these sub-exposure frames into a single coded frame. It has been shown

that exposure codes which have a broad frequency spectrum are generally a good choice

for compressive sensing. Several prototype sensors have been proposed over the years

to implement this compressive measurement technique as there are no commercially

available sensors (Liu et al., 2013; Reddy et al., 2011; Yoshida et al., 2018). These

coded exposure techniques typically throw away about 50% of the incoming light (Bara-

niuk et al., 2017), leading to significant light loss. A second co-located image sensor

can be used to capture the full exposure without coding to overcome such a light loss.

A recently proposed prototype image sensor based on multi-bucket pixels can be used

for this task. The prototype sensor called Coded 2 Bucket (C2B) sensor (Wei et al.,

2018) has 2 light-collecting buckets per pixel and allows pixel-wise control of the code.



C2B outputs two images for each exposure where the first image is encoded based on

the predetermined code while the second image is encoded with the complement of

the predetermined code. We can obtain a fully-exposed image by simply averaging the

two output image frames. Hence, C2B sensors are 100% light efficient while providing

complete freedom to control the exposure pattern on an individual pixel level.

In the past, several algorithms have been proposed to recover the underlying video

signal from compressed measurements of different imaging systems. Each of these

algorithms use an unique code pattern and also differ in the compression rate (number

of sub-exposures per full exposure) achieved. Here, the aim is to bring all the different

imaging systems under a single umbrella so that a fair comparison is possible between

them. This comparison can give a definitive answer on the video recovery performance

of different imaging systems and let us have a fair discussion on the different hardware

trade-offs involved in the imaging architecture. To achieve this, a two-stage learning

based algorithm is proposed, consisting of an inversion stage and a refinement stage.

The inversion stage consists of a shift-variant convolutional layer which is inspired

from the linear algebra principles of solving an under-determined system of equations.

The refinement stage consists of a deep neural network that outputs the recovered video

signal. The proposed network provides enough flexibility for it to be easily adapted to

various compressed imaging architectures.
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CHAPTER 2

RELATED WORK

Coded exposure imaging: In Raskar et al. (2006), flutter shutter camera was proposed

for making motion deblurring a well-posed problem. A similar system was proposed

in Veeraraghavan et al. (2010), which used a coded strobing photography system for

compressive sensing of high-speed videos. The flutter shutter camera further extended

to recover a video sequence in Holloway et al. (2012). In Gu et al. (2010), the authors

created a high speed camera by cleverly sampling the rows in a rolling shutter camera.

In Reddy et al. (2011), the authors proposed a pixel-wise coded exposure system for

compressive sensing of high-speed videos. In Liu et al. (2013), the authors used a sim-

ilar coded exposure architecture but constrained the system to use the existing CMOS

image sensor architecture. Recently, Antipa et al. (2019) proposed a compressive video

acquisition system where the lens was replaced by a diffractive optical element. In

Yoshida et al. (2018), the authors use the system proposed in Liu et al. (2013) and

jointly learn the coded exposure mask as well as the recovery of video using a neural

network. In Gupta et al. (2010) a coded exposure system is proposed which gives the

post-capture control of changing the spatial and temporal resolutions.

Figure 2.1: Exposure patterns for different compressive sensing systems.

High-speed imaging systems: In Wilburn et al. (2004); Shechtman et al. (2002), au-

thors use a multi-camera system for capturing a high-speed video. A hybrid intensity



and event sensor based system was proposed in Pan et al. (2019) for extracting a video

sequence using a blurry image and information from an event sensor. Event based sen-

sors have also been used to design a low power high-speed camera (Scheerlinck et al.,

2018; Reinbacher et al., 2016; Rebecq et al., 2019; Shedligeri and Mitra, 2018). Other

methods of high-speed imaging involve temporal super-resolution of video sequences

captured from a low frame-rate camera (Karim et al., 2003). Some methods propose

interpolation of multiple frames between successive frames of a low-frame rate video

using optical flow (Kaviani and Shirani, 2015), auto-regressive model (Zhang et al.,

2009), kernel regression (Takeda et al., 2009), learning-based methods (Jiang et al.,

2018) among others. Recently, few works have also explored the possibility of decom-

posing a single blurred frame into a sequence of video frames (Purohit et al., 2019; Jin

et al., 2018).
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CHAPTER 3

VIDEO RECONSTRUCTION FROM COMPRESSED

MEASUREMENTS

This section explains the proposed method to obtain video from the compressed mea-

surements of the underlying video signal. As flutter shutter video camera is the most

basic of the compressed video sensing architectures, the algorithm is first explained for

this camera. Later, a brief explanation is provided on how the proposed method can

be adapted to other compressive sensing architectures as well. First, a mathematical

representation of the video compressive sensing architecture is provided, followed by

the explanation of the proposed algorithm to recover the underlying video signal from

the compressed measurements.

3.1 Compressive video sensing

Figure 3.1: Simulation of coded exposure images.

In compressed video sensing a single exposure of the image sensor is sub-divided into

T sub-exposures. These sub-exposures are used to multiplex the T video frames into

a single frame using a coded exposure pattern. To simulate this process, consider a

video sequence of T frames which can be denoted by X = [x1, x2, . . . , xT ], where xt ∈

[0, 1]M×N and a coded exposure pattern φ = [φ1, φ2, . . . , φT ] where φt ∈ {0, 1}M×N .

Then the coded-exposure image I can then be written as,

I =
1

T
ΣT

t=1
ct ⊙ xt (3.1)



where ⊙ denotes element-wise multiplication. For the case of C2B sensor, we have

two images output from the buckets B0 and B1 of the sensor, denoted by I0 and I1

respectively. I0 and I1 can be written as,

I0 =
1

T
ΣT

t=1
ct ⊙ xt (3.2)

I1 =
1

T
ΣT

t=1
(1− ct)⊙ xt (3.3)

where ⊙ denotes element-wise multiplication. The corresponding fully-exposed image

can be obtained by Ib = I0 + I1.

This coded exposure pattern can be different for each pixel in the image. However,

images are correlated only in local neighborhood regions, hence the exposure pattern

is made periodic with a period of P pixels. So, for ease of explanation from now on,

images I0, I1 and Ib denote only the P × P pixel patch of the whole image. Corre-

spondingly the exposure pattern φ and the original video X are also considered for a

small spatial patch P ×P and the full temporal extent of T frames. The individual pix-

els of the image frames are addressed as I0p , I1p and Ibp and the corresponding exposure

pattern as φp, where p ∈ {1, 2, . . . , P 2}. The following sections elaborate on the details

of the inversion stage and the refinement stage of the video reconstruction algorithm.

UNet

Single coded-
exposure image

Coded-blurred image pair

High-resolution video

OR

Input Inversion stage Refinement stage Output

SVC layer

Figure 3.2: Diagrammatic representation of the proposed architecture.

3.2 Inversion stage

For an easier analysis in this section, let us restrict ourselves to the flutter-shutter imag-

ing system where every pixel shares the same global exposure pattern and we obtain
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only a single coded exposure image from each exposure. Lets denote this restricted ex-

posure pattern as φr which is a row-vector of length T as it encodes T temporal frames

into a single coded frame Ir. This can be written as,

Ir = φrX, (3.4)

where X ∈ [0, 1]T×P 2

, whose columns represent the video sequence at each spatial

pixel. This is an under-determined and ill-posed system and the compressed signal can

be approximately recovered by,

X̃ = φ†
rIr (3.5)

where φ†
r represents the Moore-Penrose pseudo-inverse of the matrix φr. The matrix φ†

r

satisfies φrφ
†
rX ≈ X and is given by

φ†
r = φT

r (φrφ
T
r )

−1. (3.6)

As we have restricted to a special case of flutter shutter coded exposure, the pseudo-

inverse matrix φ†
r is a column vector. From Eq. (3.5), we can observe that each column

of the approximately recovered video X̃ is just a scaled version of the pseudo-inverse

matrix φ†
r. The weights for scaling are determined by the column entries of the com-

pressed measurements Ir. The important thing to be observed here is that, in order to

recover the video sequence at a particular pixel, we only need the compressed measure-

ments at that pixel alone.

Learning based algorithms have been proposed to solve the inverse problem of re-

covering video signal from a coded exposure measurement. Most of these algorithms

first divide the input image into overlapping patches, then input these patches into a

fully-connected network and the output video patches are averaged and stitched to re-

cover the video. The recovered videos thus have patch artifacts and the number of com-

putations required to obtain the video increases quadratically with the overlap ratio. It’s

also well known that a fully-connected network increases the number of parameters in

the network. A fully-convolutional network on the other hand can reconstruct the entire

video sequence in a single forward pass and also use much less number of parame-

ters. Unlike fully-connected networks, convolutional networks have local connectivity
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at each layer. As mentioned earlier, to recover a video at a particular pixel, only that

pixel’s compressed measurements are necessary. This proves that global connectiv-

ity is not necessary for effectively recovering the video from the input coded images.

Hence, the local connectivity offered by convolutional networks can be efficiently used

to model the task of recovering the video signal.

Eq. (3.5) provides an approximate solution to recover the original video signal. This

solution does not utilize any knowledge about the data itself, while the proposed method

is a supervised learning method that incorporates the training data distribution to learn

the inverse mapping. The simplest approach to learning the inverse is to set up a linear

regression problem, where we want to learn a linear mapping from the input compressed

measurements to the ground truth video signal. This can be mathematically written as,

min
w

‖X − I0w‖2, (3.7)

where w represents the linear regression coefficients. This is a standard least squares

problem and the solution for this is given by,

w = I
†
0
X, (3.8)

w = (φ0X)†X. (3.9)

We can notice that the learned weights w are a function of the underlying coded expo-

sure sequence φ0.

3.2.1 Shift-variant convolution

As described in Sec. 3.1, the coded exposure sequence is periodic with period P pixels

and varies for each pixel in the local image region of P × P pixels. The model should

give the network freedom to learn different weights to invert the linear system when

the underlying exposure sequence is different. Although a standard convolutional layer

effectively models the necessary local connectivity, it does not allow the weights to

vary between consecutive pixels when the underlying coded exposure sequence varies.

Hence, the standard convolutional layer is modified such that the weights vary for each

pixel in the local image region of P ×P pixels. Such a shift variant convolutional layer

9



has been proposed in Okawara et al. (2020) and this layer is used as the first stage in

the proposed algorithm.

This layer takes either a single coded image or a pair of coded-blurred images as

input (depending on the compressive sensing system used) and extracts a feature map

of 64 channels X̃ , which is then passed on to the refinement stage.

3.3 Refinement stage

To exploit the full strength of the neural network training, a refinement stage is pro-

posed, consisting of a UNet (Ronneberger et al., 2015) like deep neural network. The

refinement stage takes in the feature map X̃ from the inversion stage and outputs a re-

fined video sequence X̂ . The output of this network is supervised using the ground truth

video frames, with a loss function as follows,

Lref = ‖X̂ −X‖1. (3.10)

In addition to this loss, a TV-smoothness loss is added on the final predicted video frame

defined as,

Ltv = ‖∇X‖1, (3.11)

where ∇ is the gradient operator in the x-y directions. Therfore, the overall loss function

then becomes,

L = Lref + λtvLtv, (3.12)

where λtv is a hyperparameter that weighs the loss function.

10



CHAPTER 4

EXPERIMENTAL RESULTS

Supplementary presentation containing experimental results and videos can be found in

this link.

The proposed network was trained using GoPro dataset (Nah et al., 2017) consisting

of 22 video sequences at a frame rate of 240 fps and spatial resolution of 720×1280. The

first 512 frames under each sequence were taken and spatially downsampled by a factor

of 2. Further, overlapping patch volumes of size 16×64×64 (temporal×spatial×spatial)

were extracted with an overlap of 8 pixels in the temporal dimension and 32 pixels in the

spatial dimensions, resulting in a total of 263, 340 patch volumes of size 16 × 64 × 64

(temporal×spatial×spatial) to form the training dataset. The input to the network is

obtained from each patch volume using a 16 × 8 × 8 exposure mask repeated to fill

the spatial dimensions, as described in (3.1) and (3.2). The network was trained using

Adam optimizer with a learning rate of 0.0001 and batch size of 50 for 500 epochs, with

λtv as 0.1.

4.1 Video reconstruction for different compressive sens-

ing systems

This section evaluates the performance of various existing state-of-the-art video extrac-

tion algorithms for compressive sensing along with the proposed method. Two different

sets of test videos were used for this analysis, Set-1 is the test set used for evaluation in

Yoshida et al. (2018) consisting of 14 test videos (16 frames each) and Set-2 consists

of 15 test videos (16 frames each) randomly selected from GoPro test data (Nah et al.,

2017).

For pixel-wise coded exposure sensing, three different algorithms are evaluated -

the proposed method, deep learning based method DNN (Yoshida et al., 2018) and

analytical method GMM (Yang et al., 2014), all using the exposure pattern optimized

https://docs.google.com/presentation/d/19aF63bw1u2ZroLXrsEjNR6yW3ZcQEpDPy4A1VXi0WHs/edit?usp=sharing
https://docs.google.com/presentation/d/19aF63bw1u2ZroLXrsEjNR6yW3ZcQEpDPy4A1VXi0WHs/edit?usp=sharing


SBE mask proposed in Yoshida et al. (2018). Yoshida et al. (2018) proposed video

reconstruction using a fully-connected deep neural network by jointly optimizing the

exposure mask and the reconstruction network. The proposed network on the other hand

is fully-convolutional and was trained using the optimized SBE mask from Yoshida

et al. (2018). For Coded-two-bucket system, there is no existing deep learning based

algorithm that incorporates the information from the second bucket to recover the video.

Therefore, the evaluation is done only on the proposed method, using the same exposure

pattern optimized SBE mask.

Table 4.1: Quantitative results for different reconstruction algorithms. The table lists

average PSNR(dB) and SSIM of reconstructed videos.

Exposure Test data Algorithm

GMM (32) DNN (33) Proposed

Pixel-wise Set-1 (33) 29.31, 0.898 30.21, 0.905 31.14, 0.925

coded Set-2 (16) 29.94, 0.887 30.27, 0.890 31.76, 0.914

Proposed

Coded-two- Set-1 (33) 32.23, 0.935

bucket (C2B) Set-2 (16) 32.34, 0.920

Table 4.1 provides a quantitative analysis of the various reconstruction algorithms

while Figures 4.1 and 4.2 provide a visual comparison between the reconstructed videos

for above mentioned algorithms. The reconstruction results shown in the figures are for

test videos from Set-1. Through this analysis, it can be concluded that the proposed

fully-convolutional model for video reconstruction from a coded exposure image is

able to perform better than the existing state-of-the art algorithms for video reconstruc-

tion from the same input, considering the same exposure pattern. Also, by including

complementary information in the blurred image along with the coded image as the

input, it is observed that the proposed algorithm is able to produce further improved

reconstruction results.

Yoshida et al. (2018) proposes a joint optimization method for optimizing the ex-

posure pattern jointly with the reconstruction weights. Although the proposed network

architecture does not cover optimizing the exposure pattern, since the network is de-
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signed to be end-to-end trainable, it can be easily extended for this task. However, this

is not covered in this project, but can be explored as a part of future work.

4.2 Ablation study on proposed architecture

Table 4.2: Ablation study on proposed architecture. The table lists PSNR(dB) and

SSIM of reconstructed videos for different architecture changes.

Exposure
Set-1 (33) Set-2 (16)

PSNR SSIM PSNR SSIM

Pixel-wise U-Net 30.86 0.919 31.43 0.907

coded SVC(16)+U-Net 30.89 0.921 31.56 0.910

SVC(64)+U-Net 31.14 0.925 31.76 0.914

Coded-two- coded & complement 32.19 0.935 32.31 0.919

bucket (C2B) coded & blurred 32.23 0.935 32.34 0.920

This section investigates some of the architectural choices that were made in developing

the proposed network. For the case of pixel-wise coded exposure system, Table 4.2

shows the performance of the proposed algorithm under different architecture changes

namely – U-Net, SVC(16) + U-Net and SVC(64) + U-Net. SVC refers to shift-variant

convolution and the following value specifies the number of channels in the feature-

map extracted by the SVC layer. The first architecture U-Net consists of the refinement

stage alone, without the inversion stage. As seen in the table 4.2, since U-Net is a deep

network, it is able to perform well, but with a room for improvement. In the second

architecture SVC(16) + U-Net, the shift-variant convolution layer extracts features of

16 channels from the input, which can be considered as an intermediate reconstruction

X̃ obtained from the inversion stage. There is an additional inversion loss Linv imposed

on the intermediate reconstruction, computed similar to Lref described in (3.10) as

follows.

Linv = ‖X̃ −X‖1 (4.1)

13



Therefore for the architecture SVC(16) + U-Net, the overall loss during training be-

comes

L = Lref + λinvLinv + λtvLtv (4.2)

where λinv and λtv are hyperparameters that weigh the loss function. For this analysis,

λinv was set to 0.5 and λtv to 0.1. The third architecture SVC(64) + U-Net is the

proposed architecture, where the shift-variant convolution layer extracts a feature-map

of 64 channels as described in section 3.2.1.

For the case of C2B exposure system, the best architecture from the above analysis

SVC(64) + U-Net was used to investigate video reconstruction from a pair of coded

exposure image I0 and complementary coded image I1, and reconstruction from a pair

of coded exposure image I0 and fully exposed image Ib. I0, I1 and Ib are measurements

obtained as described in section 3.1. As seen in the table 4.2, it was observed that

reconstruction from a pair of coded and blurred images produces the best results.

14



Coded exposure images

Reconstructed videos PSNR(dB) and SSIM

GMM (32) DNN (33)
Proposed method Proposed method

pixel-wise coded C2B

22.25, 0.747 22.69, 0.764 24.20, 0.828 24.93, 0.851

32.94, 0.973 35.53, 0.978 37.43, 0.986 40.26, 0.991

21.35, 0.753 21.67, 0.754 22.42, 0.796 22.99, 0.813

Figure 4.1: Visual comparison of video reconstruction results for different algorithms.

The figure shows reconstruction results for test videos from Set-1. Videos

can be viewed here.
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Coded exposure images

Reconstructed videos PSNR(dB) and SSIM

GMM (32) DNN (33)
Proposed method Proposed method

pixel-wise coded C2B

28.32, 0.861 28.97, 0.876 29.95, 0.904 30.38, 0.908

28.79, 0.927 29.32, 0.929 31.23, 0.954 32.27, 0.961

30.15, 0.930 30.91, 0.942 32.21, 0.954 34.50, 0.970

Figure 4.2: Visual comparison of video reconstruction results for different algorithms.

The figure shows reconstruction results for test videos from Set-1. Videos

can be viewed here.
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CHAPTER 5

CONCLUSION

In this project, a unified and flexible deep network architecture was proposed, that can

easily be adapted to various compressive imaging systems like flutter shutter, pixel-

wise coded exposure and coded-two-bucket systems. The proposed model is capable of

producing high-quality video reconstruction results, better than various existing state-

of-the-art reconstruction algorithms, as demonstrated through the figures and tables in

section 4. This project also analysed and evaluated various existing compressive sensing

systems and video reconstruction algorithms based on deep learning as well as analyt-

ical optimization methods. Through the study, it was proved that a fully-convolutional

deep network model is able to effectively reconstruct videos from the measurements

provided by various compressive sensing systems. While extracting a video from a

coded exposure image is a better-posed inversion problem compared to extracting video

from a fully exposed image, it is found that, by adding complementary information

found in the fully exposed image to the input, we are able to achieve further improved

reconstruction results. Coded-two-bucket exposure provides the essential complemen-

tary information required for superior video reconstruction, which is otherwise lost in

pixel-wise coded exposure sensors. The fact that the input pair of coded and blurred

images can be obtained using an existing compressive sensing architecture, makes this

proposed algorithm possible to be implemented for practical applications.
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