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ABSTRACT

KEYWORDS: Polarization Division Multiplexing, SS-PDM; DBP.

Modern optical communication systems are moving towards spectral efficient system

to address the increasing communication traffic. One way to achieve high spectral ef-

ficiency is to use Polarization Multiplexing (PM) technique along with higher order

modulation format such as QPSK and 16-QAM. Major issue in such system is polariza-

tion de-multiplexing in presence of impairments. Moreover advance modulation format

needs high OSNR at the receiver for good performance and thus needs high transmis-

sion power, but increase in transmitted power induces nonlinear effects and limits the

maximum reach of the link.

In this work, we have examined the mitigation techniques for polarization impairments

and nonlinear effects through simulations. We have compared the performance of

Stokes Space Polarization De-Multiplexing algorithm (SS-PDM) with Constant Mod-

ulus Algorithm (CMA). We further demonstrate the effect of nonlinear penalties in a

multi-span system. We present results on the mitigation strategies using digital back

propagation technique. We demonstrate a better performance of the link by using non-

linearity compensation. Our work concludes with the comparison of experimental data

for CMA and SS-PDM for 28 G baud single channel, PM-QPSK and PM-16QAM data.

Finally, we demonstrate 32 % increase in maximum reach for PM-QPSK 10.7 G baud

system through simulations through nonlinearity compensation. .
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CHAPTER 1

INTRODUCTION

Wireless communication networks are evolving to meet the capacity demand created

by multimedia applications. From 2G, 3G, 4G and Long Term Evolution (LTE) 4G,

the maximum capacity that must be supported by each mobile cell has progressively

increased. Mobile backhaul networks have to handle data rates in the orders of Gbps and

beyond. Optical fiber link with Gbps data rate are insufficient overcome the capacity

bottleneck of mobile backhauls, need to be updated for supporting higher data rates.

The solution to this should comply with the installed resources.

1.1 Coherent Communication - 100 G Standard

Coherent detection has enabled us to use higher order modulation formats, where in-

formation can be modulated in both amplitude and phase. Along with this, polarization

multiplexing technique can be used to give two fold increment in capacity. These higher

order modulation formats are vulnerable to impairments, so DSP equalization is neces-

sary at the receiver. The state of art for 100 Gbps communication system is to use polar-

ization multiplexed 25 G baud QPSK with DSP enabled coherent detection. Figure 1.1

shows block diagram of 100 Gbps communication link, where light from laser source

is split into two orthogonal polarizations termed as X and Y using polarization beam

splitter (PBS). These two polarizations are externally modulated with data using IQ

modulator. After modulation these two polarizations are combined using another PBS

and launched into fiber. At receiver end a PBS separates light into two orthogonal po-

larizations, which are then converted to electrical signal using coherent detection. The

electrical signal is then sampled using analog to digital converter (ADC). The transmit-

ted data is then recovered from sampled data after compensation of impairments using

digital signal processing (DSP).



Figure 1.1: Polarization Multiplexed Optical Communication System

1.2 Impairments in Coherent Optical Communication

Based on their origin, impairments in coherent optical communication can be broadly

categorized as transmitter - receiver impairments and channel impairments.

Transmitter - receiver impairments are primarily due to laser phase noise and frequency

offset. Laser phase noise is due to finite linewidth of laser which adds random phase

in signal. Frequency offset is finite detuning between the center frequencies of source

and receiver laser, which causes phase addition in signal. These impairments becomes

severe when information is modulated in phase as in higher order modulation format,

thus need to be compensated at receiver end.

Channel impairments are mainly: Chromatic Dispersion (CD), Polarization Mode Dis-

persion (PMD) and Kerr nonlinearity. CD occurs because of difference in group veloc-

ities of spectral components of signal. It originates because of the material and waveg-

uiding property of fiber, which causes broadening of pulse after propagation through

optical fiber. Standard algorithms are already developed by our group to mitigate laser

phase noise, frequency offset and chromatic dispersion compensation. In this thesis,

we address the polarization impairments and Kerr nonlinearity which are discussed in

details.
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1.2.1 Polarization Impairments

A Single Mode Fiber (SMF) allows two orthogonal polarizations to propagate with

same propagation characteristics. Imperfection in fiber because of the geometry or in-

duced stress due to environmental factors (mechanical stress, temperature variation),

introduces birefringence in fiber. Because of the birefringence, the group velocity of

the signal depends on the axis along which it is polarized. Let us consider a fiber with

Figure 1.2: PMD Figure 1.3: DGD Distribution

different refractive index along orthogonal directions (nX > nY ) (see Figure 1.2). A

optical pulse launched into fiber can be resolved into two orthogonal components X and

Y. Clearly Y component of the field will travel faster than the X component, resulting in

a pulse spread ∆τ after propagation, which is called Differential Group Delay (DGD).

Fiber can be considered as cascade of several birefringent sections, having different ori-

entation as well as amount of refractive index asymmetry. So the DGD will not be a

constant value. For a given length of fiber, it is empirically found that the DGD follows

Maxwellian distribution (Figure 1.3). Average of DGD (< ∆τ >) is termed as Polar-

ization Mode Dispersion (PMD) of fiber. PMD of the fiber is proportional to the square

root of length of fiber and the proportionality constant is PMD coefficient PMDc.

PMD ∝
√
L⇒ PMD = PMDc

√
L (1.1)

In polarization multiplexed system , SOP of the signal rotates due to fiber birefringence.

So the polarization beam splitter (PBS) at receiver end, does not give two independent

signals, but a linear combination instead (see Figure 1.4). This phenomenon is called

as Polarization Mixing. The presence of other polarization acts as noise in first polar-

ization. So in order to successfully demodulate the signal, these polarizations must be

separated.
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Figure 1.4: Polarization Mixing

1.2.2 Kerr Nonlinearity

Kerr Nonlinearity causes the refractive index of fiber to vary with square of instanta-

neous electric field intensity

ñ(ω, |E|2) = n(ω) + n2|E|2 (1.2)

where n2 is nonlinear refractive index related to third order susceptibility χ(3).

The change refractive index causes nonlinear phase modulation which can be catego-

rized as Self Phase Modulation(SPM) and Cross Phase Modulation(XPM). SPM is self

induced nonlinear phase modulation in optical field during propagation. The phase of

optical field is

φ = ñk0L = (n+ n2|E|2)k0L (1.3)

where k0 = 2π
λ

, is free space propagation constant, L is fiber length. The nonlinear

phase shift because of SPM is φNL given as

φNL = n2|E|2k0L (1.4)

XPM is nonlinear phase shift in optical field because of optical field at different state of

polarization, wavelength or direction (Agrawal (2007)).

1.3 Literature Review

Different DSP based approaches have been proposed for polarization de-multiplexing,

which are Kalman filter polarization state tracking, Constant Modulus Algorithm (CMA),
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Stokes space polarization de-multiplexing (SS-PDM). Kalman filter based algorithm

and CMA are recursive algorithm and its convergence depends on SOP of received sig-

nal and hence on initialization parameters value (Chagnon et al. (2012); Szafraniec et al.

(2010); Marshall et al. (2010)). CMA is most popular algorithm used for polarization

de-multiplexing. CMA with multiple taps can compensate polarization mode dispersion

(PMD). Convergence time of CMA can be reduced by using training symbols but it will

increase overhead and will need synchronization. Also CMA is related to modulation

format and hence, need to be changed if the modulation format changes. Thus CMA is

not suitable for adaptive optical packet network, burst mode coherent receivers and agile

network architectures. SS-PDM converges fast and can work in the presence of residual

carrier frequency, for any square M-QAM modulation format (Chagnon et al. (2012)).

SS-PDM algorithm can tolerate polarization dependent loss (PDL). Muga and Pinto

(2013) have demonstrated performance improvement in SS-PDM by digital PDL com-

pensation. Polarization mode dispersion degrades performance of SS-PDM. A modified

method is proposed, in which multi-tap CMA is initialized with SS-PDM. This modi-

fied algorithm has improved convergence speed, PDL tolerance, also it can compensate

PMD (Yu et al. (2013)). Muga and Pinto (2014) have proposed adaptive SS-PDM tech-

nique free of best fitting plane thus less complexity in computation.

Large bandwidth-distance product has been achieved using advance modulation for-

mats by full compensation of linear fiber impairments using digital equalization algo-

rithms. The performance of long haul link is limited by nonlinear impairments. Dif-

ferent DSP algorithms have been demonstrated to compensate nonlinear impairments

includes maximum a posteriori (MAP) detector, maximum likelihood sequence esti-

mator or Viterbi decoder, transmitter-based electronic precompensation, Volterra series

nonlinear equalizer (VSNE), receiver-based electronic phase rotation, extreme learn-

ing machine and digital back propagation (Napoli et al. (2014); Shen and Lau (2011)).

Viterbi decoder and MAP detector based compensation have extremely high complexity

for channel with memory and higher order modulation formats. VNSE is also limited

by computation complexity. Precompensation algorithm needs high speed DAC along

with prior knowledge of link (Millar (2011)). Digital Back Propagation (DBP) was

proposed as a universal technique for jointly compensating linear and nonlinear impair-

ment. It exploits physical behavior of channel and propagates signal to inverse channel

digitally (Ip and Kahn (2008)). Manakov equations were proposed instead of coupled
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polarization nonlinear Schrodinger equation (CP-NLSE) to reduce the computational

complexity. These equations were valid because of SOP rotation due to birefringence.

DBP involve switching between time and frequency domain, which make it computa-

tionally complex. So the research have been focused to reduce the complexity. Rafique

et al. (2011) have exploited the correlation of signal power between neighboring sym-

bols to reduce number of steps required for DBP. Zhu and Li (2012) proposed dispersion

folded DBP for dispersion managed link. Recent work by Guiomar et al. (2015) have

demonstrated simplified VSNE which is more efficient than DBP. Weighted VSNE is

proposed recently by Amado et al. (2015) and compared with weighted-SSFM. 80%

complexity reduction compared to standard SSFM using weighted-SSFM. Nonlinearity

compensation is still an active research topic.

1.4 Objectives

• Implement the Stokes space polarization de-multiplexing algorithm and compare
the performance with CMA algorithm.

• Implement Digital Back Propagation (DBP) algorithm and compensate for self
phase modulation and cross phase modulation.

1.5 Organization of Report

In this project work, we have considered two problem statements, polarization de-

multiplexing and fiber nonlinearity compensation. In chapter 2, CMA and SS-PDM

algorithm is discussed and simulation results are compared. Chapter 3 includes exper-

imental implementation of SS-PDM algorithm on 28 G baud data for PM-QPSK and

PM-16QAM, and comparison of experimental results. Digital back propagation is dis-

cussed in chapter 4. Finally, we conclude our work with scope of future work in chapter

5.
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CHAPTER 2

POLARIZATION DE-MULTIPLEXING

ALGORITHMS

In this chapter we will discuss constant modulus algorithm and Stokes space polariza-

tion de-multiplexing algorithm. The performance of these algorithms is compared for

impairments such as birefringence and polarization mixing in simulation environment

using MATLAB.

Polarization impaired signal is generated using Jones matrix as shown in following

equation Kikuchi (2008)

 Ex,out

Ey,out

 =

 √αpeiδ −
√

1− αp√
1− αp

√
αpe

−iδ

×
 Ex,in

Ey,in


where, Ex,in and Ey,in represent the electric field in two orthogonal polarizations at the

input of the fiber; Ex,out and Ey,out are the respective fields at the output of the fiber, αp

is power splitting ratio and δ is phase delay between the x and y polarizations. Here it is

assumed that polarization dependent loss (PDL) is zero, and Jones matrix is frequency

independent.

The polarization de-multiplexing algorithm aims to estimate the inverse of the above

Jones matrix ’M−1’. This inverse matrix when multiplied with the received signal vec-

tor gives de-multiplexed orthogonal polarizations Ex,dsp and Ey,dsp.

 Ex,dsp

Ey,dsp

 =

 √αpe−iδ √
1− αp

−
√

1− αp
√
αpe

iδ

×
 Ex,out

Ey,out



2.1 Constant Modulus Algorithm

Constant Modulus Algorithm (CMA) is a conventional algorithm used for polarization

de-multiplexing. Ideally, for QPSK modulation format, symbols should lie on a circle



Figure 2.1: CMA Figure 2.2: Butterfly structure

of constant radius ’R’ as shown in Figure 2.1. Polarization mixing deviates the received

symbols from the constant circle. CMA uses a DSP butterfly structure (shown in Figure

2.2) to adaptively estimate the inverse Jones matrix so that the symbols are forced to

circle of radius ’R’ (Kikuchi (2011)). The butterfly structure need to be initialized with

tap weights pxx, pxy, pyx and pyy, which are the elements of the inverse Jones matrix.

These tap weights are iteratively updated by calculating error for each processed output.

If y(k) = x(k)w(k) represent the processed symbol then error is given by

eCMA = |y(k)|2 −R2,

where x(k) and w(k) represent the input symbol and tap weights.

The tap weights are updated using following stochastic gradient update equation:

w(k + 1) = w(k)− µ.(eCMA).y(k).x(k)∗

where µ is the step size.

Initialization of equalizer and selection of step size is crucial in CMA. Improper tap

weights and step size can results in failure of the algorithm. From the above discussion

we can see that CMA will work only for constant modulus modulation format. This

algorithm need to be modified for modulation format such as 16-QAM. The modified

algorithm is known as Radially Directed CMA(RD-CMA). In 16-QAM modulation, the

symbols lie on circles of three different radii. So in RD-CMA, each received symbol

need to be compared with three different radii. Thus again threshold radii need to be set

8



appropriately, which might be erroneous in presence of noise and other impairments.

2.2 Stokes Space Polarization Demultiplexing Algorithm

SS-PDM algorithm consists of converting received waveforms into three dimensional

Stokes space and then estimating the inverse Jones matrix ’M−1’. Before discussing

the algorithm we first discuss in detail, about the Stokes space.

Stokes space is a way to represent polarization of light in 3D sphere, known as Poincare

sphere (Figure 2.31). Let the received horizontal and vertical optical signals that emerge

from the receiver’s polarization beam splitter are ex and ey , respectively. The Jones

vector that represents of the received optical signal is given as

E = 1√
2

 ex

ey

 = 1√
2

 axe
j(ωt+φx)

aye
j(ωt+φy)


where ax and ay are the amplitudes and φx and φy are the phases of the Jones vector.

The Jones vector representation in above equation can be transformed into Stokes

Figure 2.3: Poincare sphere Figure 2.4: Polarization in Stokes space

vectors representation using following relation (Yariv and Yeh (2006))

S =


S0

S1

S2

S3

 = 1
2


a2
x + a2

y

a2
x − a2

y

2axaycos∆φ

2axaysin∆φ


1
commons.wikimedia.org/wiki/File : Poincare − spherearrows.svg
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where ∆φ = φy − φx
The first component of the Stokes vector, S0 , represents total power, and remaining

components [S1S2S3]T represent 00 linear , 450 linear and circularly polarized light

respectively ( Figure 2.42). Polarization state is visualized in three dimensional space

using [S1S2S3]T vector.

Polarization Stokes vectors [S1S2S3]T

Linear 00 [ 1 0 0]T

Linear 900 [−1 0 0]T

Linear 450 [ 0 1 0]T

Left circular [ 0 0 1]T

Right circular [ 0 0− 1]T

Table 2.1: Stokes vectors for different polarizations

Table 2.2 shows all possible normalized Stokes vector for PM-QPSK. PM-QPSK

modulation format get mapped into four states in Stokes space (see Figure 2.5). Here

we see that this four states lie in plane S1 = 0.

Figure 2.6 shows transitions between symbols. In complex plane (constellation di-

X Y ∆φ Stokes vectors
1 1 1 1 00 [1 0 1 0]T

1 1 0 1 900 [1 0 0 1]T

1 1 1 0 −900 [1 0 0− 1]T

1 1 0 0 1800 [1 0− 1 0]T

Table 2.2: PM-QPSK Stokes vectors

Figure 2.5: PM-QPSK Figure 2.6: PM-QPSK with transitions

2
Basic Concepts in RADAR Polarimetry:Martin BOERNER
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agram) these transitions were linear and simple, but in Stokes space it takes complex

trajectory path. These transitions outline lens like object. The lens like object defines

a plane and we can see that normal of this plane contains linear horizontal and linear

vertical states. So it is the normal that identifies polarization states of transmission.

This lens like structure is formed by any arbitrary modulation format which can be

understood through following discussion. Lets consider a hypothetical modulation con-

fined to unit circle in complex plane. This modulation format incorporate all possible

modulation scenarios with boundation of unit circle. To make it simple lets fix ex as 1

and ey can take any complex value within unit circle. The Jones vector that represents

this optical field is:

E = 1√
2

 ex

ey

 = 1√
2

 1

rejφ


where 0 <= r <= 1 and 0 <= φ <= 2π. The corresponding Stokes vector will be

S =


S0

S1

S2

S3

 = 1
2


1 + r2

1− r2

2rcosφ

2rsinφ


These set of Stokes vector forms a paraboloidal surface in Stokes space (see Figure

2.7). A similar sets of Stokes vector can be generated with fixing ey as 1 and varying ex,

which will form a second paraboloidal surface. If both of optical waves take complex

value less than 1 then corresponding point will lie in lens structure. Thus formation of

lens like object is independent of modulation format (Szafraniec et al. (2010)).

Figure 2.7: Lens formation Figure 2.8: Polarization in Stokes space
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Fiber birefringence defines an axis in Stokes space, this axis is defined by the eigen-

states of polarization (eigenvectors of the matrix), i.e., polarization states that are main-

tained within the birefringent medium. All other polarization states evolve over the

length of the birefringent medium along arcs whose angular measures correspond to

the value of the birefringence and whose center is the birefringence axis. Clearly the

shape of the disk is preserved in such medium as all its points are rotated around the

same axis by the same angle (Szafraniec et al. (2010)). PM-QPSK modulation format

gets mapped into S1 = 0 plane (Figure 2.5), due to fiber birefringence and polariza-

tion mixing effect this plane rotates in 3-D space. Figure 2.8 shows rotated PM-QPSK

modulation format in Stokes space. The idea of de-multiplexing the polarization is

equivalent to rotating this plane back to S1 = 0 in Stokes space.

2.2.1 Algorithm steps

The received complex symbols are processed in following sequence for polarization

de-multiplexing:

• Set power threshold to select outermost constellation symbols, generate Stokes
vectors for these symbols.

• Estimate best fit plane containing the Stokes vectors, let say normal to the best fit
plane is [n1n2n3].

• Then the inverse matrix M−1 is given by (Chagnon et al. (2012))

M−1 =

[
cos (θ/2) ei∆φ/2 sin (θ/2) e−i∆φ/2

−sin (θ/2) ei∆φ/2 cos (θ/2) e−i∆φ/2

]
where

θ = arc tan

[√
n2

2+n2
3

n1

]
and ∆φ = arc tan

[
n3

n2

]
• The transmitted horizontal and vertical optical signals are finally obtained by the

following transformation [
eh
ev

]
= M−1

[
ex
ey

]
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Figure 2.9: PM-QPSK before and after SS-PDM

2.3 Simulation Model

Simulation have been carried out in MATLAB. A PRBS sequence of 216 length is trans-

mitted at 25 G baud rate. Impairments such as laser phase noise and frequency offset

were generated using Optilux codes 3. The transmitter and receiver laser linewidth is

taken as 500 KHz with frequency detuning of 1 GHz. Additive White Gaussian Noise

(AWGN) is added to maintain OSNR. Polarization impairments were generated using

Jones matrix as explained in beginning of chapter. Frequency offset is compensated

by using Periodogram technique. Decision Directed Least Mean Square (DD-LMS)

algorithm is used for laser phase noise compensation. Polarization impairments are

compensated by using either CMA or SS-PDM. Figure 2.9 shows constellation dia-

gram for PM-QPSK before and after processing with SS-PDM at 20 dB OSNR. Here

linewidth and frequency offset is set to zero for better visualization.

3http://optilux.sourceforge.net/
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2.3.1 Simulation Results

BER vs OSNR performance for PM-QPSK and PM16-QAM modulation format is com-

pared in Figure 2.10. We can see that the performance of SS-PDM algorithm is com-

parable to CMA. For these simulations linewidth and frequency offset is taken as 500

KHz and 1 GHz respectively.

PM-QPSK PM-16QAM

Figure 2.10: BER vs OSNR (back to back)

CMA SS-PDM

Figure 2.11: Convergence Plot for PM-QPSK (OSNR 20 dB)

Absolute value of the first row elements of inverse Jones matrix is plotted against

number of symbols to analyze speed of convergence of algorithm at 20 dB OSNR. For

CMA, convergence plot for PM-QPSK is shown for different step sizes 0.001, 0.005

and 0.01. We can see in Figure 2.11 that CMA with larger step size, leads to faster

convergence but converged value have larger fluctuation. It is evident that SS-PDM

converges faster than CMA.
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2.4 Summary

We can see that SS-PDM is a elegant polarization de-multiplexing technique for burst

mode receiver as it converges faster than CMA. Also SS-PDM technique does not have

any critical parameter such as initialization of filter tap and step size as in case of CMA.

Other aspect is that unlike CMA, SS-PDM is modulation format independent. We have

observed that BER vs OSNR performance of SS-PDM is comparable to CMA, also

that SS-PDM converges faster then CMA. In the following chapter we will discuss the

performance of SS-PDM and CMA through result of post-processing of experimental

data.
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CHAPTER 3

EXPERIMENTAL RESULTS

The Stokes space polarization de-multiplexing algorithm (SS-PDM) was tested using

simulation data in the previous chapter, and we find that SS-PDM has the capability

of de-multiplexing the polarization states for any modulation format. We have demon-

strated that SS-PDM achieves faster convergence than CMA . So these algorithms are

next tested on the experimental data. These experiments were performed in the high

speed communication lab at Sterlite Technologies, Aurangabad. In this chapter, we will

discuss the experimental setup, the DSP algorithm sequence and results.

3.1 Experimental Setup

The schematic of experimental set up is shown in Figure 3.1. At transmitter side, two

sets of 40 narrow linewidth lasers spaced 100 GHz apart are combined by a polarization

maintaining (PM) arrayed waveguide grating. This set up produces 80 optical channels

with 50 GHz separation covering the entire C band. For our experiment only one of

this channel is used. The optical signal from arrayed waveguide grating is fed to an

optical multi-format transmitter (OMFT) consisting of a pair of IQ-modulators with

polarization multiplexing capability. The OMFT is driven by 4 parallel electrical data

channels generated by a 34 G samples/s arbitrary waveform generator (AWG) at the

rate of 28 G baud. The modulated signal (a PRBS of length of 231− 1 bits) is then pass

through a decorrelator. For back to back configuration optical signal from decorrelator

is mixed with the noise generated from erbium-doped fiber amplifier(EDFA) and then

taken to pre-amplifier at receiver. For optical channel configuration, the signal from

optical decorrelator is transmitted over 12 spans, each of length 80 km, of standard

G652.D Sterlite OH-LITE fibers with an initial launch power of 0 dBm. The loss of each

span(17 dB) is compensated with a variable gain EDFA. No dispersion compensation is

used in the link. The received signal is amplified and applied to a phase and polarization

diverse coherent receiver. This is followed by a 63 G Samples/s Keysight analog to



digital converter (ADC) which captures the in-phase and quadrature-phase data of each

polarization in the digital domain.

The experiment has been done for PM-QPSK and PM-16QAM supporting data rate of

112 Gbps and 224 Gbps, each with two different cases:

• PM-QPSK back to back with variation of OSNR

• PM-QPSK with variation of number of spans

• PM-16QAM back to back with variation of OSNR

• PM-16QAM with variation of number of spans

Figure 3.1: Experimental setup Figure 3.2: DSP algorithm sequence

3.2 Off-line DSP Sequence

The data collected from the ADC is then processed with a sequence of DSP algo-

rithms as shown in Figure 3.2. The data is first re-sampled and pre-processed. The

pre-processing step sets mean to zero and normalizes the data. After that CD compen-

sation algorithm is applied. For back to back configuration this step is skipped. Next

step is polarization de-multiplexing, which is done with either CMA or SS-PDM. Then

after frequency offset is compensated, the signal is down-sampled and synchronized.

Thereafter IQ imbalance correction and phase noise compensation is done. Later de-

modulation is done and performance of the system is evaluated by calculating BER.
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3.3 Results

Experimental data is impaired with IQ skew, because of which outer most symbols have

difference in magnitude. This will produce unequal number of points for each cluster,

So if power threshold is kept high, estimation of inverse Jones matrix will be affected.

In the following results 500 number of symbols were taken for estimation of inverse

(a) (b) (c) (d)

Figure 3.3: Constellation diagram PM-QPSK processing after (a) SS-PDM (b) Fre-
quency offset compensation (c) IQ imbalance correction (d) Phase noise
compensation

Jones matrix. Figure 3.3 shows constellation diagram for PM-QPSK at different stage

of processing. BER vs OSNR curve is shown in Figure 3.4 for PM-QPSK and PM-

16QAM. Both of the algorithm are performing almost same except some cases where

CMA is giving worse BER than SS-PDM. These are the cases where power splitting

ratio (αp) is close to 0.5.

PM-QPSK PM-16QAM

Figure 3.4: BER vs OSNR (back to back)
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PM-QPSK PM-16QAM

Figure 3.5: BER vs Span

Similarly in BER vs Span plot (see Figure 3.5) for PM-QPSK and PM-16QAM,

both algorithm have similar performance. For PM-QPSK we could reach forward error

correction (FEC) limit (4.4 × 10−3). The bias of IQ-modulator drifts over time, which

produces un-equispaced constellation.

PM-QPSK PM-16QAM

Figure 3.6: Recovered constellation

The effect of IQ modulator drift can be observed in Figure 3.6, which shows recov-

ered constellation after all processing steps. IQ modulator drift effect will be severe for

16-QAM, thus BER for PM-16QAM data did not reach FEC limit.

3.4 Summary

In this chapter we have discussed the processing of 28 G baud experimental data for

PM-QPSK and PM-16QAM modulation format. The BER vs OSNR and BER vs Span

comparison has been done for both SS-PDM and CMA. The performance of both algo-

rithm is comparable. CMA performance is poorer than SS-PDM in cases of 0.5 power

splitting ratio. In the following chapter we will discuss the nonlinearity compensation

using Digital Back Propagation.
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CHAPTER 4

DIGITAL BACK PROPAGATION

In this chapter we will discuss the field propagation in fiber, nonlinear channel models

and algorithm. Self Phase Modulation and Cross Phase Modulation is simulated and

compensated using DBP.

4.1 Field Propagation in Fiber

Field propagation in optical fiber can be described through its physical parameters : at-

tenuation constant α, dispersion parameter β2 and nonlinear coefficient γ. The simplest

approximation of propagation of electric field E is provided by Nonlinear Schrodinger

Equation Agrawal (2007)

∂E

∂z
=
jβ2

2

∂2E

∂t2
− jγ|E|2E − α

2
E (4.1)

where z is propagation axis.

Equation 4.1 models field propagation for single polarization transmission. For polar-

ization multiplexed system, linear and nonlinear interaction of two polarization must

have to be considered. Thus the equation 4.1 need to be transformed into vectorized

form as:

∂EX
∂z

= −α
2
EX +

jβ2

2

∂2EX
∂t2

− jγ
(
|EX |2 +

2

3
|EY |2

)
EX −

jγ

3
E∗XE

2
Y

∂EY
∂z

= −α
2
EY +

jβ2

2

∂2EY
∂t2

− jγ
(
|EY |2 +

2

3
|EX |2

)
EY −

jγ

3
E∗YE

2
X

(4.2)

where EX and EY are orthogonal polarization components of electric field. Since the

polarization states of electric field changes rapidly inside fiber due to residual birefrin-

gence, the resulting nonlinearity corresponds to an average over entire Poincare sphere

(Napoli et al. (2014)). This results into Manakov equation. Manakov equations are



more applicable for distances longer than 1000 km.

∂EX
∂z

= −α
2
EX +

jβ2

2

∂2

∂t2
EX − jγ

8

9

(
|EX |2 + |EY |2

)
EX

∂EY
∂z

= −α
2
EY +

jβ2

2

∂2

∂t2
EY − jγ

8

9

(
|EX |2 + |EY |2

)
EY

(4.3)

4.2 Split Step Fourier Method

The forward propagation equation can be written as (Agrawal (2007)):

∂E

∂z
= (N̂ + D̂)E (4.4)

where D̂ and N̂ are dispersion and nonlinear operator defined as

D̂ = jβ2

2
∂2

∂t2
,

N̂ = −α
2
− jγ 8

9

(
EHE

)
E, and

E = [EX EY ]T

The solution of equation 4.4 is as follows:

E(z + h, t) = eh(D̂+N̂)E(z, t) (4.5)

where z is current position in span, t is time and h is step size. Above solution can be

approximate for sufficiently small step size h by split step fourier method (SSFM) as:

eh(D̂+N̂)E(z, t) ≈ ehD̂ehN̂E(z, t) (4.6)

That means each span consists of linear and nonlinear parts cascaded. A common

refinement in equation is to evaluate the nonlinear part of the solution with a constant

envelope profile and varying intensity. This modification allows larger step sizes to

be used as the equation does not imply constant power throughout the step. If it is

assumed that over nonlinear part the only change in the electric field is loss, the solution

of nonlinear part can be normalized to the varying power profile within the step and the
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loss term can be removed (Millar et al. (2010)).

N̂ ′(E′, z′) =

∫ z+h

z

N̂(E′, z′)dz′

=
1− e(−αh)

α
N̂(E, z′)

= LEffN̂(E, z′),where

E′(z + h, T ) = e(−αh/2)E(z, T )

(4.7)

The approximation in equation gives us a nonlinear step which includes loss and the

total nonlinear phase shift over the spatial step. This is effectively a multiplication by

the effective nonlinear length LEff , given by

LEff =
1− e(−αh)

α
(4.8)

Dispersion operator can be applied in two equal parts before and after nonlinear operator

to improve accuracy, which results in symmetric SSFM.

eh(D̂+N̂)E(z, T ) ≈ e

(
hD̂
2

)
eLEffN̂e

(
hD̂
2

)
E (z, T ) (4.9)

4.3 Nonlinear Models

Each SSFM method can be described in mainly three different nonlinear models which

are: the Wiener model, which is cascade of a linear block followed by a memoryless

nonlinear block (Figure 4.1(a)), the Hammerstein model, which consists of a mem-

oryless nonlinear block followed by a linear block (Figure 4.1(b)), and the Wiener

- Hammerstein model, which represents the concatenation of the Wiener and Ham-

merstein models, that is, a linear block followed by a memoryless nonlinear block,

followed by a second linear block (Figure 4.1(c)) (Millar et al. (2010)). Clearly, the

Wiener-Hammerstein model represents symmetric SSFM. These models as cascaded

forms complete channel. The Wiener-Hammerstein model gives better accuracy than

Wiener model for same step size. Solution of Manakov equation need to be performed at

receiver over noisy signal and it should be least complex. Recent research demonstrates

that DBP with single nonlinear step per span with bulk step is sufficiently accurate

solution of Manakov equation (Millar (2011)).
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(a) (b) (c)

Figure 4.1: Nonlinear channel model (a) Wiener (b) Hammerstein (c) Wiener Hammer-
stein

4.4 Digital Back Propagation Algorithm

The DBPs have two variations - the Wiener model based or the Weiner-Hammerstein

model based. We have considered Wiener model. Dispersive and Nonlinear operators

are applied in frequency domain and time domain respectively (Millar et al. (2010)).

exp(hD̂)E = F−1{exp(hF{D̂})F{E}}

N̂(t, zNL) = jϕzNL(|EX(t)|2 + |EY (t)|2)PL

(4.10)

Here PL is lauch power, zNL is nonlinear step size and φ is a constant to be optimized.

If step size is smaller than span length then exponentially attenuating power profile need

to be considered. So the nonlinear operator modified as

N̂(t, zNL) = jϕ10(sL/10n)zNL(|EX(t)|2 + |EY (t)|2)PL (4.11)

where n is number of steps per span, s is step index and L is loss in dB for each span.

4.5 Simulation Model and Results

Simulation model is similar to what is explained in chapter 2 with addition of nonlinear

effect SPM and XPM. QPSK signal at 10.7 G baud rate is transmitted with different

launch power over a link of 2560 Km (32 span). Simulation parameters are tabulated

(see Table 4.1). Transmitter and receiver laser linewidth are 1 MHz and 10 KHz re-

spectively. Local oscillator to signal power ratio is taken as 24 dB. DBP is modeled

as the Weiner model. EDFA’s are considered to have saturated gain of 17 dB, which is

then attenuated to maintain same input power for each span. Average PMD coefficient

is considered as 0.1ps/
√
km. Nonlinear phase modulation was simulated using SSFM

with step size of 10km. Error Vector Magnitude is calculated to estimate BER. Q fac-

tor is plotted against launched power for without any nonlinear compensation (NLC)
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and with BP-1S (i.e. DBP with step size of 1 span) (see Figure 4.2). We can see that

-3 dBm is optimum launch power without NLC, and the Q factor starts decreasing if

launch power is increased due to nonlinear effect. Nonlinear phase rotation is compen-

sated by BP-1S with Q factor improvement of 0.73 dB.

Figure 4.2: Q factor vs launch power Figure 4.3: Maximum reach of PM-QPSK

Now after plotting Q factor improvement, we can apply BP-1S to increase maximum

reach of system. Maximum reach of system is taken as longest length to maintain

10−3 BER or equivalently Q factor of 9.8 dB. For this simulation, receiver side ADC

resolution is included, which is assumed to be 4 bits. Maximum reach is plotted with

Parameters Value
α[dB/km] 0.19

D[ps/km/nm] 16.87
γ[1//W/km] 1.2

Span length [km] 80.2
Optical filter bandwidth [GHz] 100

EDFA noise figure [dB] 4.5

Table 4.1: Fiber link parameters

and without NLC in Figure 4.3. Optimum launch power is -4 dBm and longest reach is

4000 Km for case of without NLC. Optimum launch power for BP-1S is -3 dBm with

longest reach of 5280 Km. Clearly we see that BP-1S has increased the reach of the

link by 32%.

4.6 Summary

DBP is universal technique for joint compensation of linear and nonlinear impairments.

It enhances nonlinearity tolerance of system and enables system to perform in low

OSNR. QPSK and 16-QAM signal can be transmitted to longer distances using receiver

with DSP along with DBP.
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CHAPTER 5

CONCLUSION

5.1 Summary of work done

We have done simulations to study the impairments in polarization multiplexed com-

munication systems with higher order modulation format such as QPSK and 16-QAM.

We have implemented Stokes space polarization de-multiplexing(SS-PDM) algorithm.

A comparative study has been done for SS-PDM algorithm and constant modulus algo-

rithm (CMA). We have compared convergence of both algorithm through simulation.

28 G baud experimental data for PM-QPSK and PM-16QAM were processed with both

of the algorithm and comparative results have been produced.

We have studied nonlinear phase modulation in optical fiber due to Kerr nonlinear-

ity. We have simulated the effect of self phase modulation and cross phase modulation.

We have implemented Digital Back Propagation algorithm to compensate nonlinear ef-

fect in polarization multiplexed system. Simulations have been done to find optimum

step size parameter. We have shown that significant improvement can be achieved using

DBP. We have improved maximum reach of PM-QPSK 10.7 G baud system by 20%,

using digital back propagation. Finally we have discussed realization of DBP.

5.2 Scope for future work

SS-PDM algorithm can be extended for polarization dependent loss compensation. Po-

larization mode dispersion tolerance can be improved using Kalman filter. SS-PDM

can be used to initialize filter tap in multiple tap CMA. Such algorithm can compen-

sate PMD, with fast convergence. Complexity of SS-PDM can be reduced by using

geometrical approach, which does not require best plane fitting. Kalman filter based

polarization state and carrier tracking algorithm can also be exploited.

A detailed investigation of DBP algorithm need to done to reduce its complexity by



exploiting DSP technique. DBP algorithm can be extended to compensate for cross

phase modulation in wavelength division multiplexed (WDM) systems . Volterra series

nonlinear equalizer can be implemented in simulations. Nonlinear phase noise (NLPN)

should also be addressed using simulations.
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APPENDIX A

MATLAB simulation codes

Code for Stokes Space Polarization De-Multiplexing Algorithm

1 f u n c t i o n [ E_x_dmx , E_y_dmx , M_inv ] = s t o k e s _ s p a c e _ v 0 4 (

E_x_mx , E_y_mx , P th )

2 % PROGRAM : POLARIZATION DUMULTIPLEXING USING STOKES

SPACE

3 % AUTHORS : VINOD BAJAJ

4

5 g l o b a l ideal_IQ_RMS

6 s c a l e _ x = modnorm ( E_x_mx , ’ avpow ’ , ideal_IQ_RMS . ^ 2 ) ; %

s c a l e down t h e Rx c o n s t e l l a t i o n power

7 s c a l e _ y = modnorm ( E_y_mx , ’ avpow ’ , ideal_IQ_RMS . ^ 2 ) ; %

t o i d e a l c o n s t e l l a t i o n power

8 E_x_mx = E_x_mx∗ s c a l e _ x ;

9 E_y_mx = E_y_mx∗ s c a l e _ y ;

10 P = abs ( E_x_mx ) . ^2+ abs ( E_y_mx ) . ^ 2 ; %

c a l c u a l a t e power

11 Pnorm = sum ( P ) / l e n g t h ( P ) ;

12 P = P / Pnorm ; % n o r m a l i z e d power v e c t o r

13 i n d e x = f i n d ( P> Pth ) ; %% S e l e c t symbols wi th

power > Pth%

14 n_e lmnt = l e n g t h ( i n d e x )

15

16 RX_x_th = z e r o s ( n_elmnt , 1 ) ;

17 RX_y_th = z e r o s ( n_elmnt , 1 ) ;

18 f o r i = 1 : n_e lmnt

19 l o c = i n d e x ( i ) ;

20 RX_x_th ( i , 1 ) = E_x_mx ( l o c ) ;

21 RX_y_th ( i , 1 ) = E_y_mx ( l o c ) ;



22 end

23 [ RX_X_angle , RX_X_mag ] = c a r t 2 p o l ( r e a l ( RX_x_th ) , imag (

RX_x_th ) ) ;

24 [ RX_Y_angle , RX_Y_mag ] = c a r t 2 p o l ( r e a l ( RX_y_th ) , imag (

RX_y_th ) ) ;

25 d_ph i = ( RX_Y_angle−RX_X_angle ) ;

26 St = z e r o s ( l e n g t h ( RX_x_th ) , 3 ) ;

27 St ( : , 1 ) = 0 . 5 ∗ ( RX_X_mag.^2−RX_Y_mag . ^ 2 ) ; %

c a l c u l a t e S t o k e s v e c t o r s

28 St ( : , 2 ) = RX_X_mag . ∗RX_Y_mag .∗ cos ( d_ph i ) ;

29 St ( : , 3 ) = RX_X_mag . ∗RX_Y_mag .∗ s i n ( d_ph i ) ;

30

31 % a d d p a t h t o f i t N o r m a l f u n c t i o n

32 f i g u r e ( 1 ) ; P_ho le = f i t N o r m a l ( St , 1 ) ; % f u n c t i o n t o

e s i m a t e b e s t f i t p l a n e

33 i f P_ho le ( 2 ) <0

34 P_ho le = −P_ho le ;

35 end

36 t h e t a _ F = acos ( d o t ( P_hole , [ 1 0 0 ] ) ) ∗180 / p i ;

37 ALP = 0 . 5∗ t h e t a _ F ;

38 PHI = a t a n ( P_ho le ( 3 ) / P_ho le ( 2 ) ) ∗180 / p i ;

39 i f PHI<0

40 PHI = 180 + PHI ;

41 end

42

43 a _ r = ALP ∗ p i / 1 8 0 ;

44 p_r = PHI∗ p i / 1 8 0 ;

45 a_c = cos ( a _ r ) ∗ exp (1 i ∗ p_r / 2 ) ;

46 b_c = s i n ( a _ r ) ∗ exp (−1 i ∗ p_r / 2 ) ;

47 M_inv = [ a_c b_c ; . . . % i n v e r s e

J o n e s m a t r i x

48 −c o n j ( b_c ) c o n j ( a_c ) ] ;

49 E_dmx = M_inv ∗ [ E_x_mx . ’ ; E_y_mx . ’ ] ;
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50 E_x_dmx = E_dmx ( 1 , : ) . ’ ; %

d e m u l t i p l e x e d p o l a r i z a t i o n s

51 E_y_dmx = E_dmx ( 2 , : ) . ’ ;

52 end

—————————————————————————————————-

Code for estimating best fit plane

1 f u n c t i o n n = f i t N o r m a l ( da t a , show_graph )

2 %FITNORMAL − F i t a p l a n e t o t h e s e t o f S toke v e c t o r s

3

4 %For a p a s s e d l i s t o f p o i n t s i n ( x , y , z ) c a r t e s i a n

c o o r d i n a t e s ,

5

6 i f n a r g i n == 1

7 show_graph = f a l s e ;

8 end

9

10 f o r i = 1 : 3

11 X = d a t a ;

12 X ( : , i ) = 1 ;

13

14 X_m = X’ ∗ X;

15 i f d e t (X_m) == 0

16 c a n _ s o l v e ( i ) = 0 ;

17 c o n t i n u e

18 end

19 c a n _ s o l v e ( i ) = 1 ;

20

21 % C o n s t r u c t and n o r m a l i z e t h e normal

v e c t o r

22 c o e f f = (X_m) ^−1 ∗ X’ ∗ d a t a ( : , i ) ;

23 c_neg = −c o e f f ;

24 c_neg ( i ) = 1 ;
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25 c o e f f ( i ) = 1 ;

26 n ( : , i ) = c_neg / norm ( c o e f f ) ;

27

28 end

29

30 i f sum ( c a n _ s o l v e ) == 0

31 e r r o r ( ’ P l a n a r f i t t o t h e d a t a ca us ed a

s i n g u l a r m a t r i x . ’ )

32 r e t u r n

33 end

34

35 % C a l c u l a t i n g r e s i d u a l s f o r each f i t

36 c e n t e r = mean ( d a t a ) ;

37 o f f _ c e n t e r = [ d a t a ( : , 1 )−c e n t e r ( 1 ) d a t a ( : , 2 )−

c e n t e r ( 2 ) d a t a ( : , 3 )−c e n t e r ( 3 ) ] ;

38 f o r i = 1 : 3

39 i f c a n _ s o l v e ( i ) == 0

40 r e s i d u a l _ s u m ( i ) = NaN ;

41 c o n t i n u e

42 end

43

44 r e s i d u a l s = o f f _ c e n t e r ∗ n ( : , i ) ;

45 r e s i d u a l _ s u m ( i ) = sum ( r e s i d u a l s .∗

r e s i d u a l s ) ;

46

47 end

48

49 % Find t h e l o w e s t r e s i d u a l i n d e x

50 b e s t _ f i t = f i n d ( r e s i d u a l _ s u m == min ( r e s i d u a l _ s u m )

) ;

51

52 % P o s s i b l e t h a t e q u a l mins so j u s t use t h e f i r s t

i n d e x found
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53 n = n ( : , b e s t _ f i t ( 1 ) ) ;

54

55 i f ~ show_graph

56 r e t u r n

57 end

58

59 r a n g e = max ( max ( d a t a ) − min ( d a t a ) ) / 2 ;

60 mid_pt = ( max ( d a t a ) − min ( d a t a ) ) / 2 + min ( d a t a ) ;

61 xl im = [−1 1 ] ;

62 yl im = [−1 1 ] ;

63 z l im = [−1 1 ] ;

64 % xl im = [−1 1]∗ r a n g e + mid_pt ( 1 ) ;

65 % yl im = [−1 1]∗ r a n g e + mid_pt ( 2 ) ;

66 % zl im = [−1 1]∗ r a n g e + mid_pt ( 3 ) ;

67

68 Pno = s q r t ( ( abs ( d a t a ( : , 1 ) ) . ^2+ abs ( d a t a ( : , 2 ) ) . ^2+ abs (

d a t a ( : , 3 ) ) . ^ 2 ) ) ;

69

70 d a t a ( : , 1 ) = d a t a ( : , 1 ) . / Pno ;

71 d a t a ( : , 2 ) = d a t a ( : , 2 ) . / Pno ;

72 d a t a ( : , 3 ) = d a t a ( : , 3 ) . / Pno ;

73

74 L= p l o t 3 ( d a t a ( : , 1 ) , d a t a ( : , 2 ) , d a t a ( : , 3 ) , ’ r . ’ , ’

M a r k e r f a c e c o l o r ’ , ’ r ’ ) ; % P l o t t h e o r i g i n a l d a t a

p o i n t s

75 ho ld on ;

76 %% p l o t t i n g s p h e r e

77 [ x , y , z ] = s p h e r e ( 1 8 ) ;

78 M = mesh ( x , y , z ) ;

79 s e t (M, ’ f a c e a l p h a ’ , 0 )

80 s e t (M, ’ e d g e c o l o r ’ , [ . 8 . 8 . 8 ] )

81 t c = l i n s p a c e ( 0 , 2∗ p i ) ;

82 zc = cos ( t c ) ;
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83 yc = s i n ( t c ) ;

84 xc = 0∗ t c ;

85 ho ld on ;

86 p l o t 3 ( xc , yc , zc , ’ g ’ , ’ LineWidth ’ , 2 ) ; ho ld on ;

87 p l o t 3 ( zc , yc , xc , ’ y ’ , ’ LineWidth ’ , 2 )

88 %% p l o t t i n g p l a n e f o r normal

89 c e n t e r = [0 0 0 ] ;

90 d = −c e n t e r ∗n ; %’# d o t p r o d u c t f o r l e s s t y p i n g

91 [ xx , yy ]= meshgr id ( −1 : . 0 5 : 1 , −1 : . 0 5 : 1 ) ;

92 % %# c a l c u l a t e c o r r e s p o n d i n g z

93 z = (−n ( 1 ) ∗xx − n ( 2 ) ∗yy − d ) / n ( 3 ) ;

94 P = s u r f ( xx , yy , z ) ;

95 s e t ( P , ’ f a c e a l p h a ’ , 0 )

96 s e t ( P , ’ e d g e c o l o r ’ , [ . 7 . 7 . 9 ] )

97 %%

98

99 s e t ( g e t ( L , ’ P a r e n t ’ ) , ’ D a t a A s p e c t R a t i o ’ , [ 1 1 1 ] , ’

XLim ’ , xlim , ’YLim ’ , ylim , ’ZLim ’ , z l im ) ;

100

101 % norm_data = [ mean ( d a t a ) ; mean ( d a t a ) + ( n ’ ∗ r a n g e

) ]

102 o r i g i n _ = [0 0 0 ] ;

103 norm_data = [ o r i g i n _ ; o r i g i n _ + ( n ’ ∗ r a n g e ) ] ;

104 i f norm_data ( 2 , 2 ) <0

105 norm_data ( 2 , : ) = −norm_data ( 2 , : ) ;

106 end

107 % P l o t t h e o r i g i n a l d a t a p o i n t s

108 L= p l o t 3 ( norm_data ( : , 1 ) , norm_data ( : , 2 ) , norm_data

( : , 3 ) , ’ b−’ , ’ LineWidth ’ , 3 ) ;

109 s e t ( g e t ( g e t ( L , ’ p a r e n t ’ ) , ’ XLabel ’ ) , ’ S t r i n g ’ , ’ x ’ , ’

F o n t S i z e ’ , 1 4 , ’ FontWeight ’ , ’ bo ld ’ )

110 s e t ( g e t ( g e t ( L , ’ p a r e n t ’ ) , ’ YLabel ’ ) , ’ S t r i n g ’ , ’ y ’ , ’

F o n t S i z e ’ , 1 4 , ’ FontWeight ’ , ’ bo ld ’ )
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111 s e t ( g e t ( g e t ( L , ’ p a r e n t ’ ) , ’ ZLabel ’ ) , ’ S t r i n g ’ , ’ z ’ , ’

F o n t S i z e ’ , 1 4 , ’ FontWeight ’ , ’ bo ld ’ )

112 t i t l e ( s p r i n t f ( ’ Normal V ec to r : <%0.3 f , %0.3 f , %0.3

f > ’ , n ) , ’ FontWeight ’ , ’ bo ld ’ , ’ F o n t S i z e ’ , 1 4 )

113 g r i d on ;

114 a x i s s q u a r e ;

115 x l a b e l ( ’ S_1 ’ , ’ F o n t S i z e ’ , 1 4 , ’ FontWeight ’ , ’ bo ld ’ , ’ Co lo r

’ , ’ b l a c k ’ ) ;

116 y l a b e l ( ’ S_2 ’ , ’ F o n t S i z e ’ , 1 4 , ’ FontWeight ’ , ’ bo ld ’ , ’ Co lo r

’ , ’ b l a c k ’ ) ;

117 z l a b e l ( ’ S_3 ’ , ’ F o n t S i z e ’ , 1 4 , ’ FontWeight ’ , ’ bo ld ’ , ’ Co lo r

’ , ’ b l a c k ’ ) ;

118

119 ho ld o f f ;

120 end

—————————————————————————————————-

Code for Digital Back Propagation Algorithm

1 f u n c t i o n [ x , y ]= d b p _ s t e p 3 ( u , v , Nspan , gam_m , b e t a t , Ptx , n , z ,

p h i )

2 %

3 % PROGRAM : COMPENSATION OF SPM and XPM ( s i n g l e c h a n n e l )

4 % AUTHORS : VINOD BAJAJ

5

6 % Code f o r BP−n S

7 % Ptx i s i n mW, each span t r e a t e d as s i n g l e s t e p ,

8 % z i s l e n g t h 8 0 . 2 km

9 % p h i needs t o be o p t i m i z e d . .

10 % dz = s t e p s i z e

11 % n s t a n d s f o r BP−nS

12 % gam_m = n o n l i n e a r p a r a m e t e r i n 1 /mW/ km

13

14 dz = z / n ;
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15 a l p h a l i n = 4 .6052 e−05;

16 l e f f = (1−exp(− a l p h a l i n ∗dz ) ) / a l p h a l i n ; % e f f e c t i v e

l e n g t h

17 Hxx = f a s t e x p ( b e t a t ∗dz ) ;

18 g a m l e f f = gam_m∗ p h i ∗ l e f f ∗Ptx ;

19 f o r j k = 1 : Nspan∗n

20 pow = ( r e a l ( u ) . ^ 2 + imag ( u ) . ^ 2 ) +( r e a l ( v ) . ^ 2 +

imag ( v ) . ^ 2 ) ;

21 p h i _ n l =pow .∗ g a m l e f f ;

22 u = u . ∗ f a s t e x p ( p h i _ n l ) ;% N o n l i n e a r c o m p n e s a t i o n

23 v = v . ∗ f a s t e x p ( p h i _ n l ) ;%

24 ux = f f t ( u ) ;

25 vx = f f t ( v ) ;

26 ux = Hxx . ∗ ux ; % L i n e a r c o m p n e s a t i o n /

D i s p e r s i o n c o m p e n s a t i o n

27 vx = Hxx . ∗ vx ;

28 u= i f f t ( ux ) ;

29 v= i f f t ( vx ) ;

30 end

31 x = u ; % compensa ted d a t a

32 y = v ;
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