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ABSTRACT

KEYWORDS: Pendubot, Under-actuated system, Partial feedback linearization,

Lyapunov function and Pole-placement.

Swing up control and stabilization of the Pendubot about the upright position is con-

sidered in this thesis. Pendubot is a two-link manipulator with a single actuator. The

goal is to swing the pendubot from the stable downward position to the unstable up-

right position and balance it there. This is achieved using two control strategies. Us-

ing swing up control, the Pendubot reach the close vicinity of the up-right position

from the downward position. Once it is close to the upright position, the control is

switched to balancing control for stabilizing the Pendubot about the upright position.

Two swing up control strategies are presented here. First, Partial feedback linearization

technique which introduce a double integrator system, is presented. Secondly, energy

based approach using passivity property of the Penubobot is seen. For stabilization of

the Pendubot about the unstable upright position, the nonlinear model of the Pendubot

is linearized about the desired position and state feedback control law is designed to

make the resulting system matrix Hurwitz using pole-placement method. Finally, the

simulation and experiment results of the control strategies are presented.
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CHAPTER 1

Introduction

The Pendubot, a two-link robot manipulator with workspace in a vertical plane, was

introduced by Daniel J. Block in his master’s thesis [Block, 1996]. Pendubot is a variant

of Acrobot (see Spong [1995]) with difference only in the actuation. The Acrobot has

active elbow joint, where as, the Pendubot has active shoulder joint.

1.1 Pendubot

The Pendubot is a two link planar robot manipulator as shown in Figure 2.1. It comes

under the class of under-actuated systems since it has less actuators than the number of

degrees of freedom . The shoulder joint is active, where as, the elbow joint is passive

providing unconstrained 360◦ rotation to link 2.
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m2, I2
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lc2

l2

y

x

g
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Figure 1.1: Pendubot Schematic

The mathematical model of the Pendubot is presented in [Block, 1996]. By virtue

of passive elbow joint, the model has second order dynamic constraint on the states.



The Pendubot is a second order non-holonomic system because integrability condition

on the constraint is not satisfied (see [Zhang and Tarn, 2002]). The Pendubot, being a

nonholonomic system, satisfies the Brockett’s necessary condition for smooth asymp-

totic stabilizability. However, Brockett’s necessary condition will not be satisfied, if

there are no gravitational terms in the mathematical model. In such cases, non smooth

control has to be employed for asymptotic stabilization to the upright position.

1.2 Swing up control

Swing up control brings the Pendubot from the stable downward position to the unstable

upright position. There exist many ways of achieving the swing up control as reported

in [Block, 1996; Fantoni et al., 2002; Consolini and Maggiore, 2011], but, in this thesis,

only two distinct control strategies are considered.

First, partial feedback linearization technique in [Spong, 1995; Block, 1996] is con-

sidered. Due to under-actuated nature of the system, the system is not feedback lineariz-

able. Hence, with partial feedback linearization either of the links response is linearized.

If the upper arm is linearized by this technique, then it is called collocated linearization.

In this case, there always exist partial feedback linearizing control law. On the other

hand, if the lower arm is linearized, then it is called non-collocated linearization. In

this case, partial feedback linearizing control exist only on certain condition. Secondly,

energy based approach in [Fantoni et al., 2002] is seen. In this approach, a candi-

date Lyapunov function using passivity property of the Pendubot is chosen. From the

Lyapunov function, control law is picked such that the derivative of the Lyapunov func-

tion is negative semi-definite. There are variants of energy based approach (see [Gulan

et al.]).

1.3 Stabilization of the Pendubot

Position stabilization scheme stabilizes the Pendubot about the unstable upright posi-

tion using state feedback control. The nonlinear state space model presented in [Block,

1996] is linearized about the upright equilibrium point. Then a suitable feedback gain

matrix is chosen such that the resulting system matrix is Hurwitz and also the stabiliza-
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tion behavior is robust and satisfactory.

Due to the presence of gravitational terms in the Pendubot model, Brockett’s neces-

sary condition for smooth asymptotic stabilization to the equilibrium point is satisfied.

If there is no gravitational terms in the mathematical model, then there exist no smooth

feedback control law for asymptotic stabilization to the equilibrium point (see Zhang

and Tarn [2002]). In such case, non smooth control law proposed in Zhang and Tarn

[2002] has to be employed.

1.4 Organization of the dissertation

The organization of the dissertation is as follows

Chapter 2

The equation of motion of the Pendubot is presented. The states of the Pendubot are

defined and state space model is derived subsequently. Later, the equilibrium points of

the system are found and for each of the equilibrium points, stability property is given.

The swing up control problem is presented and control laws for two distinct swing up

control strategies are given. Finally, position stabilization problem is presented with the

control law.

Chapter 3

The simulation and experimental results for each of the swing up control strategies

along with position stabilization via state feedback control are provided.

Chapter 4

In the final chapter, concluding remarks are given.

3



Appendix A

Pendubot hardware and its program structure and flow are described. In addition, im-

plementation details of the control and algorithm for states calculation are furnished.

Appendix B

Appendix B explains how the gains for each of the control laws were tuned.
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CHAPTER 2

Swing Up Control and Stabilization of the Pendubot

In this chapter, the equation of motion of the Pendubot is presented. The states of the

Pendubot are defined and state space model of the Pendubot is derived subsequently.

Later, the equilibrium points of the system are found and for each of the equilibrium

points, stability property is given. The swing up control problem is presented and con-

trol laws for two distinct swing up control strategies are given. In the end, stabilization

of the Pendubot about the upright position is discussed.

2.1 Model of Pendubot

The Pendubot schematic is shown in Figure (2.1). The generalized coordinates q1 and

q2 represent the angle between the horizontal plane and link 1 and the angle of link 2

relative to link 1. mi, li, lci, Ii describe the mass, length, distance of center of mass from

the pivot and moment of inertia about the center of mass of the link respectively. g, τ

represent the acceleration due to gravity and torque acting at joint 1.

Lets assign q̃1 = q1 − π
2
. Under the assumption of negligible friction at the joints,

the equation of motion of the Pendubot follows,

M(q)q̈ + C(q, q̇)q̇ +G = u (2.1)
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Figure 2.1: Pendubot Schematic

where,

q =

 q̃1

q2

 , u =

 τ

0

 ,

M(q) =

 P1 + P2 + 2P3 cos q2 P2 + P3 cos q2

P2 + P3 cos q2 P2

 , (2.2)

C(q, q̇) =

 −P3 cos q2 q̇2 −P3 cos q2(q̇1 + q̇2)

P3 cos q2 q̇2 0

 ,
G(q) =

 −P4 sin q̃1 − P5 sin(q̃1 + q2)

−P5 sin(q̃1 + q2)

 .
The parameters used in (2.2) are described below

P1 = m1lc1
2 + I1 +m2l1

2

P2 = m2lc2
2 + I2

P3 = m2l1lc2 (2.3)

P4 = m1lc1 +m2l1

P5 = m1lc2
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In equation (2.1), M (q) is the mass matrix , C(q, q̇)q̇ is the vector containing the

coriolis and centripetal terms, G(q) contains the gravitational terms, u is the input vec-

tor. The Pendubot is a second order non-holonomic system, since the second order

constraint on the states in (2.1) does not satisfy integrability condition (see [Zhang and

Tarn, 2002]).

Solving for q̈ from equation (2.1) , we get q̈1

q̈2

 = M−1

 τ

0

− Cq̇ −G
 (2.4)

Let the states of the Pendubot be defined as x = (x1, x2, x3, x4)T
∆
= (q̃1, q2, q̇1, q̇2)T

where x ∈ S2 × R2. The state space model of the Pendubot follows

ẋ =


x3

x4

f1(x)

f2(x)

+ g(x) τ (2.5)

where  f1(x)

f2(x)

 = −M−1[C q̇ +G] (2.6)

g(x) =


0

0

M−1

 1

0



 (2.7)

To find the equilibrium points of the system, equation (2.5) is equated to 0 with

τ = 0.


x3

x4

f1(x)

f2(x)

 = 0 (2.8)
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Solving equation (2.8), we get four equilibrium points. The equilibrium points of

the Pendubot are given in table 2.1.

Table 2.1: Equilibrium points of the Pendubot

Position Description Stability

xup = (0, 0, 0, 0) Up position for both the links Unstable

xdown = (π, 0, 0, 0) Down position for both the links Stable

xmid1 = (0, π, 0, 0)
Up position for link 1.

Down position for link 2 Stable

xmid2 = (π, π, 0, 0)
Down position for link 1.

Up position for link 2 Unstable

Following sections describe how to stablize the Pendubot at xup by swinging the

linkage from xdown.

2.2 Swing up control

The swing up control strategy has to bring the Pendubot from stable downward position

xdown to the neighbourhood of unstable upright position xtop. It is achieved by two

different control strategies given below

(i) Partial feedback linearization

(ii) Energy based approach

2.2.1 Partial feedback linearization

The Pendubot is not feedback linearizable by virtue of its under-actuated characteristics.

Hence, attempts are made to linearize the response of either of the links by partial

feedback linearization technique [Spong, 1995]. This resulted in two controllers for the

swing up control problem obtained by linearization of response of link 1 and link 2

separately. Lets derive the two control law,

The equation of motion of the Pendubot (2.1) can be rewritten as follows,

m11q̈1 +m12q̈2 + c1(q, q̇) + g1(q) = τ (2.9)

m21q̈1 +m22q̈2 + c2(q, q̇) + g2(q) = 0 (2.10)

8



where,

m11 = P1 + P2 + 2P3 cos q2

m12 = P2 + P3 cos q2

m21 = m12

m22 = P2 (2.11)

c1(q, q̇) = −P3 cos q2(2 q̇1q̇2 + q̇2
2)

c2(q, q̇) = P3 cos q2 q̇1q̇2

g1(q) = −P4 sin q̃1 − P5 sin(q̃1 + q2)

g2(q) = −P5 sin(q̃1 + q2)

(2.12)

Lets say, q̈1 = v.

Solving equation (2.10) for q̈2, we get

q̈2 = −(m21v + c2(q, q̇) + g2(q))

m22

(2.13)

τ is related to v as,

τ =

(
m11 −m12

m21

m22

)
v +

(
c1 −m12

c2

m22

)
+

(
g1 −m12

g2

m22

)
(2.14)

The control law (2.14) always exists to linearize the Pendubot partially, in view of

m22 being bounded away from 0.

With

v = kp q1 + kd q̇1, (2.15)

τ gives corresponding signal that partially linearizes the Pendubot and performs PD

control action for swinging up the Pendubot. However, appropriate choice of gains is

required to meet the swing up control objective. This approach is called collocated

linearization where the response of the actuated link is linearized.

Now, let q̈2 = v.

9



Solving equation (2.10) for q̈1, we get

q̈1 = −m22v + c2(q, q̇) + g2(q)

m21

(2.16)

τ is related to v as,

τ =

(
m12 −m11

m22

m21

)
v+

(
c1(q, q̇)−m11

c2(q, q̇)

m21

)
+

(
g1(q)−m11

g2(q)

m21

)
(2.17)

For existence of control law τ in (2.17), m21 should take non-zero value for all values

of q2. This condition is termed as strong inertial coupling in [Spong, 1995]. Strong

inertial coupling condition imposes some restriction on the parameters of the Pendubot.

Form21 > 0 ∀ q2, the constraint (2.18) on the system parameters has to be satisfied.

m2 lc2
2 + I2 > m2 l1 lc2 (2.18)

This approach of partial feedback linearization is called non-collocated linearization

since the non-actuated link i.e. link 2 response is linearized. Now, the next task is to

chose v aptly such that the swing up control objective is met. For further details in

choosing the outer loop control term v see [Spong, 1995]. In this thesis, collocated

linearization alone is considered and implemented on the Pendubot setup.

2.2.2 Energy based approach

The swing up control of the Pendubot using partial feedback stabilization in [Block,

1996] did not provide stability analysis. Further, the torque is required to be large so

that the Pendubot reaches the close vicinity of upright position in the first swing itself.

On the other hand, for energy based approach, complete stability analysis is provided

based on Lyapunov theory in [Fantoni et al., 2002]. Moreover, the energy pumped to

the Pendubot is relatively less than former case and it comes at the cost of time taken to

reach the close vicinity of the upright position.

The total energy of the Pendubot is given by

E(q, q̇) =
1

2
q̇TM(q)q̇ + P4g cos q1 + P5g cos(q1 + q2) (2.19)

10



When the Pendubot is at xtop, the total energy is

Etop = (P4 + P5)g (2.20)

Fantoni et al. [2002] defined the candidate Lyapunov function as

V (q, q̇) =
kE
2
Ẽ(q, q̇)2 +

kD
2

˙̃q2
1 +

kP
2
q̃2

1 (2.21)

where Ẽ = E − Etop and kE, kD, kP are strictly positive constant satisfying

kD
kE

> 2P1(P4 + P5)g (2.22)

and showed if the constraints (2.23)

|Ẽ(0)| < c := min(2P4g, 2P5g)

V (0) ≤ 1

2
kEc

2 (2.23)

hold for initial condition q(0) and q̇(0) for some ε, then the solution of the closed-loop

system (2.5) with the control law

τ =
−kDF (q, q̇)− (P1P2 − P 2

3 cos2 q2)(q̇1 + kP q̃)

(P1P2 − P 2
3 cos2 q2)kEẼ + kDP2

(2.24)

where
F (q, q̇) = P2P3 sin q2(q̇1 + q̇2)2 + P 2

3 cos q2 sin q2 q̇
2
1+

P2P4 g cos q̃1 − P3P5 g cos q2 sin(q1 + q2)
(2.25)

converges to the invariant set M given by the homoclinic orbit

1

2
P2q̇

2
2 = P5g(1− cos q2) (2.26)

with (q̃1, q̇1) = (0, 0) and the interval (q̃1, q̇1, q2, q̇2) = (−ε, 0, ε, 0), where |ε| < ε∗

and ε∗ is arbitrarily small. The convergence of the closed loop system to the homoclinic

orbit solves the swing up control problem. The condition (2.22) rules out singularities

in the control law (2.24). Using the control law (2.24), the Pendubot can stuck at any

of the equilibrium points of the Pendubot and it can avoided if the condition (2.23) is

11



satisfied.

The constraints (2.22) and (2.23) are exploited to arrive at kP , kD and kE for the

swing up control.

2.3 Stabilization of the Pendubot

The swing up control brings the Pendubot close to the upright positon and then the

control law is switched to the stabilizing control for stabilization about xtop. In this

thesis, state feedback control is considered to stabilize the Pendubot about xtop. The

nonlinear model of the Pendubot (2.5) is linearized about xtop and the linearized system

is represented by

ẋ = Ax+Bτ (2.27)

where

A =



0 0 1 0

0 0 0 1

(P2P4−P5P3)g
(P1P2−P3)2

−P3P5g
(P1P2−P3)2

0 0

(P1+P3)P5g−(P2+P3)P4g
(P1P2−P3)2

(P1+P3)C5g
(P1P2−P3)2

0 0



B =
1

(P1P2 − P3)2



0

0

P2

−P2 − P3


(2.28)

12



For the system parameters of the Pendubot in table (A.1), equation (2.28) becomes

A =



0 0 1 0

0 0 0 1

118.7040 −52.0195 0 0

−133.4012 130.0511 0 0



B =



0

0

2934.5911

−4528.5202


(2.29)

The controllability matrix of system (2.27) is constructed

[
B AB A2B A3B

]
=



0 0.0293 0 5.8392

0 −0.0453 0 −9.8042

0.0293 0 5.8392 0

−0.0453 0 −9.8042 0


(2.30)

and the rank of the controllability matrix is found to be 4. Hence, the system (2.27)

is completely controllable.

For state feedback control, the control law follows

τ = −Kx (2.31)

where K ∈ R4×1.

The gain matrix K is chosen using pole-placement method for asymptotic stabi-

13



lization to xtop. Pole-placement method provides a constructive way to tune the gains.

Asymptotic stabilization to xtop, providedA−BK is hurwitz and the system (2.27) is in

the region of attraction of the stabilizing control at time of switching, is the case only in

simulation since the nonlinearities associated with the actuator such as motor friction,

backlash etc. does not come in the simulation model. Therefore, when it comes to im-

plementation, the mere choice of the gain matrix K such that A−BK is hurwitz, alone

is not sufficient. The poles of the closed loop system have to be chosen such that they

give desired stabilization response. Appendix B gives details of desired stabilization

behavior. In our case, we choose the gains by tuning through experiments.

14



CHAPTER 3

Simulation and Experiment results

3.1 Experiment setup

The Pendubot setup is shown in Figure (3.1). The hardware, program flow and structure

of the Pendubot are provided in Appendix (A). The procedure adopted for tuning the

gains of each of the control laws is detailed in Appendix (B).

Figure 3.1: Pendubot setup

The encoder cable from joint 2 is routed as shown in Figure. This ensures the cable

does not move significantly over repeated experiments. The cable routing is important

because the opposing torque produced by the cable is not negligible compared with

the operating range of the Pendubot. This is found by observing change in behavior

of the Pendubot for different cable positions. By fixing the cable position, opposing

torque due to the cable is made constant. Thereby, repeatability of the experiments is

increased.



3.2 Simulation and Experiments

Experiment 1

In this experiment, the Pendubot is set into swing up motion by Partial Feedback Lin-

earization technique and stabilization of the Pendubot is achieved using state feedback

control. The control strategy switch from partial feedback linearization to state feed-

back control, if the condition (3.1) is satisfied.

|q̃1| < 10◦AND|q2| < 15◦ (3.1)

The bound on q̃1 and q2 is arrived by simulation. Though the bound on q̇ is not

explicitly given in the switching condition, it is taken care by appropriate choice of

control parameters of the swing up control (see Appendix B). The gains of the control

laws eqs. (2.15) and (2.31) are chosen to be kp = 600, kd = 70.75, k1 = −1.9862, k2 =

−1.7129, k3 = −0.3207 and k4 = −0.2343. The initial condition is (q̃1, q̇1, q2, q̇2) =

(−π, 0, 0, 0). Figure 3.2 shows the time response of the states and control input and the

energy profile of the Pendubot.
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Figure 3.2: Time response of states and control input and Energy profile

The plot of q̃1 shows the Pendubot first move in one direction and then the swing

up control 2.14 takes over to bring the Pendubot close to xtop. This is done to ensure
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that the Pendubot reach the upright position in the swing up control. The spike in τ at

approximate 2 sec is due to switching of control to state feedback control. As a result of

switching, (q, q̇) gets closer to xtop = (0, 0, 0, 0). Note that states (q, q̇) do not converge

to xtop. It stays within a open ball of radius ε > 0 with center xtop. This is because of

friction at joint 1, a limit cycle is introduced at xtop.

Experiment 2

Energy based approach is used to swing up the Pendubot. The swing up control does

not bring the Pendubot to the region of attraction of state feedback control with gain

K used in Experiment 1. Hence, the gain matrix K̄ is chosen such that the Pendubot

can be brought to its region of attraction by the swing up control. With gain matrix K̄,

the Pendubot is taken to the region of attraction of state feedback control with gain K

which has good stabilizing characteristics. Once it has reached the region of attraction,

the control strategy is switched to τ = −K ′x. Algorithm 1 explains the switching of

control strategy.

Algorithm 1 Control switch algorithm

Require: states of the Pendubot (q, q̇)
1: procedure CTRLSW(q̃1, q̇1, q2, q̇2)
2: if |q̃1| < 35◦ And |q2| < 50◦ And |q̇1| < 0.01 And |q̇2| < 0.25 then
3: sw ← 1
4: u← −K̄ ′x
5: end if
6: if |q̃1| < 5◦ And |q2| < 5◦ And |q̇1| < 0.01 And |q̇2| < 0.005 And sw == 1

then
7: u← −K ′x
8: end if
9: end procedure

The gains of the control law (2.24) are chosen to be kP = 0.08, kD = 0.075

and kE = 3000. The gains of state feedback control (2.31) are chosen to be k1 =

−1.9862, k2 = −1.7129, k3 = −0.3207, k4 = −0.2343,k̄1 = −1.75, k̄2 = −1.6123,

k̄3 = −0.5203 and k̄4 = −0.4015 is used. The initial condition is (q̃1, q̇1, q2, q̇2) =

(11◦, 169◦, 0, 0).

When link 1 is pushed from one side as part of swing up maneuver, the torque (lets

say counter torque) required to stop link 1 is high due to friction at joint 1. Thus, link 1

moves quite far compared to q̃1 in simulation for the counter torque to be high enough
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Figure 3.3: Time response of states, control input, Energy function E−Etop, Lyapunov
function V and phase portrait of (q2, q̇2)

to stop its motion. Thats why in each half cycle q̃1 and q̇1 are relatively high than their

counterparts in simulation. Such high torque also moves link 1 in opposite direction by

the act of stopping it. This led to decrease in energy of the system as seen in the energy

function E − Etop plot. The same can be attributed to the decrease in the Lyapunov
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function V as it contains the energy term. In the next swing up maneuver, link 2 moves

less compared to its counterpart in simulation because it has to make up for the energy

loss in the previous swing up. The energy function E − Etop starts increasing due to

the next swing up maneuver and continues to be increasing till the counter torque act

on link 1 to move towards q̃1 = 0.

As this repeats for every swing up action, the regular increase and decrease in the

energy function E − Etop and lyapunov function V are noticed. The phase portrait of

(q2, q̇2) shows the convergence of the system to homoclinic orbit (2.26). Figure 3.4

shows disturbance rejection characteristics of state feedback control.
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Figure 3.4: Disturbance rejection characteristics of state feedback control
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CHAPTER 4

Conclusion

In this thesis, swing up control and stabilization of the Pendubot about the upright po-

sition is presented. Two different control strategies are used to achieve the objective.

For swing up control, two control schemes are adopted, namely, Partial feedback lin-

earization and Energy based approach using passivity property. The nonlinear model

of the system is linearized about the upright position and state feedback control is de-

signed for stabilization about the upright position. The simulation and experimental

results are provided. The reason for the mismatch in the simulations and experiments

are explained.



APPENDIX A

Description of Pendubot Hardware and Program

A.1 Hardware

The Pendubot setup is shown in Figure A.1. The links are made out of aluminum. The

actuated joint is driven by Maxon brushed DC motor of part number 397019 which

come with an encoder of resolution 512 counts per revolution(CPR). The link 1 houses

an optical encoder which provide unconstrained 360◦ revolution to the link 2.

Figure A.1: Pendubot setup

A schematic of Pendubot is shown in Figure A.2 . It contain components which

process the optical encoder signals to get the states which is used to decide the con-

trol action. The brushed dc motor is driven by a PWM signal using Maxon 4-Q-DC

Servoamplifier ADS 50/5. Maxon shunt regulator DSR 70/30 is used with the servoam-

plifier to limit its supply voltage level during long braking process. Xbee module is

used to transmit all the states of the Pendubot to the PC.
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board

PWM QEI QEI

UART

Power
Supply

Maxon
Shunt regulator

Maxon
Servo-amplifier

Motor Gear

Xbee
Module

PC
Communication

Encoder

Encoder

Pendubot

Figure A.2: Schematic diagram of the Pendubot

A.2 Program description

A.2.1 Main program

In main program, Microchip dsPIC’s features like PWM module, QEI module, timer

module and UART module are initialized along with clock oscillator. Once initialization

of all the modules are done, the timer is started. Then the controller enters into the

infinite loop, commonly called wait state where it continues to stay till the interrupts

arrive. When an interrupt occurs, the associated interrupt service routine is executed.

After the routine is serviced, the controller returns back to the wait state. And the cycle

repeats. This is depicted in Figure (A.3).

The initialization of dsPIC modules is described below in detail.

1. The internal FRC oscillator is set as clock source for dsPIC. It is used with
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PLL to obtain high operating frequency. The system clock frequency is set to
79.2275 MHz. Watchdog timer, power-up timer and code protect feature are
turned off.

2. All analog-to-digital input pins are configured as digital input pins. QEI, PWM
and UART module are assigned input and output pins.

3. PWM module is configured to operate in free running mode and its frequency
is fixed at 1.2 kHz approximately. PWM I/O pin pair is assigned in independent
output mode.

4. Digital noise filter is enabled in QEI module with 1 : 16 digital filter clock divide
and quadrature encoder interface mode enabled (×4) with position reset on match
with maximum count register MAXxCNT.

5. In UART module, baud rate is set at 38400. The module is configured to generate
a transmission interrupt when the last transmission is over and all the transmit
operation is completed. In idle state, the transmit pin TX is set to be high.

6. Timer module is assigned to use instruction cycle clock as its source clock with
interrupt period of 4.9 ms (or 204 Hz) roughly.

Main program

Initialization

Start the Timer

wait state
Interrupt

Routinue

Interrupt

Service
Interrupt
serviced

Figure A.3: Code flow in main program
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A.2.2 Interrupt Service Routines

When an interrupt occur, interrupt service routine, shortly ISR, associated with it is

executed. There are two interrupts used in the program, namely, timer interrupt and

UART transmit interrupt . The work done by the ISR of the interrupts is given below

Timer interrupt

Timer interrupt acquires the encoder counts and processes them to reduce the
effects of backlash in (q̃1, q̇1) and for smooth estimation of q̇. Once the states
are found, control function is executed. It calculates the torque to be applied
from the states and later the torque calculated is converted to voltage using motor
dynamics. In the end, states transmission is initiated with q̃1 being transmitted.

UART transmit interrupt

After the transmission of state q̃1 is done, UART transmit interrupt is generated.
Interrupt service routine is programmed such that it continues to transmit the
states till all the states are transmitted. This is depicted in Figure A.4.

States calculation

The states (θ, θ̇) are calculated using the optical encoders at joint 1 and joint 2. The

encoders, used in the setup, are incremental type, generating quadrature type signals A

and B of varying width depending on the speed of rotation. The signals are processed

by QEI module of dsPIC to give relative position in terms of counts. Due to gearhead

arrangement of the brushed dc motor at joint 1, (q̃1, q̇1) are highly susceptible to errors.

To minimize the error introduced by backlash, anti-backlash filter in [Muralidharan,

2014] is used, considering static backlash model presented in [Khalil, 1996].

We arrive at absolute angular position q by calculating the angular velocity from

the encoder counts, integrating it over the sampling time and adding it with previous

position.

q(n) = q(n− 1) +

∫ ts

0

q̇(n) t = q(n− 1) + q̇(n)× ts (A.1)

This method necessitates the estimation of angular velocity θ̇1 from the encoder

counts. Since position measurement is deteriorated by quantization error, estimation
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Figure A.4: Code flow in interrupt routines

of velocity by numerical differentiation may further worsen the signal to noise ratio.

Hence, smoothing filter proposed in [Merry et al., 2010] is used to obtain smooth es-

timate of velocity, which is essentially fitting a low-order polynomial to the encoder

counts by least square fit and differentiating polynomial with the least square fitted

coefficients to get velocity.

Letm be the order of the fit, n be the number of encoder counts used, (p1, p2, · · · , pm)

be the coefficients of the polynomial to be estimated and xi|n1 be the encoder count at the

time instant ti|n1 . Here, tn is the present time instant. Lets define A ∈ Rn×m, P ∈ Rm

and B ∈ Rn as follows,
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A =



tm1 tm−1
1 · · · t1

...
...

...

tmn−1 tm−1
n−1 · · · tn−1

tmn tm−1
n · · · tn


, (A.2)

P = [pm pm−1 · · · p1]T , (A.3)

B = [x1 x2 · · · xn]T . (A.4)

For least squares method, n has to be greater than m and the equation to be solved

for P is given below

AP = B (A.5)

The coefficients of the polynomial are computed using least square method as

P = (ATA)−1ATB (A.6)

Since velocity has to be known at tn, the polynomial is extrapolated to tn time instant

with the fitted polynomial coefficients to get estimated position and estimated velocity

as

x̂(t)|t=tn = pmtn
m + pm−1tn

m−1 + · · ·+ p1tn

ˆ̇x = ˙̂x
(A.7)

Once the velocity is estimated, it is filtered with chebyshev type-II filter with cutoff

frequency ωf = 60 Hz. The cutoff frequency is chosen to be sufficiently larger than

the system bandwidth ωb so that the effect of extra phase lag of the filter is relatively

small in the system behavior. The sampling rate ωs is also chosen sufficiently large than

system bandwidth , roughly 20ωb, as mentioned in van der Laan [1995] so that there is

90% suppression at ωs

2
. As a result, anti-aliasing filter can be omitted from filter design.

The algorithm for angular velocity and position estimation is given in 2. In algorithm 2,
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the time instants of the encoder counts ti|n1 is set i|n1 and angular velocity is calculated

in counts per sample time. Using sample time and encoder resolution, it is converted to

radian per second.
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Algorithm 2 Algorithm for angular velocity and position estimation
Require: sampling time ts, Gear ratio N , Encoder resolution encres, encoder count x

at present instant tn, encoder count xprev at previous instant tn−1 , joint angle at
previous instant θprev, numerical difference of encoder counts at previous instant
∆xprev, stock of backlash compensated encoder counts over n period X̄ and stock
of backlash compensated ∆X over n periodX ′. Initially xprev, θprev,∆xprev, X̄,X ′

are assigned 0.
procedure ENCREAD(x, θprev, xprev,∆xprev, X ′)

2: ∆x← x− xprev
if . Backlash Compensation

4: (∆x > 0 And ∆xprev < 0) Or
(∆x < 0 And ∆xprev > 0) Or

6: (∆x 6= 0 And ∆xprev = 0) then
x′n ← 0

8: else
x′n ← ∆x

10: end if
for j ← 1 to n do . Construction of backlash compensated encoder counts x

over m time period
12: if j = 1 then

x̄j ← x′j
14: else

x̄j ← x′j + x̄j−1

16: end if
end for

18: P ← (ATA)−1AT X̄ . coefficients of the polynomial calculation
x̂(n)|n=i ← pm ∗ im + pm−1 ∗ im−1 + pm−2 ∗ im−2 + . . .+ p1 ∗ i

20: ˆ̇x← ˙̂x . estimate of velocity
ˆ̇θ ← ˆ̇x ∗ 2π/(ts ∗N ∗ encres) . Conversion from counts/ts to rad/sec

22: for j ← 1 to n− 1 do
x′j ← x′j+1

24: end for
θ̂ ← θ̂prev + ˆ̇θ ∗ ts . Position estimate by deadreckoning

26: if θ̂ > 2π then . Wrapping θ between 0 and 2π
θ̂ ← θ̂ − 2π

28: end if
return (θ̂, ˆ̇θ)

30: end procedure

The states (q, q̇) are validated by moving the links from a known position and stop-

ping at the same position (see Figure A.5 and A.6). Figure A.7 shows the evolution of

states (q, q̇) due to free fall from xtop and as expected it reached stable equilibrium point

xdown.
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Figure A.5: Validation of q̃1
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Figure A.6: Validation of q2

Voltage calculation

Once the states are determined, control function computes the torque to be applied. In

the case of non-linear control law, system parameters are required along with the states

in torque calculation. The computed system paramters of the Pendubot are given in the

table A.1.

The torque calculated is converted to voltage (A.8) using motor parameters such as

back-emf constant kb, gear ratioN , terminal resistanceRm, torque constant kt, terminal
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Figure A.7: Evolution of states (q, q̇) due to free fall from xtop

Table A.1: System paramters

System parameter Value

C1 5.3419× 10−04

C2 6.5564× 10−04

C3 3.5611× 10−04

C4 5.932× 10−03

C5 3.328× 10−03

inductance Lm and motor states like angular velocity θ̇1 and current im. Their values

are kb = 2.75mV/rpm, N = 29, Rm = 33.3 Ω, torque constant kt = 26.2mNm/A.

Vm = kbNθ̇1 +
Rmτ

ktN
+ Lm

dim
dt

(A.8)

For Maxon brushed DC motor, terminal inductance is very low so the voltage contribu-

tion by the last term is negligible. Therefore, it can neglected in the voltage calculation.
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APPENDIX B

Gain tuning

The selection of gains of the control law is important for meeting the requirements of

the desired behavior. In this section, we will detail how the gains are arrived for each of

the control laws.

B.1 Partial feedback linearization

Here, the control law with outer PD control loop follows

τ =

(
m11 −m12

m21

m22

)
v +

(
c1 −m12

c2

m22

)
+

(
g1 −m12

g2

m22

)
(B.1)

where v = kp(0− q̃1) + kd(0− q̇1)

Partial feedback linearization technique brings the Pendubot to the neighbourhood

of xtop by linearizing the response of link 1. Once the Pendubot has come closer to the

upright position, the control strategy is switched to state feedback control. However, if

the links reach the region with high q̇, then the switch to the stabilizing controller will

produce instant high torque to counter the fast moving links which, in turn, can desta-

bilize the system. This is because the Pendubot has not entered the basin of attraction

of the stabilizing controller.

Therefore, there should be a constraint on angular velocities of the links q̇ to guar-

antee asymptotic stabilization to the equilibrium point. The constraint ‖q̇‖ < 1 is fixed

by trail and error method in simulation. Table B.1 shows gain tuning rules adopted to

bring the Pendubot to neighbourhood of the upright position with the constraint on q̇

satisfied.

A good approach is to fix any one of the control parameters and tune the other

depending upon the system response. In our case, kp is fixed and kd is tuned iteratively.



Table B.1: Tuning procedure for Partial feedback linearization

System response
Tuning

kp kd

The Pendubot reach the upright
position with high q̇

decrease increase

The Pendubot doesn’t reach
the upright position

increase decrease

B.2 State feedback control

As stated in Chapter 2, asymptotic stabilization to the equilibrium point can not be

achieved in implementation mainly due to motor friction. Figure B.1 shows the effect

of motor friction on the closed loop system behavior.
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Figure B.1: Time response of states

In this case, the poles of the closed loop system (2.27) with τ in (2.31) is chosen

such it has near critical damping behavior. When the linkage moves close to q̃1 = 0, the

torque is no longer sufficient to overpower the opposing torque due to motor friction.

Hence, it stops before q̃1. The Pendubot exhibits this behavior almost every time when

q̃1 approach 0. The motor friction introduces dead-zone in the Pendubot about the

upright position. However, with different choice of poles, this behavior can be avoided

and most likely, something better can be achieved. In this case, underdamped poles

would help.
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Before going to gain tuning, details of desired behavior of the closed loop system

are given.

1.
|x‖ ≤ ε, ε > 0 (B.2)

This fixes limit on joint angles and joint velocities. We expect the system to be
confined within a small neighbourhood of xtop and it should never come out of
the neighbourhood, atleast not often. In addition, the magnitude of oscillation of
the states should be atleast near-stationary. If not, the system will be wobbling
about the upright position.

2. The system should have good disturbance rejection.

3. The closed loop system should be robust to parameter variation, especially initial
conditions q̃1(0) and q2(0).

Tuning procedure

Here, the poles of the closed loop system are tuned, instead of gain components of the

gain matrixK. The main objective is to obtain the closed loop response that satisfies the

conditions laid down by tuning of the poles. Our concern is to achieve desired behavior

by utilizing the pole positioning to the fullest measure so we do not care whether the

system can be reduced to a lower order by second-order approximation.

Let the poles of the closed loop system be P = (p1,−σ + jω,−σ + ω, p4)T . The

choice of the structure of poles should be evident by now. Pole p1 is chosen to be far

away from the origin which determines the operating torque of the system. Since ζ

is fixed to be between 0 and 1, it s chosen 0.5 to start with. Rise time or peak time

condition on the system behavior can be used to provide good starting value for ωn. p4

can be chosen to be 4 or 5 times the real part of (−σ + jω) for good initial guess.

The tuning rules adopted for state feedback control are listed below

1. If the Pendubot does not stay in the region, decrease the damping. Damping can
be decreased by 1) increasing ωd 2) decreasing σ 3) increasing p4. When the
Pendubot destabilizes, increase the damping.

2. If the system begins to wobble around xtop, then decrease p1. This is due to high
gain matrix. Note increasing p1 aggravates the behavior of the system determined
by (−σ ± jω, p4). For example, if the damping is low for the system, then in-
creasing p4 destabilize the system.
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B.3 Energy based approach for swing up control

The control law for energy based approach is given as

τ =
−kDF (q, q̇)− (P1P2 − P 2

3 cos2 q2)(q̇1 + kP q̃)

(P1P2 − P 2
3 cos2 q2)kEẼ + kDP2

(B.3)

It has three gains namely, kP , kD and kE . If the constraints (2.22) and (2.23) on the

gains and initial condition are satisfied, the Pendubot will reach the homoclinic orbit.

The constraint (2.22) ensures the control law is non-singular.

kD
kE

> 2P1(P4 + P5)g (B.4)

From the control law τ , it is clear that denominator of the control law is positive as long

the constraint (2.22) is satisfied. So increasing kE can effectively increase the control

law τ . τ can be increased by decreasing kD also.

The tuning procedure adopted to bring the Pendubot to the basin of attraction of the

stabilizing controller is given below.

1. When the energy of the pendubot is saturated and no longer increasing to Etop,
increasing the energy delivered would help the Pendubot to reach to the basin of
attraction of the stabilizing controller. The energy delivered can be increased by
increase in kE , decrease in kD or increase in kP .

2. If the energy delivered is too high such that the linkage falls down, then decrease
kE or increase kD.
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