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ABSTRACT

KEYWORDS: Fault Tolerance,Reliability,Multiplier,Speed,Area

Silicon reliability has reemerged as a very important problem in digital system de-
sign . As voltage and device dimensions shrink, combinational logic is becoming sensi-
tive to temporary errors caused by single event upsets, transistor and interconnect aging
and circuit variability. In such cases fault tolerant devices are helpful to have the reliable

results.

Multipliers play an important role in today’s digital signal processing and various
other applications.Compared to addition and subtraction, multiplication operation has
more latency. So pipelining the multiplier reduces the overall computation time when
more than one multiplication operation is to be performed by the multiplier.Also speed

of the multiplier increases.

This thesis aims to design a Fault Tolerant Pipelined Multiplier for an in-order
RISC-V processor. The entire signed multiplication operation is divided into 4 stages
of pipeline.Fault tolerance is applied to all the four stages present in the pipeline and
they are in Triple Modular Redundancy(TMR).Fault handling logic is implemented us-
ing both spatial and time redundancy techniques.Time redundancy technique is used
to isolate the faulty block if there is any permanent fault.Multiplication is carried out
using Wallace Tree architecture and Booth Multiplier algorithm.Reduction of the par-
tial products is done by using carry save addition(3:2 compressor) and 5:2 compres-
sor.Summation of the final summands is done using 4-bit carry look ahead adder,carry
select adder and Brent-Kung adder.Making use of all these combinations 12 4-stage
pipelined multipliers are designed.Comparision of speed and area is done for all these

multipliers.
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Chapter 1

INTRODUCTION

1.1 Overall Microcontroller Architecture

The processor design team of Reconfigurable and Intelligent Systems Engineering[RISE]
lab in the computer science department of IIT-Madras has been actively involved in
building few processors for academic purposes and other applications. The processor
strictly follows the RISC-V instruction set architecture[ISA].Entire design of the pro-
cessor is done using a Hardware Description Language[HDL] named Bluespec System
Verilog[BSV]. The I-Class processor is a 32-bit in-order variant aimed at 50-250MHz
micro-controller variants which have an optional memory protection and the design
consumes very low power. The integration forms the basis for synchronizing the core
to different peripherals in the microcontroller, which have various operating frequen-
cies.My project work involves designing a fault tolerant pipelined multiplier to improve

reliability and speed of the multiplier.



Chapter 2

SOURCE OF ERRORS

This chapter discusses the cause of reliability issues faced in the present industry and

the source of errors resulting those problems.

2.1 The Hardware Reliability Problem

Computer hardware reliability problems date back to the earliest computers.During the
1940s and 1950s, the vacuum tubes that made up computers had very short life spans,
while long wires within the computer often picked up electromagnetic noise [112].
The development of transistors and the evolution of integrated circuits in the following
decades led to a dramatic improvement in reliability. Infact, for most applications, once
a CMOS IC has been tested, it is expected to operate error-free throughout its life.As
CMOS continues to scale, however, it has become less and less reliable. The reduction
of power supply voltage and the dimensions of CMOS transistors with every new tech-
nology generation reduces the noise immunity and increases the variability of digital
circuits. Also, the number of transistors that can be packed on the same chip continues
to grow, increasing the number of devices that are susceptible to errors. In fact, today’s
engineers have to cope with a wide range of errors that could be safely ignored in the
past, or only posed a problem for designers of high reliability, availability, and service-
ability (RAS) systems.Understanding how these different error categories manifest is
critical to devising efficient mitigation techniques. In this chapter we analyze current

and emerging sources of errors in deep submicron technologies.

2.2 Error Categories

Hardware errors are split into two main categories :

e Permanent errors



e Temporary errors

Permanent errors, or defects, are irreversible flaws in the manufactured circuit oper-
ation, such as stuck-at faults caused by shorts and opens, or design errors such as the in-
famous Pentium FDIV bug [62]. They manifest every time the circuit is used. Components

with permanent errors are not fully operational and have to be replaced.

Temporary errors do not manifest every time the circuit is used. Instead,they occur
under certain operational conditions, typically at certain frequencies (f) or power sup-
ply voltages (Vdd) or environmental conditions such as temperature (T) and radiation.
Their effect on system operation varies depending on their frequency and type, as well
as the usage model of the system itself. For example, single event upsets caused by
highly energetic neutrons can often be ignored in desktop and laptop computers, be-
cause their error rates are small enough to be accepted by most users of these systems.
On the other hand, if a chip does not meet timing specifications due to manufacturing

process variations, then it is either rejected or labeled as a lower frequency part.
Constantinescu further categorized temporary errors into :

e Intermittent

e Transient

Intermittent errors are caused by an instance of marginal hardware and disappear
upon replacement or repair of the faulty part. They tend to occur in bursts and at the
same location and are typically activated in a given voltage (Vdd) and temperature range
(T) - for example, a part that does not always meet the target frequency due to process

variations typically causes intermittent errors.

Transient errors, on the other hand, are caused by external sources rather than
marginal hardware, and thus do not disappear upon replacement of the faulty part. They
are not bursty, and tend to occur in different places and at random times. Particle strikes

are the most typical cause of transient errors.

The harsh environment of space or nuclear plants can introduce a variety of faults in
the logic circuits. The radiations and high energetic particles poses causes soft and hard
errors in the system and becoming more prominent now a days. This radiation causes

two types of failures namely Total Ionising Dose (TID) Effects and single event effects



(SEE) which posing design and test challenges. TID is basically the cumulative long
term ionising damage due to electrons and protons deposited in a device. It is measured
in Radiation Absorbed Dose (Rads). The device that collects a charged particle for a
long time may leads to functional failure.SEE is basically, any measurable effect on the
circuit due to an ion strike and these are instantaneous events.SEE basically categorised
into soft and hard errors. Both TID and SEE are studied first since they make anomalies
in satellite, avionics and nuclear equipments. These effects become one of the most
challenging issues that impact the reliability of modern electronic systems used for

space applications or even at ground-level applications.

2.2.1 Soft Errors Overview

Radiation-induced soft errors are an increasingly important threat to the reliability of
integrated circuits processed in advanced CMOS technologies. Soft error is any mea-
surable or observable change in the state or performance of a microelectronic device,
component, subsystem, or system resulting from energetic particle strike. Soft errors
are non permanent, random, nonrecurring in nature. When a particle strikes on the tran-
sistor then it displaces electrons and holes, thus ionizing a part of the silicon substrate.
The displaced electrons and holes begin to recombine and creates a current pulse. The
current pulse propagates to other parts of the circuit. When the displaced charge, Qcoll,
is more than Qcrit, the pulse is large enough to create a change in state or upset. Qcoll
is a function of the ionizing particle’s energy, trajectory, point of impact, and the lo-
cal electric field. The current transient lasts for around 200 picoseconds. Most of the

impact is within 2-3 microns of the impact site.

If the effect of soft errors is manifesting up to the system level, it is generally in
the form of a sudden malfunctioning of the electronic equipment. Soft errors can not
be traced, once memory is updated with new data where corrupted bits were stored
earlier. Therefore, failure analysis is not able to conclude that soft errors as the root
cause of the problem. Furthermore, the problem is not reproducible or recreated, due to
its stochastic or random nature. Therefore,it is usually very difficult to show that soft

errors are causing the observed failures.



2.2.2 Soft Errors Classification

Single-event effects (SEEs) are associated with the change of states or transients in a de-
vice that energetic external radiation particles induce. Normally, SEEs can be classified
into soft and hard errors. Soft errors are non destructive, because resetting or rewriting
the device restores normal behaviour thereafter; hard errors are permanent. Soft errors
are a subset of single-event effects and can be classified into the following categories:
1. Single-bit upset (SBU) : It is also called Single Event Upset (SEU). The event
causes a bit flip in a memory cell or a register due to the particle strike. This event
causes temporal loss of device functionality and shall be recovered by rewritten the
memory or register.

2. Multiple-bit upset (MBU) : The event causes the upset of two or more bits in the
same word of memory or registers.

3. Single-event transient (SET) : The event causes a voltage glitch in the net or wire
of the circuit, which propagates and becomes a bit error when captured by a storage
element.

4. Multiple-event transient (MET) : The event causes multiple voltage glitches in
the nets or wires of the circuit, which propagate and becomes multiple bit errors when
captured by storage elements.

5. Single-event functional interrupt (SEFI) : The event causes the lock-up, reset, or

other detectable malfunctioning of a component.

2.2.3 Soft Error Specification

Generally, Soft Error Rate (SER) is the rate at which a device or system encounters or is
predicted to encounter soft errors. SER is measured in units of Failures In Time (FIT),
where 1 FIT denotes one failure per billion device hours (i.e. one failure per 114,115
years). The additive property of FIT makes it convenient for calculations, but mean
time to failure (MTTF) is often more intuitive. MTTF is inversely related to FIT and it
is not additive. A FIT rate of 1000 is equivalent to MTTF of 114 years. A single bit has
fault rate of about 1-10 mFIT then 1 GB memory has fault rate of 109*8*0.01 = 8*107
FIT i.e. an error every 12.5 hours.Researchers expect about an 8 percent increase in

soft-error rate per logic state bit each technology generation. Since the number of logic



state bits on a chip is following Moores law, and the aggregate effect on soft-error FIT
on a chip is shown in Figure 2.1. Notice that by the 16nm generation, the failure rate
will be almost 100 times that at 180nm technology. In an electronic component, the

failure rate induced by soft errors can be relatively high compared to other reliability

issues.

150 ........... ............. ............. ............. ............ ............. ........... ............
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Figure 2.1: Soft error failure-in-time of a chip

2.2.4 Hard Errors Overview

Hard errors are the events which interrupt device function and permanently damage
the device. They are destructive in nature and cause permanent damage to the device.
Under hard error when a bit can never be read or written reliably, the processor might
not be able to correct and recover from the error. Hard errors may be caused by wire
wear out due to electro-migration,gate oxide wear-out and ageing defects that increase

over time. This cause a open or short mode failure.



2.2.5 Hard Errors Classification

Hard errors are a subset of single-event effects and can be classified into the following
categories :

1. Single Event Latch Up (SEL) : An abnormal flow of high-current in a device
caused by the passage of a single energetic particle through sensitive regions of the
device structure and resulting in the loss of device functionality. It is triggered by heavy
ions, protons,neutrons and cause catastrophic failure.

2. Single Event Gate Rupture (SEGR) : An event in which a single energetic-particle
strike results in a breakdown and subsequent conducting path through the gate oxide of
a MOSFET.An SEGR is caused by an increase in gate leakage current which finally
cause either the degradation or the complete failure of the device.

3. Single Event Burn out (SEB) : An event causes direct path between source and

drain of the transistor. This cause a local hotspot and finally failure of the device.

2.2.6 Impact of soft errors in sequential and combinational circuits

The circuit of modern processor or other electronic system falls into two basic classes:
sequential circuit and combinational circuit. Soft errors in these two circuits have dif-
ferent impact. Thus, different approaches are required to protect the sequential circuit
and the combinational circuit.

Errors in Sequential Circuits

The main contribution to the soft error rate (SER) comes from sequential circuits in
current microprocessors. Sequential circuits always refer to different storage elements,
such as registers,memories, counters and flip-flops in general. A soft error in these cir-
cuits may result in a bit flip in the saved state, which may lead to a wrong execution.
Storage elements take up a large part of the chip area in modern microprocessors. As
a result, most modern microprocessors already incorporate mechanisms for detecting
soft errors, like the triple modular redundancy technique.

Errors in Combinational Circuits

A particle that strikes a p-n junction within a combinational circuit may alter the value
produced by the circuit. However, a transient change in the combinational circuit will

not affect the results of a computation unless it is captured by a sequential circuit.



Transient changes on the clock signal or reset signal will definitely cause the circuit
incorrectly executed. Past research has shown that combinational logic is much less
susceptible to soft errors than memory elements [11] and the probability of the glitch
from the combinational circuit captured by the sequential circuit is very small. With
the trends of reduced feature sizes, supply and threshold voltages, soft error tolerance
of combinational logic circuits is affected more than memory elements. In addition,
higher clock frequencies increase the chance of a glitch being captured by a sequen-
tial element [7-12]. For processors where the sequential elements have been protected,

combinational logic will quickly become the dominant source of soft errors.

2.3 Error Sources

In this section we describe the most important current and emerging sources of errors in

deep submicron technologies and focus how they affect combinational logic structures.

2.3.1 Single Event Upsets

Single Event Upsets (SEUs) or soft errors are the most important source for transient
errors in CMOS ICs. They are not caused by marginal hardware,but are random in
nature and are currently the main reason that fully operational chips fail. The sensitivity

of a chip to SEUs is called Soft Error Rate (SER).

Soft errors may occur when the active volume of the chip substrate is hit by highly
energetic particles. If these particles penetrate the chip and have sufficient energy (>
IMeV ), they can collide with silicon nuclei in the substrate. The area that is most
sensitive to particle strikes is the depletion region under the drain of an MOS transistor,
as shown in Figure 2.1. The accumulated charge can cause a transient current that
momentarily flips the logic state of the transistor drain node. In rare occasions, a single
particle strike can cause a bit flip on the drain nodes of two different transistors. Double-
flips have been observed in the field but their occurrence rate is two orders of magnitude

smaller than single-bit flips.

Particles are generally created by either alpha radiation or cosmic rays.Alpha radia-

tion consists of highly charged helium nuclei, also known as alpha particles. These are
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emitted by radioactive impurities in packaging, or from radioactive contamination of
the semiconductor. If the silicon substrate is not exposed to radioactive material, either
from within the chip packaging or from external sources,then no alpha particle strikes

will occur.

Cosmic rays consist of either solar wind or galactic particles. Solar particles have
been the dominant source of errors in satellite electronics. They have very high flux,
but their energies are very low and thus they cannot enter the atmosphere. On the other
hand, galactic particles have energy in the order of GeV, therefore they penetrate the
atmosphere. In high altitudes they collide with atoms in the air and generate secondary
particles. These secondary particles keep on colliding with other particles in the atmo-
sphere and gradually lose their energy. Still, many reach the surface of the earth. The
most dangerous of them are neutrons. Because they are not charged, they do not lose
energy in the electron sea of the atmosphere. Therefore,when they reach the surface
of the earth they have enough energy to create collisions with silicon atoms in the chip
substrate. Neutrons are responsible for most SEUs inside the earth’s atmosphere. Since

their flux increases with altitude, SER is larger at high elevation.



SER « F x A* K % exp(Qcrit/Qs)

where F is the particle flux, A is the area sensitive to particle strikes, K is a constant
and Qs is the charge collection efficiency of the device, which is proportional to the gate

length.
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Figure 2.3: Bath Tub Curve

2.3.2 Wearout Errors

Failure rates during the lifetime of a digital IC are modeled with the bathtubshaped
curve, shown in Figure 2.3. There is an initial period of high error rates,known as infant
mortality period. To avoid such high error rates in the field, all manufactured chips are
stressed at high Vdd and T before shipping. This process,called burn-in, accelerates
chip aging, thus fast-forwarding marginal chips to infant mortality. During the normal
lifetime the error rates are very low. The final period is called wearout, where error

rates progressively increase due to device aging.

Technology and voltage scaling have moved the bathtub curve upwards and made it

narrower. This means that error rates increase, the projected chip lifetime is shorter and

10



wearout failures start happening much earlier. The wearout process is gradual. The cir-
cuits become progressively slower until they break down. During the onset of wearout
errors, slight timing violations creep in. Therefore, they behave as intermittent delay
errors, they are caused by marginal hardware, usualy activated for specific ranges of
power supply voltage and temperature, typically low Vdd and high T, and only occur
for certain data input combinations. Also, since the aging process cannot be stopped,
wearout errors are inevitable. Typical wearout mechanisms are electromigration, hot
carrier injection, negative-bias temperature instability, and time-dependent dielectric
breakdown.

Electromigration (EM) : This happens in the interconnect and is due to high density
currents. The currents create electron winds that cause metal atoms to migrate over
time, gradually removing metal atoms from wires, thus increasing interconnect resis-
tance. EM eventually results in an open circuit, creating a permanent error.

Hot Carrier Injection (HCI) : This is caused by hot carriers that are injected into the
gate dielectric during transistor switching and remain there. This increases the thresh-
old voltage and effectively reduces the transistor switching speed. If a large number of
carriers accumulates in the gate dioxide, the device fails permanently. In general HCI
affects nMOS transistors more than pMOS transistors because electrons have higher
mobility and can more easily penetrate the gate dioxide.

Negative Bias Temperature Instability (NBTI) : This on the other hand, affects pre-
dominantly pMOS transistors. When a negative voltage is applied to the gate of a pMOS
transistor, a number of Si-H bonds will break at the silicon-oxide interface.This leads
to the creation of trapped holes that capture electrons owing in the channel, The thresh-
old voltage increases and the pMOS transistor becomes slower and fails to meet timing
constraints.

TDDB :This is the breakdown of the gate dioxide. At the onset, a tunneling current
starts owing from the gate to the drain (source) of the transistor. An increase in this
leakage current increases the voltage between the gate and the drain (source)and thus
reduces the switching speed of the transistor. As more of the gate dioxide breaks down,
the current increases until the transistor becomes non-responsive.

Environmental Variations : Environmental (or operational) variations are fluctua-
tions in the temperature and power supply voltage of the chip. Temperature variations

are the result of different switching activities and leakage currents in different chip

11



modules as well as problems in the chip cooling system (e.g. dust in the fan and heat
sink).High temperatures can cause permanent failures. One common method to protect
against overheating is to place thermal sensors on the die. When a certain temperature
is exceeded, dynamic voltage and frequency reduction and microarchitectural throttling
techniques are employed to lower power consumption . Also, circuits become slower
at high temperatures and are more prone to delay errors.Power supply variations hap-
pen due to inductive noise, resistive voltage drops and variations in leakage current .
Sophisticated power supply networks are being used to maintain the voltage within a

specified margin and avoid potentially harmful spikes.

Current designs strive to eliminate all errors caused by environmental variations and
chips always specify a range within which they are guaranteed to operate reliably. If
an error occurs in combinational logic due to very high temperature or low voltage, it
will be a intermittent delay error. Since gradual temperature increases and small power
supply droops only slightly increase circuit delay,temporary errors due to operational

variations are expected to only slightly increase cycle time.

2.3.3 Manufacturing Process Variations

Manufacturing process variations are static variations in device and interconnect proper-
ties that affect the circuit operation, performance, and power consumption.Again, volt-
age and transistor/interconnect dimension scaling is the reason for that trend. Tran-
sistors and wires are so small that small changes in their geometries or their electrical
characteristics have a big effect on their behavior. Geometry fluctuations occur because
the wavelength of the lithography process has not scaled with feature size. Therefore
the quality of printed patterns on the silicon die continues to deteriorate.In current MOS
transistors, variability has been observed in all geometries,such as the effective length
(Leff ), the width (W) and the oxide thickness (tox). Similarly, the interconnect width,
thickness and spacing may also vary. Also, random dopant fluctuations in the channel

affect the threshold voltage.

12



2.3.4 Design Errors

So far we have considered failure mechanisms that were caused by external sources
or by marginal hardware, and did not take into account errors caused by the designers
themselves. Design errors are practically unavoidable given the complexity of modern
microprocessors. After a chip has been taped out, a substantial amount of time is spent
in post-silicon debugging, typically 35% of the total design and development time. Only
when all functional bugs have been fixed, can the chip be released to the market. A
delayed release, or even worse, errors in the shipped parts, often has a huge impact on

the profits and the reputation of the manufacturer.

2.3.5 Other Sources of Errors

The above mechanisms are not the only possible causes of temporary errors.In fact,
there are many other error sources, such as electrostatic discharge (ESD), electromag-
netic interference (EMI), and crosstalk noise , just to name a few. Sometimes, it is not
clear whether to classify these errors as transient or intermittent. For example, crosstalk
noise may cause a transient spike or make the signal become slower causing intermit-
tent delay errors.Also, moving into smaller dimensions may expose vulnerabilities to
noise sources that can currently be safely ignored. Finally, emerging electronic nan-
otechnologies,such as carbon nanotubes and silicon nanowires have proved to be very
error prone. Overall, the importance of the reliability problem is expected to increase

in the future.
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Chapter 3

FAULT TOLERANCE AND EXISTING MITIGATION
TECHNIQUES

3.1 Need for Fault Tolerance

The task of making a processor function correctly according to its design specification
spans different stages of the chip life cycle. The design validation stage ensures that
there are no implementation mistakes due to which the transistor level implementation
of the processor varies from the design specification. The manufacturing testing stage
ensures that there are no manufacturing process related defects due to which the physi-
cal hardware may not match the transistor level implementation of the processor. After
these two stages, the processor is deemed fit to be shipped to the customers. However,
the processor still may not function correctly on the field due to many reasons. There
may be some implementation mistakes or manufacturing defects which escaped detec-
tion from the validation or testing stages. There may be some new defects introduced in
the chip after it has been shipped. There may be also some external disturbances which
induce incorrect behavior in the processor. Steps need to be taken both at design time
and on the field to tolerate such mistakes, defects, and disturbances. The ability of a

processor to function correctly in spite of these hindrances is called fault tolerance .

3.2 Fundamental definitions regarding fault tolerance

The three fundamental terms in fault tolerance are

e fault
® CITOr

e failure



A fault is a physical defect, imperfection, or flaw that occurs within some hardware
component. It represents a defect in the physical universe such as in semiconductor de-
vices, mechanical elements, displays, printers, power supplies, or other physical entities

which make up the system.

An error is the manifestation of a fault. Error is a deviation from accuracy in the
information universe such as in the data words within a computer or digital voice or
image information. If the error results in the system performing one of its functions
incorrectly then a failure has occurred. A failure occurs in the external universe and can

be witnessed by the users of the system.

The goal of fault tolerance is to prevent any failures from happening due to faults.
Fault tolerance is defined as the ability of a system to continue to perform its tasks
after the occurrence of faults. Common terms associated with fault tolerance are fault
masking, fault detection, and fault recovery. Fault masking is the process of preventing
faults in the system from causing errors. Fault detection is the process of recognizing
the presence of a fault and fault recovery is the process of remaining operational in
presence of the fault. The fault recovery process generally depends on the type of the
fault that is present in the system. The terms error masking, error detection, and error

recovery can be similarly defined.

3.2.1 Worst-Case Design Rules

The traditional approach to faults taken by the industry is to rely on error avoidance,
rather than on error detection and recovery. The correct operation of the chip is achieved
by adopting design rules that guarantee that the probability of an error is below an
acceptable upper bound. These Worst-Case design rules have been traditionally used
by every digital IC manufacturer. In memory arrays the dimensions and the electrical
characteristics of the cells must be within a certain range to make sure that single event
upsets are rare. In pipelined combinational logic, after timing analysis is performed and
the worst-case delay is found, designers add a guardband, so that the chip is guaranteed

to work after manufacturing for a specified range of power supply and temperature.

Though worst-case design has been historically successful, as feature sizes shrink,

it becomes far too conservative leading to the investigation of new circuit design tech-
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niques to cope with component unreliability and unpredictability.In SER-tolerant de-
signs, silicon on insulator (SOI) and triple-well CMOS processes are being used to
reduce the frequency of soft errors by reducing the size of the active region where the
particle strikes occur. SOI processes are estimated to be one order of magnitude more

resilient to particle strikes and are standard for space applications.

3.2.2 Structural Redundancy
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Figure 3.1: Structural Redundancy

Structural, or space redundancy (SR), is a simple form of redundant computation.
The computational resources are duplicated and instructions are executed twice. The
results of the two functional units are compared. If they are different,at least one of the
two redundant FUs has computed the incorrect result. SR is very easy to implement, but
its area and power overhead is more than 100%, since the computational logic is repli-
cated and a comparator is placed at the FU output.This overhead may be prohibitive for
using SR for large, power-hungry FUs, such as floating point units. SR is more tractable
for FUs with multiple instances in the processor pipeline, such as integer ALUs. How-
ever, it doubles resource utilization, Finally, if the logic is just duplicated, recovery is
impossible because we do not know which one of the two values is correct. To guaran-
tee recovery, triple-modular redundancy (TMR) with a voter is used.FUs enhanced with

SR and TMR are shown in Figure.
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3.2.3 Temporal Redundancy

Temporal, or time, redundancy (TR), performs two or more redundant computations in a
single FU, by executing the same instruction at different times. Such an FU is shown in
Figure 2.5. After the two computations have been made, the two output results in latches
OUT1 and OUT?2 are compared. If the computation is correct, the output is propagated
to consumer operations, otherwise an error signal is raised. Redundant execution may

be controlled either by hardware [94] or by software [66].

FUNGTIONAL Output

i -
I = .'. =

Correct?

Figure 3.2: Temporal Redundancy

Even though the structural duplication of the computational logic is avoided, TR

has the following limitations

e Additional storage and control
e Slowdown
e Power overhead

e Fault Coverage

3.3 Previous work to enhance reliability

Many solutions to the hardware reliability problem have been proposed.There is a wide
range of errors to be handled, as we described in Section 2.2, but different levels of
the design stack can be combined to provide efficient detection and recovery. We
first overview circuit solutions, then focus on microarchitectural and architectural tech-

niques and finish with better than worst-case design methodologies.
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3.3.1 Circuit-level Solutions

This technique relies on changes in the circuit design to reduce soft error sensitivity.
It involves designing the circuit in such a way that it can combat the radiation effects.

This is achieved by adding redundancy at transistor level or circuit level.

3.3.2 Software-level Solutions

Many software implemented hardware fault tolerance (SIHFT) techniques have been
proposed in the recent past. These techniques are attractive due to their low cost. Extra
code is embedded inside the program which performs the fault tolerant actions.A faulty
data structure of the program is examined and repaired to satisfy certain pre-specified

constraints.

3.3.3 Microarchitecture and Architecture-level solutions

Architectural error mitigation techniques that have been proposed in the research lit-
erature and in industrial products all rely on SR, TR, or a combination of them and
use information redundancy for array structures. Computation reliability enhancements
fall into the following categories: parity prediction and residue checking, signature
checking, lockstepping, redundant multithreading, microarchitecturebased instruction

replication, software-based instruction replication, and reconfigurable designs

Parity Prediction and Residue Checking

In modern fault-tolerant microprocessors, error detection relies on two lightweight er-
ror detection techniques: parity prediction and modulo residue checking for multipli-
ers/dividers in particular. In parity prediction, the parity of the output is predicted based
on the input operand parities and selected FU internal signals.After the output is pro-
duced, its parity is computed and compared to the predicted parity. In modulo-p residue
checking, a p-bit multiplier (divider) operates on the modulo-p values of the N-bit in-
puts (p < N). The modulo-p output of the multiplier is then compared to the output of

the p-bit multiplier. Both these techniques avoid full structural duplication, but they
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(1) tend to extend the clock cycle,
(i1)are not equally efficient for all FUs, and

(iii) have lower fault-coverage than plain re-execution.

Signature Checking

Signature checking techniques create a signature of the execution stream by monitoring
the executed code and specific signals in the processor. The signature is usually a CRC
checksum of the monitored bits , but can also be generated by additional instructions
embedded in the code. The run-time signature is compared against a value generated at
compile time. The checking is implemented either in hardware or in software and may
be triggered at different code granularities, although in most cases it happens at basic

block boundaries.

Lockstepping

Lockstepping is a structural redundancy technique to enhance combinational logic reli-
ability. Two modules operating in lockstep receive the same inputs on every cycle and,
in the absence of errors, produce the same outputs. The lockstepped system needs to
provide a way to do recovery when an error is detected. Lockstepping has been ex-
tensively used in high reliability, availability, serviceability (RAS) systems in the past

decades.
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Chapter 4

DESIGN AND IMPLEMENTATION

Fault tolerance is achieved in computer systems using some sort of redundancy.Redundancy
techniques can be categorized as hardware, information, time,and software redundancy
techniques.

Hardware Redundancy Hardware redundancy is usually achieved by physically repli-
cating the hardware. Passive hardware redundancy uses fault masking to hide the faults
and to prevent the occurrence of errors. Triple modular redundancy is a common pas-

sive redundancy technique. This technique uses three copies of the same hardware and

——|  Module \ ——|  Module \ Output
o 7N
/ \ Output / \ i
— | Module2 [ voter | P ( compare | Error signal
J-_/ ) -
—| Module3 — = Module? Output
a) Triple Modular Redundancy b) Duplication with comparison

Figure 4.1: Illustration of hardware redundancy

uses a voter (or a set of voters) to select the correct output. No corrective action is
required on part of the user for this sort of redundancy. Active hardware redundancy,
on the other hand, uses reconfiguration to achieve fault tolerance. Reconfiguration in-
volves detecting the presence of an error and thus deducing the presence of a fault (fault
detection), determining where the fault has occurred (fault location), and then remain-
ing operational in spite of the fault (fault recovery). Duplication with comparison is a
common active redundancy technique. This technique uses two copies of the same hard-
ware and compares the result to detect an error (and hence the fault). Hybrid hardware
redundancy is a combination of passive and active redundancy techniques. Passive re-
dundancy is used to mask the faults and active redundancy is used to locate and replace

the faulty hardware.



Information Redundancy Information redundancy is achieved by providing extra
information along with data to allow for fault detection and fault recovery. Figure 1.3
shows the scheme used for information redundancy. Data is first encoded before the

computation is performed. Error detecting codes and error correcting codes are the

Error correction

Input _ Check - Output

———| Encode data Computation . it neededand ———=

Data routine ) Data
available

Figure 4.2: Information redundancy

common encoding schemes used. Suppose an error is introduced due to some fault
during the computation. If the code is error detecting for the type of error introduced,
the result of the computation will be invalidly encoded. This invalid code is detected in
the checking routine. If the code is also error correcting for the type of error introduced,
enough information is provided in the encoding such that the error can also be corrected.
Parity encoding is an example of an error detecting code. An extra bit is added to the
data word such that the total number of 1 bits in the word is either odd (odd parity
encoding) or even (even parity encoding). An error which results in one of the bits
of the word being flipped will result in an even parity (if odd parity encoding is used)
or odd parity (if even parity is used). This difference in parity is then detected in the
checking routine. The error detecting/correcting capability depends on the type of the
error introduced. For example, if even number of bits are flipped in a data word due
to an error, parity encoding will be incapable of detecting the error. Other encoding
schemes commonly used include m-of-n codes, duplication codes, checksums, cyclic

codes, hamming codes, berger codes and arithmetic codes .
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Figure 4.3: Time redundancy

Time Redundancy Time redundancy is usually achieved by running the same com-

putation multiple times on the same computer system and comparing or voting the re-
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sults. Figure 4.3 shows an example time redundancy technique which performs error
detection.To perform error correction, the same computation needs to be run three or
more times and a voter needs to be used to select the correct output. Time redun-
dancy techniques incur lower cost compared to hardware and information redundancy
techniques since no modifications/additions are required to the hardware.However, they
involve a performance penalty since the same computation is performed multiple times.
Transient faults can easily be detected by time redundancy techniques assuming the
fault is resident in the system only during one of the computations.A permanent fault
cannot be detected by just time redundancy if it corrupts all the computations in the
same manner. To detect permanent faults, the computations performed are varied such

that a fault affects each of the computation outputs differently.

4.1 Fault Tolerant and Correction System Using Modu-

lar Redundancy

Basically, a TMR system is composed of three identical devices and voting logic. The
voting logic is the majority voter which takes the majority of inputs to be the output
value. Since Device B and Device C are replication of Device A and they all accept
the same input value, the output of A, B and C should be consistent in theory. Due to
the fault in system, one of these three devices may have an error inside and generate
a different output. [4]This inconsistency will be caught and corrected by voting logic
.Thus the voted output is always a correct value under the assumption of single error.
Thus, the voted output is always a correct value under the assumption of single error.
When the TMR concept is applied to a processor (system), all output signal of the CPU
are voted; therefore no error should exist at output of voters. Any error that occurs
represent that one of the CPUs has an error inside .If that error is not corrected by some

way, it may result in more errors and finally become unrecoverable.

Terminology

Let us call the devices performing operations in each stage as Funcional Units.As the

design is implemented in TMR there are 3 FUs in each stage.
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4.1.1 Implemented Fault Handling Logic

e For each stage (of all 4 stages)separate error count is assigned for each Functional
Unit.

o If there is transient error only in FU1,then error count of FU1 is incremented.The
same follows for FU2 and FU3.

e If the transient error occurs for 3 times or when the error count reaches 3,then it
signifies a permanent fault happened in the respective FU .The idea of assigning
error count for each FU rather than single error count for all the FUs is to uniquely
track the permanent fault in a particular FU.

e [f there is a permanent fault in a function unit,then we need to isolate the func-
tional unit.This is done by setting the PF to 1 for that FU.SO from the next run
this FU do not evaluate the result and is set idle.

4.2 Multiplier

Multiplication is a basic arithmetic operation which is present in many parts of the dig-
ital computer especially in signal processing systems such as graphics and computation
system. Digital signal processors are designed in such a way that it has a feature of
DSP algorithm in real time. The basic building blocks of DSP are multiplier, arithmetic
logic unit and multiply and accumulate unit. It requires more hardware resources and
processing time than addition and subtraction requires.For real time applications the
key issues in the design of computational building blocks of digital signal processor
are speed and accuracy.Hence various multiplier architectures have been proposed to

increase the performance of the multiplier.

However area and speed are two important conflicting constraints. So improving
speed results always in larger areas. The number of gates per chip area keeps on increas-
ing, while the gate switching energy does not decrease at the same rate. So the power
dissipation rises and removal of heat becomes difficult and expensive.Here are different
multiplier structures which can be classified as Serial Multipliers, Parallel multipliers,
Array multipliers, Tree multipliers and so on. Multipliers are categorized in relative to
their architecture,applications, and the way of producing partial products and summing

up of partial products to produce the final result.
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4.3 Some Multiplier Architecures

All multiplication methods share the same basic procedure -

e Generation of partial products
e Addition of partial products

e Final addition

A number of different methods can be used to add the partial products. The simple
methods are easy to implement,but the more complex methods are needed to obtain the

fastest possible speed.The following are some multiplier architectures.

4.3.1 Iterative

The simplest method of adding a series of partial products is shown in figure below.
It is based upon an adder-accumulator, along with a partial product generator and a
hard wired shifter.This is relatively slow, because adding N partial products requires N
clock cycles. The easiest clocking scheme is to make use of the system clock, if the
multiplier is embedded in a larger system. The system clock is normally much slower
than the maximum speed at which the simple iterative multiplier can be clocked, so if
the delay is to be minimized an expensive and tricky clock multiplier is needed, or the

hardware must be self-clocking.

4.3.2 Linear Arrays

A faster version of the basic iterative multiplier adds more than one operand per clock
cycle by having multiple adders and partial product generators connected in series.This
is the equivalent of "unrolling" the simple iterative method. The degree to which the
loop is unrolled determines the number of partial products that can be reduced in each
clock cycle, but also increases the hardware requirements. Typically, the loop is un-
rolled only to the point where the system clock matches the clocking rate of this mul-
tiplier. Alternately,the loop can be unrolled completely, producing a completely com-
binatorial multiplier (a full linear array). When contrasted with the simple iterative

scheme, it will match the system clock speed better, making the clocking much simpler.

24



—> Multiphicand Register

]

Partial Product Generator

—

Adder

Multipher (Shift) Register

Right Shift

Clock > Product Remster

Figure 4.4: Simple iterative multiplier

There is also less overhead associated with clock skew and register delay per partial

product reduced.

4.3.3 Serial Multiplier

Where area and power is of utmost importance and delay can be tolerated the serial
multiplier is used. This circuit uses one adder to add the m * n partial products. The
circuit is shown in the fig. below for m=n=4. Multiplicand and Multiplier inputs have
to be arranged in a special manner synchronized with circuit behavior as shown on the
figure. The inputs could be presented at different rates depending on the length of the
multiplicand and the multiplier. Two clocks are used, one to clock the data and one
for the reset. A first order approximation of the delay is O (m,n). With this circuit

arrangement the delay is given as D =[ (m+1)n + 1 ] tfa.

As shown the individual PP is formed individually. The addition of the PPs are
performed as the intermediate values of PPs addition are stored in the DFF, circulated
and added together with the newly formed PP. This approach is not suitable for large

values of M or N.
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Figure 4.5: Linear Array Multiplier
4.3.4 Parallel Addition (Trees)

When a number of partial products are to be added, the adders need not be connected
in series, but instead can be connected to maximize parallelism, as shown in Figure 1.5.
This requires nomore hardware than a linear array, but does havemore complex inter-
connections.The time required to addNpartial products is now proportional to log N, so
this can be much faster for larger values of N. On the down side, the extra complexity

in the interconnection of the adders may contribute to additional size and delay.

4.3.5 Wallace Tree Multiplier

For real-time signal processing, a high speed and throughput Multipliers-Accumulator
(MAC) is always a key to achieve high performance in the digital signal processing
system. The main consideration of MAC design is to enhance its speeds. That high
speed is achieved through this well-known Wallace tree multiplier. Wallace introduced
parallel multiplier architecture to achieve high speed. Wallace Tree algorithm can be

used to reduce the number of sequential adding stages. The advantage of high speed
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becomes an enhanced feature for multipliers having operand of greater than 16 bits.
The Wallace tree was being constructed using carry save adder(CSAs also known as full
adders or 3-2 counters ) to reduce an N row bit product matrix to an equivalent two row
matrix that is then fed into carry propagating adder to sum up those rows of bits and to
produce the product. The carry save adders are those conventional full adders in which
carries are not connected and three bits of inputs are taken in and two bits are given as
output.Many different adder tree structures have been used to reduce the computation
time of the multipliers. The computation time of the Wallace tree has achieved the lower
bound of O (log3/2 N). For n-bit Wallace tree multiplier, the number of steps needed
is (log3/2(n/2) + 1). Wallace tree multipliers have significant complexity and timing

advantages over traditional matrix multipliers. The main advantage of this multiplier is

its Logarithmic circuit delay. Delay is log (n).
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4.3.6 Modified Booth Algorithm

Booth encoding is a method of reducing the number of partial products required to
produce the multiplication result. To achieve high-speed multiplication, algorithms us-
ing parallel counters like modified Booth algorithm has been proposed and used. This
type of fast multiplier operates much faster than an array multiplier for longer operands
because it’s time to compute is proportional to the logarithm of the word length of
operands. By recoding the numbers that are to be multiplied,Modified Booth multi-
plier allows for smaller, faster multiplication circuits. The number of partial products
is reduced to half, by using the technique of Radix-4 Booth recoding. Reduction in
the number of partial products depends upon how many bits are recoded and on the

grouping of bits.

Booth Radix-4 Algorithm

The grouping considers each three bits of the multiplier bits starts from the LSB bit and
the first considers only two bits. From the next it considers three bits in which one bit
will be overlapped on the previous group. Thus grouped multiplier will result in the
production of bits between these five bits as follows as -2,-1, 0, +1, and +2.Essentially,
three multiplier bits [Y (i+1),Y (i) and Y (i-1) ] are encoded into eight bits that are used

to select multiples of the multiplicand [-2X,-X,0,+X,+2X].

Radix-4 Modified Booth’s algorithm [6] is:

e Y (i-1) = 0; Insert O on the right side of LSB of multiplier.
e Start grouping each three bits with overlapping from Y (i-1).

e [f the number of multiplier bits is odd, add a extra 1 bit on left side of MSB and
generate partial product from Table 1.

When new partial product is generated, each partial product is added two bit left
shifting in regular sequence.

It is then sign extended.

It is a powerful algorithm for signed-number multiplication, which treats both pos-
itive and negative numbers uniformly.It is a method that will reduce the number of
multiplicand multiples. For a given range of numbers to be represented, a higher repre-

sentation radix leads to fewer digits. Since a k-bit binary number can be interpreted as
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K/2-digit radix-4 number, a K/3-digit radix-8 number, and so on, it can deal with more
than one bit of the multiplier in each cycle by using high radix multiplication. This is

shown for Radix-4 in the example below.

Xit1XiXi Z,
000 0
001 I*multiplicand
010 I*multiplicand
011 2*multiplicand
100 -2*multiplicand
101 -1*multiplicand
110 -1*multiplicand
111 0

This algorithm is widely used to reduce the area of multiplier and to increase the
speed.Here —2*multiplicand is actually the 2s complement of the multiplicand with an
equivalent left shift of one bit position. Also, +2 *multiplicand is the multiplicand

shifted left one bit position which is equivalent to multiplying by 2.

To enter 2*multiplicand into the adder, an (n+1)-bit adder is required. In this case,
the multiplicand is offset one bit to the left to enter into the adder while for the low-
order multiplicand position a 0 is added. Each time the partial product is shifted two bit
positions to the right and the sign is extended to the left. During each add-shift cycle,
different versions of the multiplicand are added to the new partial product depends on

the equation derived from the bit-pair recoding table above.

Since the Booth Method applies to 2’s complement arithmetic, care must be taken to
insure sign extensions are in place. Once the table of the partial products are drawn, all
the rows of the partial products have to be arithmetically extended to 2*N, where N is
the length of the multiplicand. This is necessary to obtain correct results but it increases

the capacitive load, the area and the computational time.
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4.4 Adders for Multiplication

Fast carry propagate adders are important to high performance multiplier design in two
ways. First, an efficient and fast adder is needed to make any "hard" multiples that
are needed in partial product generation. Second, after the partial products have been
summed in a redundant form, a carry propagate adder is needed to produce the final
nonredundant product. The delay of this final carry propagate sum is a substantial
portion of the total delay through the multiplier, so minimizing the adder delay can

make a significant contribution to improving the performance of the multiplier.

4.4.1 Carry-lookahead Adder

For a carry-lookahead group of N bits,the transistor implementation has N+1 transis-
tors in the stack.Since wide gates and large stacks display poor performance,the carry-
lookahead computation has to be limited to upto two or four bits in practice.Generally
we consider four bits.Addition of two 64-bit summands can be achieved by using cas-

cade of 16 4-bit Carry-look ahead adders(CLAsS).

4-bit CLA :

In the case of ripple carry adder,the time required to generate the sum is delayed by the
arrival time of carrier from the previous full adder stage.As the carry got rippled from
Isb to msb,the entire path is present in the critical path.This results in huge delay in a
ripple carry adder.Inorder to reduce the delay fast adders like carry-lookahead adders
are used.In this all four carries are generated at the same time rather tan depending
on the previous carry signal.But this results in more hardware utilisation,hence area

increases.

Carry-look ahead adder hardware may be designed as shown in Figure below. The
carry-look ahead logic consists of two logic levels, AND gates followed by an OR gate,
for each ci when the adder inputs are loaded in parallel, all gi and pi will be generated
at the same time. The carry-look ahead logic allows carry for each bit to be computed

independently.
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Figure 4.8: 4-bit Carry-lookahead Adder Circuit

Ideally, the carry signal ci will be produced through two-stage logic at the same
time, which means that the adder will have a constant time complexity. However, it is
impractical to build a two stage full large-size carry-look ahead adder because of the

practical limitations on fan-in and fan-out, irregular structure, and long wires delay.

In practice two approaches the block carry-look ahead adder and the complete carry-
look ahead adder are used to implement the CLA[1]. In the first implementation, small
(4-bit or 8-bit) carry-look ahead logic cells with sections generate and propagate func-

tions are built, and then they are stacked to build larger carry-look ahead adders.

The total delay of the carry-look ahead adder is O (log k) which can be significantly
less than the carry chain adder. There is a penalty paid for this gain in term increased

area. The carry- look ahead adders require O (k * log k) area.

Let
co be the carry —in of the 4 — bit C LA block.
gi, pi are the generate and propagate signals of the bit position i.
Then the 4 carry bits are derived as follows :
€1 = go + PoCo
ca = g1 + p1(go + Poco)
c3 = ga + p2(g1 + p1(go + pPoco))
cs = g3+ p3(g2 + p2(g1 + p1(go + poco)))
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4.4.2 Carry Select Adder

The carry-select adder comes in the category of conditional sum adder [9]. Conditional
sum adder works on some condition this scheme; blocks of bits are added in two ways:
assuming an incoming carry of 0 or 1, with the correct outputs selected later as the

block’s true carry-in becomes known.

In aripple-carry adder,every full-adder cell has to wait for the incoming carry before
an outgoing carry can be generated.One way to get around this linear dependency is
to anticipate both possible values of the carry input and evaluate the result for both
possibilities in advance.Once the real value of the incoming carry is known,the correct

result is easily selected with a simple multiplexer stage.

An implementation of this idea is shown in the figure below.Consider the block of
adders,which is adding bits k to k+3 .Instead of waiting in the arrival of the output carry
of bit k-1,both the 0 and 1 possibilities are analyzed.From a circuit point of view,this
means that two carry paths are implemented.When Co,k-1 finally settles ,either the
result of the O or the 1 path is selected by the multiplexer,which can be performed
with a minimal delay.The hardware overhead of the carry-select adder is restricted to
an additional carry path and a multiplexer,and equals about 30percent with respect to a

ripple-carry structure.

A full carry-select adder is now constructed by chaining a number of equal-length
adder stages in the figure below.The first-order model of the worst case propagation

delay of the module is derived as,
tadd = tsetup + Mtcarry + (N/M)tmux + tsum

where tsetup,tsum and tmux are fixed delays and N and M represent the total number
of bits,and the number of bits per stage,respectively.tcarry is the delay of the carry
through a single full-adder cell.The carry delay through a single block is proportional

to the length of that stage or equals Mtcarry.

We can design a carry select adder using unequal-length adder stages as shown in
the figure below.Consider the multiplexer gate in the last adder stage.The inputs to this
multiplexer are the two carry chains of the block and the block mutiplexer signal from

the previous stage.A major mismatch between the arrival times of the signals can be
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Bit0-3 Bit 4-7 Bit 8-11 Bit 12-15

Setup Setup Setup Setup

e 1-Carry | BENEEE  1-Carry | IEEE  1-Carry | s 1-Carry

S Multiplex Multiplex Multiplex Multiplex
’ erI ' elr ' eIr ' eIr

Sum Sum Sum Sum

Generation Generation Generation Generation

Sum 0-3 Sum 4-7 Sum 8-11 Sum 12-15

Figure 4.9: 16-bit,linear carry-select adder

observed.The results of the carry chains are stable long before the multiplexer signal
arrives.It makes sense to equalise the delay through both paths.This can be achieved
by progressively adding more bits to the subsequent stages in the adder,requiring more

time for the generation of carry signals.

In the figure below,I implemented this by adding 4-bits in the first stage,8-bits in
the second stage,12-bits in the third stage,16-bits in the fourth stage and 24-bits in final

stage.

In the above figure there are 5 stages.First stage contains one 4-bit CLA, second
stage contains 2 4-bit CLAs in cascade,third stage contains 3 4-bit CLAs,fourth stage
contains 4 4-bit CLAs and fifth stage contains 6 4-bit CLAs. The number CLAs in each
stage is designed based on the arrival times of the signals to the multiplexers present at

each stage.
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Figure 4.10: 64-bit carry-select adder

4.4.3 Brent Kung Adder

The Brent-Kung adder is a parallel prefix adder.It was developed by Brent and Kung.Parallel
prefix adders are fast adders used for high performance arithmetic structures in indus-

tries.Parallel prefix additionis done in three steps :

e Pre-processing stage
e Carry generation network

e Post processing stage

1. Pre-processing stage

In this stage we compute,the generate and propagate signals which are used to generate
carry input of each adder.A and B are inputs .The following are the equations for prop-
agate and generate:

P,=A; @ B;

G, = A;.B;
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2. Carry generate network

In this stage we compute carries corresponding to each bit.Execution is done in parallel
form.Carry operator contains two AND gates and one OR gate.It uses propagate and
generate as intermediate signals which are given by the following equations:

Py = Plaj)-Pli-1:x)

Gy = Gy + (G—1)-Flic))

3. Post processing stage

This is the final stage to compute the summation of input bits.Sum bit equation is given
by :
Si=P,aC;

Suppose if we assume T be the unit gate delay,then the time required to compute the

sum of 64-bits using Brent-kung adder is shown below :
T=1:All G;sand P;s are generated
T=2: Xe3:62, X61:605 X59:585 X57:565 X 55:545 X 53:525 K 51:505 5 49:48) N AT:46> X 45:44, X 43:42,
X41:40, X39:38, X37:36, X35:34, X33:32, X31:30, X20:28, X27:26, X25:24, X 23:22, X21:20, X 19:18,
Xi7:16, X15:14, X13:12, X11:10, Xo0:8, X7:6, X5:4, X3:2, X1:0, Co
T=3: X¢3:60, X50:56, X55:52; X51:48, X 47:445 X43:40, X30:36, X 35:32, X 31:28, X27:24, X 23:20,
Xi9:16, X15:12, X11:8, X724, X300, O
T =4": Xe3:56, Xs55:48, X47:40, X39:32, X31:24, X23:16, X 15:8, X7:0, U3, C
T=5": X¢3.48, Xur:32, X31:16, X15:0, Cs, C5, C7
T =6: Xe3:32, X31.0, C6, C11, C15, Cy, Cg
T="7: Xg3.0, Cs1, Cho, C12, C13, C16, C17, Crg, Co3
T =28: Ce3, Ch4, Cis, C0, C21, Cos, Cas, Cor, Cs9, Cs3, C39, Cay
T =9: Cy, Cos, Csg, Cog, C34, Cao, Ca1, Cuz, Cug, Cag, Cs1, Css, Cs6, Cs7

T=10: C30a C427 C'447 C’457 C(507 0527 CY537 C'567 C577 CY597 CY38
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T=11: Cys, Css, Css, Co0, Ce1

T=12: C62
T=13:SUM
Where

4.5 Advantage of Pipelining

Pipelining is nothing but doing more than one operation ,in a single data path.When
performing a particular operation some part of the combinational logic is idle,and we
can make use of that part if we pipeline that combinational logic.So,we divide the entire
combinational logic into stages and insert registers in between..This way of execution
increases the clock frequency compared to the one which is not pipelined.This also

increases the overall throughput of the system.

For example,let the multiplication operation takes 5 clock cycles .Then 10 multipli-
cation operations take 50 clock cycles.Whereas in a 4-stage pipeline it takes 13 clock
cycles.This clearly shows the throughput of the system increases.Also clock frequency
increases because the the combinational logic between the registers is less compared to

the non-pipelined one.

4.6 Proposed Design For Multiplier

Analysed Wallace tree multiplier and Booth Multiplier using 3-2 compressor,5-2 com-
pressor for reduction of partial products and 4-bit Carry-lookahead adder,Carry Select

Adder,Brent-kung adder for final addition with respect to area and speed.

Partial Product reduction using 3-2 compressors is done as shown below :
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No. of Summands No. of groups of Three | Remaining Summands
33 11 0
22 7 1
15 5 0
10 3 1
7 2 1
5 1 2
4 1 1
3 1 0

Partial Product reduction using 5-2 compressors is done as shown below :

No. of Summands No. of groups of 5/3 | Remaining Summands
33 6-5:2 comp 3
15 3-5:2 comp 0
6 1-5:2 comp 1
3 1-3:2 comp 0

4.6.1 Wallace Tree Multiplier with 4-bit CLAs

The complete multiplier logic is divided in the 4 stages of pipeline as follows:

Stage-1

e Partial product generation

e Six levels of reduction
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Stage-11

e Two levels of reduction

e Lower 16-bits addition

Stage-I11

e Lower 24-bits addition of remaining 48-bits

Stage-1V

e Upper 24-bits addition

4.6.2 Wallace Tree Multiplier with 5-2 compressors and 4-bit CLAs

The complete multiplier logic is divided in the 4 stages of pipeline a follows:
Stage-I

e Partial Product Generation
e Two levels of reduction using 5-2 compressors and

e One level using 3-2 compressor

Stage-11

e One level of reduciton using 3-2 compressor

e Lower 12-bits addition

Stage-I11

e Lower 24-bits addition of remaining 52-bits

Stage-1V

e Upper 28 bits addition
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4.6.3 Wallace Tree Multiplier with Brent-kung adder

The complete multiplier logic is divided in the 4 stages of pipeline a follows:

Stage-I
e Partial Product Generation

e Four stages of 3-2 Compressors

Stage-11
e Four stages of 3-2 Compressors

e From T=1 to T=2 as mentioned in section 4.4.3

Stage-I11

e From T=3 to T=7 as mentioned in section 4.4.3

Stage-1V

e From T=8 to T=11 as mentioned in section 4.4.3

4.6.4 Wallace Tree Multiplier with 5-2 compressors and Brent-kung
adder

The complete multiplier logic is divided in the 4 stages of pipeline a follows:

Stage-1
e Partial Product Generation

e One level of reduction using 5-2 compressor

Stage-11
e Two levels of reduction using 5-2 compressor

e One level of reduction using 3-2 compressor

Stage-I11

e From T=1 t0 T=7 as mentioned in section 4.4.3

Stage-1V

e From T=8 to T=13 as mentioned in section 4.4.3
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4.6.5 Wallace Tree Multiplier with Carry Select adder

The complete multiplier logic is divided in the 4 stages of pipeline a follows:

Stage-I
e Partial Product Generation

e Three levels of reduction

Stage-11

e Five levels of reduction

Stage-I11

e Two stages of Carry Select Adder

Stage-1V

e Remaining three stages of Carry Select Adder

4.6.6 Wallace Tree Multiplier with 5-2 compressors and Carry Se-

lect adder

The complete multiplier logic is divided in the 4 stages of pipeline a follows:

Stage-I
e Partial Product Generation

e One level of reduction using 5-2 compressor

Stage-I1

e Two levels of reduction using 5-2 compressor

Stage-I11
e One level of reduction using 3-2 compressor

e Two stages of Carry Select Adder

Stage-1V

e Remaining three stages of Carry Select Adder
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4.6.7 Radix-4 Booth Encoded Wallace Tree Multiplier with 4-bit
CLAs

The complete multiplier logic is divided in the 4 stages of pipeline as follows:
Stage-1

e Partial product generation

e Four levels of reduction

Stage-11

e Two levels of reduction

e Lower 16-bits addition

Stage-I11

e Lower 24-bits addition of remaining 48-bits

Stage-1V

e Upper 24-bits addition

4.6.8 Radix-4 Booth Encoded Multiplier with 5-2 compressors and
4-bit CLAs

The complete multiplier logic is divided in the 4 stages of pipeline a follows:
Stage-1

e Partial product generation

e One level of 5-2 compressor

Stage-I1

e One level of 5-2 compressor
e Two levels of 3-2 compressor

o Lower &8-bits addition
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Stage-I11

e [ower 28-bits addition of remaining 56-bits

Stage-1V

e Upper 28-bits addition

4.6.9 Radix-4 Booth Encoded Wallace Tree Multiplier with Brent-

kung adder

The complete multiplier logic is divided in the 4 stages of pipeline a follows:
Stage-I

e Partial product generation

e Three levels of reduction

Stage-11

e Three levels of reduction

e From T=1 to T=3 as mentioned in section 4.4.3

Stage-I11

o From T=4 to T=8 as mentioned in section 4.4.3

Stage-1V

e From T=9 to T=13 as mentioned in section 4.4.3

4.6.10 Radix-4 Booth Encoded Multiplier with 5-2 compressors and

Brent-kung adder

The complete multiplier logic is divided in the 4 stages of pipeline a follows:
Stage-I
e Partial product generation

42



e One level of 5-2 compressor

Stage-11
e One level of 5-2 compressor

e Two levels of 3-2 compressor

Stage-I11

e From T=1 to T=7 as mentioned in section 4.4.3

Stage-1V

e From T=8 to T=13 as mentioned in section 4.4.3

4.6.11 Radix-4 Booth Encoded Wallace Tree Multiplier with Carry
Select adder

The complete multiplier logic is divided in the 4 stages of pipeline a follows:
Stage-I
e Partial product genration
e Two levels of reduction
Stage-11

e Four levels of reduction

Stage-I11

e Two stages of Carry Select Adder

Stage-1V

e Remaining three stages of Carry Select Adder
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4.6.12 Radix-4 Booth Encoded Multiplier with 5-2 compressors and
Carry Select adder

The complete multiplier logic is divided in the 4 stages of pipeline a follows:
Stage-1

e Partial product generation

e One level of 3-2 compressor

Stage-11

e Two levels of 5-2 compression

Stage-I11

e Two stages of Carry Select Adder

Stage-1V

e Remaining three stages of Carry Select Adder
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Chapter 5

BLUESPEC SYSTEM VERILOG

BSV is a HDL used in design of electronic systems such as FPGA, ASIC etc. Itis a
very high level language and results in synthesizable hardware which can run on FPGA
emulation platforms. BSV substantially extends the design subset of System Verilog
and also increases the programmer’s coding efficiency. It has more polymorphism than

System Verilog.

5.1 Kaey Features of BSV

High level atomic rules in place of Verilog’s always block.

High level interfaces instead of Verilog’s port list.

Powerful Parametrization and Polymorphism.

Powerful static checking.

Fully synthesizable at all levels of abstraction.

5.2 Study of the Bluespec System Verilog build process

The following are the steps involved in building a BSV design:

e A developer writes a Bluespec System Verilog program. It may be optionally
have Verilog, System Verilog, VHDL and C components.

e The Bluespec System Verilog program is compiled in to Verilog or Bluesim. Then
it has two different stages:
1. pre elaboration - It do parsing and also do type checking.

2. post elaboration -It does code generation.

e The compilation output is either linked into a simulation environment or pro-
cessed by a synthesis tool. Once the Verilog or Bluesim implementation is gen-
erated, the workstation provides the following tools to help analyse your design:

e The figure below illustrates the various steps involved in building a design in
Bluespec SystemVerilog. The steps involved in the design are :



Bsv
High level description of
how to produce the rules
lor a design

./".. cvaluate ™
{ high-lewel
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BSV .bo files
COMPILER

<7 transiate rube T
description into
hardwane
description

.ba files |

#

Post-elaboration

v .o

Verilog Bluesim
implementation implementation

Design Process in Verilog
Figure 5.1: BSV Flow

— Designer writes a BSV program. It may optionally include Verilog, System
Verilog, VHDL, and C components.

— The BSV program is compiled into a Verilog or Bluesim specification. This

step has twq distinct stages: )
P Bre—e\iva%oratlon - parsing and type checking

* Post-elaboration - code generation

— The compilation output is either linked into a simulation environment or
processed by a synthesis tool

5.3 Bluespec SystemVerilog Constructs

5.3.1 Rules

Rules are used to explain how the data shifts from one state to another state, instead of
the Verilog methods of uses always blocks. Every Rule has two components:

e Rule conditions : In rule condition we declare condition like in while in c. if
condition satisfied then goes to rule body.

e Rule body : It is a set of actions these explains state transitions.
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5.3.2 Modules

A module has of three kind of things: state, rules that operate on that state, and an
interface that has inputs and outputs of module. A module definition specifies a scheme
that can be instantiated multiple times.

5.3.3 Interfaces

Interfaces give a means to group of wires into bundles with mentioned uses, explained
by methods. An interface is a tend to remind one of something of a struct, where each
member is a method. Interfaces may have other interfaces also.

5.3.4 Methods

Signals and buses are driven in and out of modules using methods. These methods are
grouped together into interfaces. There are three kinds of methods:

e Value Methods: It takes zero or more parameters and returns a value.

e Action Methods: It takes zero or more parameters and It performs an action inside
of module.

e Action Value Methods: It takes Zero or more parameters, and performs an action,
and returns the result.

5.3.5 Functions

Functions are simply parametrized combinational circuits. Function application sim-
ply connects a parametrized combinational circuit to actual inputs.

5.4 Application Areas of Bluespec System Verilog

e Modeling for Software development
e Modeling for Architecture Exploration
e Verification

e [P creation

5.5 Building a design in Bluespec System Verilog

e The designer writes the BSV code and it may contain Verilog, Verilog Hardware
Description Language and C components.

e The Bluespec System Verilog code is compiled into either Verilog or a Bluesim.
This step has 2 stages:

1. Pre elaboration does parsing and it also does type checking.
2. Post elaboration does code generation.

47



The compiled output is either linked to a simulation environment or processed by
synthesis tool.
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Chapter 6

SIMULATION AND SYNTHESIS

6.1 Hardware Design Flow

Coding the design in a high level language is job only half complete. The final real-
ization of the hardware is the ultimate goal of any project. The hardware or the VLSI
design flow as depicted in Figure 8.1 gives the major steps taking the design towards
physical realization. A short detour explaining this flow is in order at this stage.

VLSI design flow
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Figure 6.1: Flow of synthesis

The design of any product starts with an idea. The idea is born out of a client re-
quirement. This idea is put down as a higher level behavioural model of the final product
using the high level languages like BSV. The behavioural model is then compiled into
a RTL using a suitable compiler. RTL are generally the description of the circuit at the
module level where input output interfaces, clock and other signals are visible. Any
design can be described in RTL using the Huffman’s model.

Once the RTL is arrived at, the next step in the design flow is the logic synthesis.
Using commercial EDA tools, the designer converts the RTL into a netlist which is



nothing but a list of gates and wires whose input output are specified. The EDA tools
gives a lot of options like types of gates to be used, constraints for the design with
respect to the power, area and timing, thus a highly optimized netlist is achieved after
logic synthesis.

On getting the netlist, more EDA tools are used to do place and route of gates and
wires or floor planning as it is popularly called. The result of place and route is the mask
that could be handed over to the foundry for carrying out the fabrication of the chip. Two
most important part of the design flow are the testing and verification. Testing is done
to ensure final chip does not suffer from manufacturing defects and verification is done
at each stage of the flow to ensure the design meets the requirements as were originally
projected. In our case however, we limit the scope to design, implementation of the
design in BSV, logic synthesis and post-synthesis simulations to verify performance.

6.2 Implementation, Synthesis and Simulations

On completion of the BSV coding, the project is compiled with BSV compiler which
gives options to compile for BSV simulator or to generate verilog files for further pro-
cessing. In our case we need both. We simulate the design using the Bluesim simulator
and observe the number of hops which was shown to be a good indicator of the la-
tency in the network. The results of the simulation are observed on the BSV GUI and
recorded for analysis. Further the design is compiled to generate the verilog files which
are required for the EDA tool to complete the logic synthesis as discussed in the design
flow diagram. We not only receive an optimized netlist after logic synthesis but also
reports for power, area and timing which are required for analysis.

The synthesis tool accepts the verilog files of the design and runs the synthesis algo-
rithm for logic minimization. The synthesis culminates with generation of synthesized
design schematic and detailed synthesis report with hardware units used in the final de-
sign. It is possible to selectively visualize the flow of the signals and the modules of
interest making it convenient for the designer to verify the correctness of the design.
The generated netlist is further used for post-synthesis simulations for arriving at power
utilization by the design.

Simulation : The following test cases are checked in simulation for all the stages
of pipeline.Here the test case followed by the expected result were written :
Stage-I
1.0ne TE in one of the three FUs(done for all the 3)."Pipeline will stall for one clock
cycle and it is considered as TE"

2.TE in one of the FUs for 2 clock cycles(done for all the 3)."Pipeline stalls for 2
clock cycles and it is considered as TE"

3.TE in one of the FUs for 3 clock cycles."Permanent error is recorded for that
particular block and is eliminated"

4.TE in all the FUs for 1 clock cycle."Pipeline stalls for 1 clock cycle and is consid-
ered as TE"

5.TE in all the FUs for 2 clock cycles."Pipeline stalls for 2 clock cycles and is
considered as TE"
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Testing is done by making use of Linear Feedback Shift Register (LFSR). Each
stage output is ORed with the LFSR value for simulating stuck at 1 and ANDed for
simulating stuck at 0.

Simulation Result The below are the screen shots of test cases in the same order
mentioned above :

***************************** counter: o
error injected here

Evaluating 1

evaluating 2

evaluating 3

no fault
deguing the value from stage 4
product : 82165598252996

evaluating 1
evaluating 2

evaluating 3
ng fault

enquing the value to stage 4
in stage2

evaluating 1

evaluating 2

evaluating 3
no fault

engquing the value to stage 3
in stagel

evaluating 1

evaluating 2

evaluating 3
transient error in 3

Figure 6.2: Test case 1

777777777777777777777777777777777777 counter: 66—
error injected here
product : 00000c350ee9fb80, 13422023015296

evaluating 1
product : 00000c350ee9fb80, 13422023015296

evaluating 2
product : 00000c350ee9fb80, 13422023015296

evaluating 3

no fault

dequing the value from stage 4
product : 13422023015296
evaluating 1

evaluating 2

evaluating 3
no fault

enquing the value to stage 4
in stagel

evaluating 1

evaluating 2

evaluating 3
transient error in 1
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———————————————————————————————————— counter: T
error injected here

product : 000110a28adéb0al, 299765267345568
evaluating 1

product : 000110a28adeb0al, 299765267345568
evaluating 2

product : 000110a28adeb0al, 299765267345568
evaluating 3

no fault

dequing the value from stage 4

product : 299765267345568

in stagel

evaluating 1

evaluating 2

evaluating 3
transient error in 1

Figure 6.3: Test case 2

------------------------------------ counter: i
error injected here

evaluating 1

evaluating 2

evaluating 3

no fault
dequing the value from stage 4
product : -38125337442489

evaluating 1
evaluating 2

evaluating 3
no fault

enquing the value to stage 4
in stageZ

evaluating 1

evaluating 2

evaluating 3
no fault

enquing the value to stage 3
in stagel

evaluating 1

evaluating 2

evaluating 3
transient error in 1
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e counter: 6o

error injected here

evaluating 1
evaluating 2
evaluating 3

no fault
dequing the value from stage 4
product -43019430296150

evaluating 1

evaluating 2

evaluating 3

no fault

enquing the value to stage 4
in stagel

evaluating 1

evaluating 2

evaluating 3
transient error in 1

b counter: 47—

error injected here

evaluating 1
gvaluating 2
gvaluating 3

no fault
dequing the value from stage 4
product : -411092000289

in stagel
gvaluating 1
gvaluating 2

evaluating 3
permanent fault occured in 1

Figure 6.4: Test case 3

777777777777777777777777777777777777 counter: 16—
error injected here

product : 000c58185865%0e, 3474561306041870
evaluating 1

product : 000c581858659%0e, 3474561306041870
evaluating 2

product : 000c581858659%0e, 3474561306041870
evaluating 3

no fault

dequing the value from stage 4

product : 3474561306041870

in stagel

evaluating 1

evaluating 2

evaluating 3
can not decide, since more than one block has error

Figure 6.5: Test case 4
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counter: 19

error injected here
evaluating 1

evaluating 2

evaluating 3

no fault

enquing the value to stage 4
in stage2

evaluating 1

evaluating 2

evaluating 3

no fault

enquing the value to stage 3
in stagel

evaluating 1

evaluating 2

evaluating 3

can not decide,since more than one block has error

counter: 20

error injected here
evaluating 1
evaluating 2
evaluating 3

no fault
dequing the value from stage 4
product : 3474561306041870

evaluating 1

evaluating 2

evaluating 3

no fault

enquing the value to stage 4

in stagel

evaluating 1

evaluating 2

evaluating 3

can not decide,since more than one block has error

Figure 6.6: Test case 5

Synthesis Results

Comparision of the synthesis results for Wallace Tree and Booth Recoded multi-
pliers using all combinations of 3-2 compressor,5-2 compressor,4-bit CLA,Carry select
adder and Brent-kung adder are shown below :

e Wallace
3-2 Compressor 5-2 Compressor
Freq (MHz) LUTs Slices | Freq(MHz) LUTs Slices
Carry-lookahead 50.070 7099 3709 46.589 7360 3826
Brent-Kung 48.393 8676 4532 49.039 9955 5257
Carry Select 45.201 8697 4582 42.167 9562 5046

Figure 6.7: Results of Wallace Tree Multiplier
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e Booth

3-2 Compressor 5-2 Compressor

Freq (MHz) LUTs Freq(MHz) LUTs
Carry-lookahead 44.050 6651 3447 47.303 7687 3983
Brent-Kung 40.708 9377 4912 45.198 8730 4532
Carry Select 44.592 7879 4109 44.273 8760 4617

Figure 6.8: Results of Booth Multiplier
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Chapter 7

CONCLUSION

7.1 Conclusion

As CMOS technology moves deep in nanometer range, reliability poses a serious con-
cern in the system design. The probability of soft and hard errors increases, even for
ground based system. The processor which needs to work reliably in space or in harsh
environment should have techniques to tolerate or mitigate the faults.

This thesis proposed a fault tolerant approach for a 4 stage pipelined multiplier.
The proposed technique was developed with the intention of offering a reasonable fault
tolerance with minimal area and power penalty. First we have discussed about various
types of errors and their sources. The effects of SEUs in memory and combinational
logic have been explored. Later the fault avoidance and fault tolerance techniques have
been explained. Chapter 4 mainly described the complete design implemented in this
project.

From the synthesis results it is observed that Wallace Tree occupies more space and
runs at more clock frequency and Booth occupies comparitively less space but runs at
less clock frequency.
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