
VECTOR THREAD PROCESSOR

A Thesis

submitted by

SANGMESHWAR MANGRULE

for the award of the degree

of

MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY MADRAS

June 2016

THESIS CERTIFICATE

This is to certify that the thesis titled Vector Thread Processor, submitted by Sangmeshwar

Mangrule, to the Indian Institute of Technology, Madras, for the award of the degree of Master

of Technology, is a bona fide record of the research work done by him under our supervision.

The contents of this thesis, in full or in parts, have not been submitted to any other Institute or

University for the award of any degree or diploma.

Dr. V. Kamakoti

Project Guide

Professor

Dept. of Computer Science and Engineering

IIT Madras

Place: Chennai, 600 036

Date: 10th June, 2016

Acknowledgement

I would like to express my sincere gratitude to my guide, Dr. V.Kamakoti for his valuable

guidance, encouragement and advice. His immense motivation helped me in making firm

commitment towards my project work.

 My special thanks to Mr. G.S. Madhusudan for his encouragement and motivation

throughout the project. His valuable suggestions and constructive feedback were very helpful in

moving ahead with my project work.

 I would like to thank my co-guide Dr. Nitin Chandrachoodan and faculty advisor Dr.

Deelip Nair who have patiently listened, evaluated, and guided us throughout the program.

 My special thanks to my project team members Neel Gala, Arjun Menon, Rahul and Vikas

Chauhan for their help and support.

 Sangmeshwar Mangrule

 (EE14M060)

 Abstract

 The vector-thread (VT) architecture unifies the vector and threaded compute models. The VT

abstraction provides the programmer a control processor with a vector of virtual processors

(VPs). The control processor uses vector-fetch commands to broadcast instructions to all the VPs

or each VP can use thread-fetch commands to direct its own control flow. A seamless

intermixing of the vector and multithreaded control mechanisms allows a VT architecture to

compactly and flexibly encode the applications like parallelism and locality and a VT design

exploits these to improve performance and efficiency. We present a VT architecture which is

considerably simpler to implement and easier to program. Using an extensive design-space

exploration of full VLSI implementations of many accelerator design patterns, we evaluate the

varying tradeoffs between the programmability and implementation efficiency among the

MIMD, vector-SIMD, and VT patterns.

Contents

 Chapter 1 Introduction . 1

 Chapter 2 Architectural Design Patterns for Data-Parallel Accelerators 3

 2.1 MIMD . 4

 2.2 Vector-SIMD . 5

 2.3 Sub word-SIMD 7

 2.4 SIMT . 9

 2.5 VT . 10

 Chapter 3 Vector Thread Processor . 13

 3.1 VT Abstract Model . 13

 3.2 VT Physical Model . 16

 Chapter 4 SCALE Vector Thread architecture . 20

 4.1 Clusters . 20

 4.2 Registers and VP Configuration . 20

 4.3 Vector Memory Commands . 21

 4.4 Scale Code Example . 22

 Chapter 5 SCALE Microarchitecture . 25

 5.1 Micro-Ops and Cluster Decoupling . 26

 5.2 Memory Access Decoupling … 28

 5.3 Vector Memory Access . 29

Chapter 6 SCALE Instruction Set Architecture . 30

Chapter 7 Conclusion and Future Work . 35

References . 36

List of Figures

1.a Programmer’s logical view – MIMD . 5

1.b Typical core Microarchitecture – MIMD . 5

2.a Programmer’s logical view – Vector-SIMD .. 7

2.b Typical core Microarchitecture – Vector-SIMD . 7

3.a Programmer’s logical view – Subword-SIMD . 8

3.b Typical core Microarchitecture – Subword-SIMD .. 8

4.a Programmer’s logical view – SIMT .. 10

4.b Typical core Microarchitecture – SIMT . 10

5.a Programmer’s logical view – VT . 12

5.b Typical core Microarchitecture – VT .. 12

6.a Abstract model of a vector-thread architecture . 13

6.b Vector-fetch commands . 15

6.c Cross-VP data transfers . 15

6.d VP threads . 15

7.a Physical model of a VT machine .17

7.b Control processor with Vector-fetch command .17

7.c Lane Time-Multiplexing ..18

8.a SCALE Lane Microarchitecture .. 25

8.b Execution of decoder example on SCALE architecture27

Tables

1. Basic VTU commands . 31

2. Vector Load and Store Commands . 33

3. VP Instruction Op-codes . 33

4. Arithmetic and Logical Instructions (all clusters) . 33

5. Memory (cluster 0) . 33

6. Fetch (cluster 1) . 34

7. Multiplication / Division (Cluster 3) . 34

 Abbreviations

 VT Vector Thread

 CP Control Processor

 VP Virtual Processor

 MIMD Multiple Instruction, Multiple Data

 SIMD Single Instruction, Multiple Data

 SIMT Single Instruction, Multiple Thread

 VPV Virtual Processor Vector

 CMD Command Management Unit

 EC Execution Cluster

 Page | 1

Chapter 1

Introduction

 For the productive use of increasing transistor counts while coping with the wire delay and

power dissipation, Parallelism and locality are the key application characteristics exploited by

computer architects. Conventional sequential architectural ISAs provide minimal support for

encoding parallelism or locality, so high-performance implementations are needed to devote

considerable area and power to on-chip structures that extract parallelism or that support

arbitrary global communication. The large area and power overheads are studied by the demand

for even small improvements in performance for popular ISAs. Many important applications

have huge parallelism, however, with graph dependencies and communication patterns that can

be statically determined. ISAs that expose more parallelism mitigate the need for area and power

intensive structures. Similarly, ISAs that expose locality reduce the need for long range

communication and complex interconnect. The challenge is to develop an efficient encoding

architecture which provides more parallelism and locality to reduce the area and power

consumption of the microarchitecture.

 VT architecture allows large amounts of structured parallelism to be compactly encoded in a

form that allows a simple microarchitecture to attain high performance at low power and small

area by avoiding complex control and data path structures and by reducing activity on long

wires. Implementation of the VT architecture also exploits instruction-level parallelism within

AIBs.

 Thus the VT architecture supports all forms of application parallelism and this flexibility

provides new ways to parallelize code which is difficult to vectorize or that gives excessive

synchronization costs when threaded. Instruction Locality is improved by allowing common

code to be factor out and executed once on the control processor and by executing the same AIB

many times on each VP in turn. Data locality is improved as most operand communication is

isolated within an individual VP.

 We will first introduce a set of five architectural design patterns for DLP cores, comparing

their programmability and efficiency. The MIMD pattern flexibly supports a mapping of data-

parallel tasks to a collection of simple scalar and multithreaded cores, but lacks the efficient

execution of regular DLP. The vector-SIMD and subword-SIMD patterns can significantly

 Page | 2

reduce the energy on regular DLP, but require complicated programming for irregular DLP. The

single-instruction multiple-thread (SIMT) and vector thread (VT) patterns are hybrid patterns

that attempt to offer alternative tradeoffs between programmability and efficiency.

 There is a large design space to explore while reducing these patterns to an efficient VLSI

design. There are a set of parameterized synthesizable micro-architectural components and how

these components can be combined to form various complete RTL designs for the different

architectural design patterns so that it reduces total design effort and allowing a fairer

comparison across different patterns. Another important thing is to use the same RISC ISA for

both vector and scalar code which greatly reduces the effort required to develop an efficient VT

compiler. Multi-lane implementations are usually more efficient than multi-core single-lane

implementations and are easier to program as they require less partitioning and load balancing.

.

 Page | 3

Chapter 2

Architectural design patterns

 By considering the data parallel mechanisms in efficient computing environment, The data

parallel applications can be categorized in two dimensions depending on the memory access and

control flow access. The regularity with which data memory is accessed and the regularity with

which control flow changes. The two categories are Regular data parallelism and Irregular data

parallelism.

 Regular data-level parallelism (DLP) has well structured data accesses where the data

addresses can be compactly encoded and are known in advance of when the data is ready.

Regular DLP also has well structured control flow where the control decisions are either known

statically or well in advance of when the control flow actually occurs. Irregular DLP may have

less structured data accesses where the addresses are more dynamic and difficult to predict and

might also have less structured control flow. Irregular DLP also include some small number of

inter-task dependencies that force a portion of each task to wait for previous tasks to finish.

 Figure1 illustrate the spectrum from regular to irregular DLP. There are several studies which

demonstrate that full DLP applications contain a mix of both regular and irregular DLP. First of

all it is possible to improve performance and energy-efficiency even on irregular DLP. Finally, a

consistent way of mapping both regular and irregular DLP simplifies the programming

methodology. The next section presents five architectural design patterns and describes how each

pattern handles both regular and irregular DLP.

 for (i = 0; i < n ; i++) for (i=0 ; i < n ; i++)

 C[i] = x * a [i] + B[2*i]; E[C[i]] = D[A[i]] + B[i]; for (i = 0; i < n; i++)

 C[i] = false; j = 0;

(a) Regular DA & Regular CA (b) Irregular DA & Regular CA while (!C[i] & (j < m))

 if (A[i] == B[j++])

 for (i=0; i < n ; i++) for (i=0 ; i < n ; i++) C[i] = true;

 x = (A[i] > 0) ? y : z ; if (A[i] > 0)

 C[i] = x * A[i] + B[i] ; C[i] = x * A[i] + B[i]; (e) Irregular DA & Irregular CF

(c)Regular DA & Irregular CF (d) Irregular DA & Irregular CF

 Page | 4

Figure 1: Types of Data-Level Parallelism – Examples expressed in a C-like pseudo code and

are ordered from regular DLP (i.e., regular (DA) and (CF)) to irregular DLP (i.e. irregular DA

and irregular (CF)).

Different Architectural Patterns for Data-Parallel Accelerators

1.1 MIMD Architectural Design Pattern

 The multiple-instruction multiple-data (MIMD) pattern is the simplest one to build a data-

parallel accelerator. A large number of scalar cores are connected across a single chip.

Programmers can map each data-parallel task to a separate core but without proper dedicated

DLP mechanisms, it is difficult to get energy-efficiency advantages when executing DLP

applications. These scalar cores can be extended to support multithreading per core which helps

to improve performance by hiding various latencies. Figure1 (a) shows the programmer’s logical

view and Figure1 (b) an example implementation for the multithreaded MIMD pattern. All of the

design patterns include a host thread (HT) as part of the programmer’s logical view. The HT runs

on the general-purpose processor and is responsible for configuration, application startup,

interaction with the operating system and managing the data-parallel accelerator. We refer to the

threads that run on the data parallel accelerator as micro-threads (μTs), as they are lighter weight

than the threads which run on the GPP. The primary advantage of the MIMD pattern is the easier

and flexible programming model, and since every core can execute an independent task, there

will be little difficulty in mapping both the regular and irregular DLP applications. This can

simplify parallel programming comparing to the other design patterns, but the primary

disadvantage is that this pattern does little to improve the energy efficiency of DLP applications.

 Page | 5

Fig1: (a) Programmer’s logical view – MIMD [2 & 13]

Fig1: (b) Typical core Microarchitecture – MIMD [2 & 13]

1.2 Vector-SIMD Architectural Design Pattern

 In the vector single-instruction multiple-data (Vector-SIMD) pattern as shown in figure2 (a)

the control thread (CT) uses vector memory instructions to move data between main memory and

vector registers whereas vector arithmetic instructions to operate on vectors of elements at once.

One way to think of this pattern is as each CT manages an array of μTs that execute in lock-step;

each μT is responsible for one element of the vector and the hardware vector length is the

number of μTs (e.g., four in Figure2 (b)). In this context, μTs are sometimes referred to as virtual

processors (VP). Unlike in the MIMD pattern, the HT in the Vector-SIMD only interacts with

the CTs and does not directly manage the μTs. Even the HT and CTs must still allocate work at a

coarse-grain among themselves via software, this configuration overhead is amortized by the

hardware vector length. The CT distributes work to the μTs with vector instructions enabling

very efficient execution of fine-grain DLP. In a typical vector-SIMD core, the CT is mapped to a

control processor and the μTs are mapped across one or more vector lanes in the vector unit. The

 Page | 6

vector memory unit (VMU) handles executing vector memory instructions and the vector issue

unit (VIU) handles the dependency checking and dispatch of vector arithmetic instructions.

 The vector memory commands are divided into two parts: the address portion goes to the

VMU which issue the request to MEMORY while the register write/read portion goes to the

VIU. For vector loads, the register writeback (wb) waits until the data returns from memory and

then controls writing the vector register file two elements per cycle over two cycles. Note that

the VMU/VIU are decoupled from the vector lanes to allow the implementation to overlap

processing multiple vector loads. The vector arithmetic operations are also processed two

elements per cycle over two cycles, some μTs are inactive because the corresponding vector flag

is false. The temporal mapping of μTs to the same lane is an important aspect of the vector-

SIMD pattern. We can imagine that using a larger vector register file to support longer vector

lengths that would keep the vector unit busy for tens of cycles. The fact that one vector command

can keep the vector unit busy from any cycles but decreases instruction issue bandwidth

pressure. So as in the MIMD pattern we can exploit instruction-level parallelism by adding

support for executing multiple instructions per μT per cycle, but unlike the MIMD pattern in

vector-SIMD it may not be necessary to increase the issue bandwidth since one vector instruction

occupies a vector functional unit for many cycles and almost all vector-SIMD accelerators will

take advantage of multiple functional units and also support bypassing (also called vector

chaining) between these units. A final point to note is that how the control processor (CP)

decoupling and multi-cycle vector execution enables the control thread to continue executing

while the vector unit is still processing older vector instructions. This decoupling means the

control thread can quickly work through the loop overhead instructions so that it can start issuing

the next iteration of the loop as soon as possible.

 Finally, vector-SIMD pattern can improve energy efficiency in three different ways:

1. Some instructions are executed once by the CT instead for each μT like MIMD pattern

2. For operations that the μTs do execute, the CP and VIU can amortize various overheads such

as instruction fetch, decode, and dependency checking etc.

3. For memory accesses which the μTs still execute the VMU can efficiently move the data in

large blocks

 Page | 7

 Fig2: (a) Programmer’s logical view – Vector-SIMD [2 & 13]

 Fig2: (b) Typical core microarchitecture - Vector-SIMD [2 & 13]

1.3 Subword-SIMD Architectural Design Pattern

 The subword single-instruction multiple-data (subword-SIMD) architectural pattern shown in

Figure3 (a) captures some important differences from the vector-SIMD pattern. In this pattern, A

full-word scalar datapath is vector like unit with standard scalar registers often corresponding to

a double-precision floating-point unit. The pattern leverages these existing scalar datapaths and

registers to execute multiple operations in a single cycle. Some variants support bitwidths larger

than the widest scalar datatype, in which case the datapath can only be fully utilized with

subword-SIMD instructions and the other variants unify the CT and SIMD unit such that the

same datapath is used for control, scalar arithmetic, and subword-SIMD instructions. Subword-

 Page | 8

SIMD has short vector lengths that are exposed to software as fixed width datapaths whereas

vector-SIMD has longer vector lengths that are exposed to software as a true vector of elements.

In vector-SIMD, the vector length is exposed in such a way that the same binary can run on

many different implementations with varying hardware resources whereas code for one subword-

SIMD implementation is usually less portable to other implementations with varying h/w

resources. Vector-SIMD has more flexible data-movement operations which alleviates the need

for software data shuffling, while Subword-SIMD often requires shuffling elements via special

permute instructions, and this leads to a large amount of cross-element communication

 The vector-SIMD pattern is better suited to exploiting large amounts of data-parallelism as

opposed to a more general-purpose workload with smaller amounts of data-parallelism so we do

not focus more on subword-SIMD.

 Fig3: (a) Programmer’s logical view – Subword-SIMD [2 & 13]

 Fig3: (b) Typical core microarchitecture - Subword-SIMD [2 & 13]

2.4 SIMT Architectural Design Pattern

 Page | 9

 The single instruction multiple-thread (SIMT) pattern is a hybrid with a programmer’s

logical view shown is similar to the MIMD pattern but an implementation similar to the vector-

SIMD pattern. As shown in Figure4 (a) below the SIMT pattern supports a large number of μTs

but no CTs; the HT is responsible for directly managing the μTs and a μT block is mapped to a

SIMT core which contains vector lanes similar to those in the vector-SIMD pattern. However,

since there is no CT, the VIU is responsible for amortizing overheads and executing the μT

scalar instructions in lock-step when they are coherent. The VIU also manages the situation

when the μTs execute a scalar branch possibly causing them to diverge. μTs can sometimes re-

converge through static hints in the scalar instruction stream or dynamic hardware mechanisms.

SIMT has only scalar loads and stores, but the VMU can include a memory coalescing unit to

dynamically detect when these scalar accesses can be converted into vector memory operations.

The SIMT pattern usually exposes the concept of a μT block to the programmer that the barriers

are sometimes provided for intra-block synchronization and application performance depends

heavily on the coherence and coalescing opportunities within a μT block.

 The loop in Figure4 (b) maps to the SIMT pattern in a similar way as in the MIMD pattern

except that each μT is only responsible for a single element as opposed to a number of elements.

Since there are no control threads (CT) and thus no similarity to the vector-SIMD pattern, a

combination of dedicated hardware and software is required to manage the stripmining. The host

thread (HT) tells the hardware how many μT blocks are required for the computation and the

hardware manages the case when the number of requested μT blocks is greater than what is

available in the actual hardware. In the common case, where the application vector length is not

statically guaranteed to be evenly divisible by the μT block size then each μT must use a scalar

branch to verify that the computation for the corresponding element is actually necessary.

 There are some issues that can prevent the SIMT pattern from achieving vector-like energy

efficiencies on regular DLP that the μTs must redundantly execute instructions that would

otherwise be amortized onto the CT. Regular data accesses are encoded as multiple scalar

accesses which must be dynamically transformed into vector-like memory operations. On the

other hand, the lack of a control thread (CT) necessitates per μT stripmining calculations and

prevents access-execute decoupling which can efficiently tolerate memory latencies. Even

though the ability to achieve vector-like efficiencies on coherent μT instructions helps to

improve energy-efficiency compared to the MIMD pattern. However, The real strength of the

 Page | 10

SIMT pattern is that it provides a simple way to map complex data-dependent control flow with

μT scalar branches.

 Fig4: (a) Programmer’s logical view – SIMT [2 & 13]

 Fig4: (b) Typical core microarchitecture - SIMT [2 & 13]

2.5 VT Architectural Design Pattern

 The vector-thread (VT) pattern is also a hybrid pattern like SIMT but it takes a very

different approach. As shown in Figure5 (a) the HT manages a collection of CTs and each CT

manages an array of μTs. Similar to the vector-SIMD pattern, this allows various overheads to be

amortized onto the CT and CTs can execute vector memory commands to efficiently handle

regular data accesses. In this pattern, the CT does not execute vector arithmetic instructions like

vector-SIMD but instead uses a vector fetch instruction to indicate the start of a scalar instruction

stream that should be executed by the μTs. The VIU allows μTs to execute coherently as in the

SIMT pattern but they can also diverge after executing scalar branches.

 Page | 11

 In VT pattern loop control, regular data accesses and stripmining are handled just as in the

vector-SIMD pattern. Instead of vector arithmetic instructions (VAI), we use a vector fetch

instruction (VFI) with one argument which indicates the instruction address at which all μTs

should immediately start executing. All μTs execute the scalar instructions till the stop

instruction. An important aspect of the VT pattern is that the interaction between vector registers

as accessed by the control thread and scalar registers as accessed by each μT. Each μT’s scalar

register an implicitly refers to that μT’s element of the vector register. In other words, the vector

register as seen by the control thread and the scalar register as seen by the μTs are two views of

the same register. The μTs cannot access the control thread’s scalar registers as this would

significantly complicate control processor (CP) decoupling. Shared accesses are thus

communicated with a scalar load by the control thread and a scalar-vector move instruction

which copies the given scalar register value into each element of the given vector register. A

scalar branch used to encode data-dependent control flow.

 An explicit scalar-vector move instruction writes the scalar value into each element of the

vector register with two elements per cycle over the two cycles. The unit-stride vector load

instruction is executed as in the vector-SIMD pattern. The control processor (CP) then sends the

vector fetch instruction to the VIU. The VIU fetches the branch instruction and issues them

across μTs. The VIU waits until all μTs resolve the scalar branch as similar to the SIMT pattern.

If all μTs either they take the branch or do not take, then the VIU can start fetching from the

appropriate address. If some μTs take the branch while others do not, then the μT diverge and the

VIU needs to keep track of which μTs are executing which side of the branch.

 VT achieves vector-like energy-efficiency while maintaining the ability to flexibly map

regular and irregular DLP. Control instructions are executed once by the control thread per-loop.

A scalar branch provides a convenient way to map complex data-dependent control flow and the

VIU is still able to amortize instruction fetch, decode and dependency checking for vector

arithmetic instructions (VAI). VT uses the same vector memory instructions to move blocks of

data efficiently between memory and vector registers. However there are some overheads

including the extra scalar-vector move instruction, vector fetch instruction, and μT stop

instruction.

 Page | 12

 Fig5: (a) Programmer’s logical view – VT [2 & 13]

 Fig5: (b) Typical core microarchitecture - VT [2 & 13]

Chapter 3

Vector Thread Processor

 This section first describes the abstraction view of a VT architecture provides to a

programmer then gives an overview of the physical model for a VT machine.

 Page | 13

1.4 VT Abstract Model

 The vector-thread architecture unifies the vector and multithreaded models. A conventional

control processor (CP) interacts with a vector of virtual processor (VPV), as shown in Figure6

(a). The programming model consists of two instruction sets, one for the control processor (CP)

and one for the VPs. Applications can be mapped to the VT architecture in a variety of ways but

it is especially well suited to executing loops. Each VP executes a single iteration of the loop and

the control processor is responsible for managing the execution.

 Figure 6: (a) Abstract model of a vector-thread architecture [1]

 A VP contains a set of registers and has the ability to execute RISC-like instructions with

virtual register specifiers. VP instructions are grouped into atomic instruction blocks (AIBs) and

the unit of work issued to a VP at one time. There is no automatic program counter (PC) or

implicit instruction fetch mechanism for VPs; all instruction blocks must be explicitly requested

by either the control processor or the VP itself.

 The control processor (CP) can direct VPs’ execution using a vector-fetch command to issue

an AIB to all the VPs in parallel, or a Thread-fetch to target an individual VP. Vector-fetch

commands provide a programming model similar to conventional vector machines but a large

block of instructions can be issued at once. As a simple example, below Figure6 (b) shows the

mapping for a data parallel vector-vector add loop. The AIB for one iteration of the loop contains

 Page | 14

two loads, an add, and a store instructions. A vector-fetch command sends this AIB to all the

VPs in parallel and thus initiates vl loop iterations, where vl is the length of the virtual processor

vector (VPV) i.e., the vector length. Every VP executes the same instructions but operates on

different data elements determined by its index number. Though a more efficient alternative to

the individual VP loads and stores shown in the example, a VT architecture also provides vector

memory commands issued by the control processor which move a vector of elements between

memory and a register in each VP.

 The VT abstract model connect VPs in a unidirectional ring topology and allows a sending

instruction on VP(n) to transfer data directly to a receiving instruction on VP(n+1). This type of

cross-VP data transfer is dynamically scheduled and resolved when the data becomes available.

Cross-VP data transfers allow loops with cross-iteration dependencies to be efficiently mapped

to the vector thread architecture, as shown in the figure6 (c). A single vector-fetch command

introduces a chain of prevVP receives and nextVP sends that spans the VPV. The control

processor can push an initial value into the cross-VP start/stop queue before executing the

vector-fetch command. After the chain executes, the final cross-VP data value from the last VP

turns around and is written into the same queue. It can then be popped by the control processor

or consumed by a subsequent prevVP VP0 during stripmined loop execution.

 The ability to freely intermix vector-fetches and thread-fetches allows a VT architecture to

combine the best attributes of both vector and multithreaded execution paradigms. As shown in

figure6 (d), the control processor can broadcast a vector-fetch command to launch a vector of VP

threads and each of which continues to execute as long as it issues thread-fetches. These thread-

fetches break the rigid control flow of traditional vector machines by enabling the VP threads to

follow independent control paths. Thread-fetches are broadening the range of loops which can be

mapped efficiently to VT, allowing the VPs to execute data-parallel loop iterations with

conditionals or inner-loops. Beyond these loops, the VPs can also be used as free-running

threads, where they operate independently from the control processor and retrieve tasks from a

shared work queue.

 Page | 15

 Figure 6: (b) Vector-fetch commands [1 & 9]

 Figure 6: (c) Cross-VP data transfers [1 & 9]

 Figure 6: (d) VP threads [1 & 9]

 The VT architecture allows software to efficiently expose structured parallelism and

locality. Compared to a conventional threaded architecture, the VT model allows common book-

keeping code to be factored out and executed once on the control processor rather than in each

 Page | 16

thread. AIBs enable a VT machine to efficiently amortize instruction fetch overhead and provide

a framework for easily handling temporary state. Vector-fetch commands explicitly encode

instruction locality and parallelism, allowing a VT machine to attain high performance while

amortizing control overhead. Vector-memory commands avoid separate load and store requests

for each element and can be used to exploit memory data-parallelism even in loops with non-

data-parallel. For loops with cross-iteration dependencies, cross-VP data transfers explicitly

encode synchronization and communication, avoiding heavyweight inter-thread memory

coherence and synchronization primitives.

1.5 VT Physical Model

 A physical model is the expected structure for efficient implementations of the abstract

model. The VT physical model contains a conventional scalar control processor together with a

vector thread unit (VTU) that executes the VP code. To exploit the parallelism exposed by the

VT abstract model, the VTU contains an array of processing lanes parallel as shown in Figure7

(a). VPs are mapped into the lanes and the VPV is striped across the lane array. Each lane

contains functional units, which are time-multiplexed across the VPs and physical registers,

which hold the state of VPs mapped to the lanes. Unlike to the traditional vector machines, the

lanes in a VT machine execute decoupled from each other. Figure7 (b) shows an abstract view of

how VP execution is time multiplexed on the lanes for both vector-fetched and thread-fetched

AIBs. This fine-grain interleaving helps VT machines hide memory, functional unit and thread-

fetch latencies.

 As shown in figure7 (a), each lane contains a command management unit (CMU) and

an execution cluster. An execution cluster consists of a functional unit, register file and a small

AIB cache. The CMU buffers commands from the control processor in a queue (cmd-Q) and

holds pending thread-fetch addresses for the corresponding lane’s VPs. The CMU also holds the

tags for the lane’s AIB cache in cache tag. The AIB cache holds one or more AIBs and must be

at least large enough to hold an AIB of the maximum size defined in the VT architecture.

 Page | 17

 Figure 7: (a) Physical model of a VT machine [2]

 The implementation has four parallel lanes in the vector-thread unit (VTU) and VPs are

mapped across the lane array with the low-order bits of a VP index indicating the lane to which it

is stripped. The configuration shown uses VPs with five virtual registers, and with twenty

physical registers each lane is able to support four VPs. Each lane is divided into a command

management unit (CMU) and an execution cluster. The execution cluster has an associated cross-

VP start-stop queue.

 Figure 7: (b) The control processor can use a vector-fetch command to

 send an AIB to all the VPs, after which each VP can uses thread-fetch to fetch its own AIBs.

 Page | 18

. The CMU chooses a vector-fetch, VP-fetch or thread-fetch command to process. The fetch

command contains an address which is looked up in the AIB tags and if there is a miss, a request

is sent to the fill unit which retrieves the requested AIB from the primary cache. The fill unit

handles one lane’s AIB miss at a time except if lanes are executing vector-fetch commands when

refill overhead is amortized by broadcasting the AIB to all lanes at the same time.

 Figure 7: (c) Lane Time-Multiplexing. Both vector-fetch and thread fetch

 AIBs are time-multiplexed on the physical lanes.

 After a miss refill has been processed or after a fetch command hits in the AIB cache, the

CMU generates an execute directive which contains an index into the AIB cache. For a vector-

fetch command the execute directive provides that the AIB should be executed by all VPs

mapped to the lane whereas for a VP-fetch or thread-fetch command it identifies a single VP to

execute the AIB. The execute directive is sent to a queue in the execution cluster, leaving the

CMU free to begin processing the new commands. The CMU is able to overlap the AIB cache

refill for new commands with the execution of previous ones but must track which AIBs have

outstanding execute directives to avoid overwriting their entries in the AIB cache. The CMU

must also ensure that the VP threads execution has completed before initiating a subsequent

vector-fetch.

 In processing a execute directive, the cluster takes VP instructions one by one from the

AIB cache and executes them for the appropriate VP. While processing an execute-directive

 Page | 19

from a vector-fetch command, all of the instructions in the AIB are executed once for one VP

before moving on to the next. The virtual register indices in the VP instructions are combined

with an active VP number to create an index into the physical register file. To execute a fetch

instruction, the cluster sends the requested AIB address to the CMU where the VP’s associated

pending address of that thread-fetch register is updated.

 The lanes in a VTU are connected with an unidirectional ring network to implement the

cross-VP data transfers. When a cluster encounters an instruction with a prevVP receive, it stalls

until the data is available from its previous lane. When the VT architecture allows multiple cross-

VP instructions in a single AIB with some sends preceding some receives, the hardware

implementation must provide sufficient buffering of send data to allow all the receivers in an

AIB to execute. By induction, deadlock is avoided if each lane ensures that its predecessor can

never be blocked to send its cross-VP data.

 Page | 20

Chapter 4

SCALE Vector Thread Architecture

 SCALE is an instance of the VT architectural paradigm designed for embedded systems

applications. The SCALE architecture has a MIPS-based scalar control processor extended with

a VTU. The SCALE VTU aims to provide high performance at low power for a wide range of

applications while using a small area. In this section we will describe the SCALE VT

architecture, a simple code example implemented on SCALE, and gives an overview of the

SCALE microarchitecture.

 4.1 Clusters

 To improve the performance while reducing energy, area and circuit delay, SCALE extends

the single-cluster VT model (shown in Figure1) by partitioning VPs into multiple execution

clusters with independent register sets. VP instructions process an individual cluster and perform

RISC-like operations. Source operands must be local to the cluster but results can be written to

any cluster in the VP and its result from an instruction can be written to multiple destinations.

Each cluster within a VP has a separate predicate register (pr), and instructions can be positively

or negatively predicated.

 SCALE clusters are heterogeneous, but all clusters support basic integer computations.

Additionally, Cluster0 supports memory access instructions, cluster1 supports fetch instructions,

and cluster3 supports integer multiply and divide. Though we do not consider, also the SCALE

architecture allows clusters to be enhanced with layers of additional functionality (e.g., floating-

point operations, fixed-point operations, and sub-word SIMD operations), or new clusters to be

added to perform specialized operations.

 4.2 Registers and VP Configuration

 The general registers in each cluster of a VP are categorized as either private registers (pr’s)

and shared registers (sr’s). Both private and shared registers can be written and read by VP

 Page | 21

instructions and by commands from the control processor. The main difference between them is

that the private registers preserve their values between AIBs, while shared registers may be

overwritten by a different VP. Shared registers can be used as temporary within an AIB to

increase the number of VPs that can be supported by a fixed number of physical registers. The

control processor can also use vector-write the shared registers to broadcast scalar values and

constants used by all VPs.

 In addition to the general registers, each cluster also has chain registers (cr0 and cr1)

associated with the two ALU input operands and these can be used as sources and destinations to

avoid reading and writing the register files. Like shared registers, chain registers may be

overwritten between AIBs and they can also be implicitly overwritten when a VP instruction

uses their associated operand position. Cluster0 has a special chain register called the store-data

(sd) register through which all data for VP stores must pass.

 In the SCALE architecture, the control processor configures the VPs by indicating how many

shared and private registers are needed in each cluster. The length of the virtual processor vector

(VPV) changes with each re-configuration to reflect the maximum number of VPs that can be

supported. This operation is done once outside each loop and state in the VPs is undefined across

reconfigurations. Within a processing lane, the VTU maps shared VP registers to shared physical

registers. Control processor vector-write to a shared register are broadcast to each lane, but

individual VP writes to a shared register are not coherent across lanes.

4.3 Vector Memory Commands

 In addition to the VP load and store instructions, SCALE defines vector-memory commands

issued by the control processor for efficient execution of structured memory accesses. Like

vector-fetch commands, these operate across the virtual processor vector (VPV); a vector-load

writes the load data to a private register in each VP whereas a vector store reads the store data

from a private register in each VP. SCALE also supports vector-load commands which target the

shared registers to retrieve values used by all VPs. In addition to the unit stride and strided

vector-memory access patterns, SCALE also provides vector segment accesses where each VP

loads or stores several contiguous memory elements to support ―array-of-structures‖ data layouts

efficiently.

 Page | 22

4.4 SCALE Code Example

 The SCALE code to implement the decoder function from the c code presented is shown

below. The code is divided into two sections: one with MIPS control processor code in the .text

section and SCALE VP code in the .sisa (SCALE ISA) section. The SCALE VP code

implements one iteration of the loop with a single AIB. cluster0 accesses memory, cluster1

accumulates index, cluster2 accumulates valpred, and cluster3 does the multiply.

void decode_ex(int len, u_int8_t* in, int16_t* out)

{

 int i;

 int index = 0;

 int valpred = 0;

 for(i = 0; i < len; i++)

 {

 u_int8_t delta = in[i];

 index += indexTable[delta];

 index = index < IX_MIN ? IX_MIN : index;

 index = IX_MAX < index ? IX_MAX : index;

 valpred += stepsizeTable[index] * delta;

 valpred = valpred < VALP_MIN ? VALP_MIN : valpred;

 valpred = VALP_MAX < valpred ? VALP_MAX : valpred;

 out[i] = valpred;

 }

}

Figure 8: C code for decoder example.

 Page | 23

 .text # control processor code

decode_ex: # a0=len, a1=in, a2=out

configure VPs: c0:p,s c1:p,s c2:p,s c3:p,s

vcfgvl t1, a0, 1,2, 0,3, 1,3, 0,0 # (vl,t1) = min(a0,vlmax)

sll t1, t1, 1 # output stride

la t0, indexTable

vwrsh t0, c0/sr0 # indexTable addr.

la t0, stepsizeTable

vwrsh t0, c0/sr1 # stepsizeTable addr.

vwrsh IX_MIN, c1/sr0 # index min

vwrsh IX_MAX, c1/sr1 # index max

vwrsh VALP_MIN, c2/sr0 # valpred min

vwrsh VALP_MAX, c2/sr1 # valpred max

xvppush $0, c1 # push initial index = 0

xvppush $0, c2 # push initial valpred = 0

stripmineloop:

setvl t2, a0 # (vl,t2) = min(a0,vlmax)

vlbuai a1, t2, c0/pr0 # vector-load input, inc ptr

vf vtu_decode_ex # vector-fetch AIB

vshai a2, t1, c2/pr0 # vector-store output, inc ptr

subu a0, t2 # decrement count

bnez a0, stripmineloop # loop until done

xvppop $0, c1 # pop final index, discard

xvppop $0, c2 # pop final valpred, discard

vsync # wait until VPs are done

jr ra # return

.sisa # SCALE VP code

vtu_decode_ex:

.aib begin

c0 sll pr0, 2 -> cr1 # word offset

c0 lw cr1(sr0) -> c1/cr0 # load index

c0 copy pr0 -> c3/cr0 # copy delta

c1 addu cr0, prevVP -> cr0 # accum. index

c1 slt cr0, sr0 -> p # index min

c1 psel cr0, sr0 -> sr2 # index min

 Page | 24

c1 slt sr1, sr2 -> p # index max

c1 psel sr2, sr1 -> c0/cr0, nextVP # index max

c0 sll cr0, 2 -> cr1 # word offset

c0 lw cr1(sr1) -> c3/cr1 # load step

c3 mult.lo cr0, cr1 -> c2/cr0 # step*delta

c2 addu cr0, prevVP -> cr0 # accum. valpred

c2 slt cr0, sr0 -> p # valpred min

c2 psel cr0, sr0 -> sr2 # valpred min

c2 slt sr1, sr2 -> p # valpred max

c2 psel sr2, sr1 -> pr0, nextVP # valpred max

.aib end

 Figure : SCALE code implementing decoder example

 Page | 25

Chapter 5

SCALE Microarchitecture

 The SCALE microarchitecture is an extension of the general VT architecture model shown in

figure7 (a). In each lane has a single CMU and one physical execution cluster per VP cluster.

Each cluster has a dedicated output bus which broadcasts data to the other clusters in the lane

and it also connects to its sibling clusters in neighboring lanes to support cross-VP data transfers.

An overview of the SCALE lane microarchitecture is as shown in figure8 (a).

 Figure 8: (a) SCALE Lane Microarchitecture [1]

 Page | 26

In the above Scale Lane Microarchitecture The AIB caches hold micro-op bundles. The

compute-op is a local RISC operation on the cluster, the transport-op sends data to external

clusters and the writeback-op receives data from external clusters. Clusters 1, Cluster 2 and

Cluster 3 are basic cluster designs with writeback-op and transport-op decoupling resources

(cluster 1 is shown in detail, clusters 2 and 3 are shown in abstract). Cluster 0 connects to

memory and includes memory access decoupling resources.

5.1 Micro-Ops and Cluster Decoupling

 The SCALE ISA is portable across multiple SCALE implementations, but is designed to be

easy to translate into implementation-specific micro-operations or micro-ops. The assembler

translates the SCALE software ISA into the native hard-ware ISA at compilation time. There are

three categories of hardware micro-ops. 1. A compute-op performs the main RISC-like operation

of a VP instruction 2. A transport-op sends data to another cluster and 3. A writeback-op

receives data sent from an external cluster. An assembler reorganizes micro-ops derived from an

AIB into micro-op bundles which target a single cluster and do not access other clusters’

registers. Figure8 (b) how the SCALE VP instructions from the above decoder example are

translated into micro-op bundles. All inter-cluster data dependencies are encoded by the

transport-ops and writeback-ops which are added to the sending and receiving cluster

respectively. This allows the micro-op bundles to be packed together independently for each

cluster from the micro-op bundles for other clusters.

 Page | 27

Figure 8: (b) Execution of decoder example on SCALE architecture. Each cluster executes in-order, but

cluster and lane decoupling allows the execution to automatically adapt to the software critical path. Arrows

represent critical dependencies (solid for inter-cluster within a lane, dotted for cross-VP) [1]

 Inter-cluster data transfers are partitioned into transport and writeback operations enables

decoupled execution between clusters. In SCALE, a cluster’s AIB cache contains micro-op

bundles and each cluster has a local execute directive queue and local control. Each cluster

processes its transport-ops in order and broadcasts result values onto its dedicated output data

bus and each cluster processes its writeback-ops in order, writing the values from external

clusters to its local registers. The synchronization of the inter-cluster data dependencies with

handshake signals which extend between the clusters and a transaction completes only when

both the sender and the receiver are ready. Although compute-ops execute in order, each cluster

contains a transport queue to allow execution to proceed without waiting for external destination

clusters to receive the data, and a writeback queue to allow execution to proceed without waiting

for data from external clusters until it is needed by a compute-op. Thus, queues make inter-

cluster synchronization more flexible and thereby enhance cluster decoupling.

 Page | 28

 A schematic diagram of the example decoder loop executing on SCALE is shown in Figure8

(b). Each cluster executes the vector-fetched AIB for each VP mapped to its lane and decoupling

allows each cluster to target to the next VP independently. Execution adapts to the software

critical path as each cluster’s local data dependencies resolve. In the above example, the

accumulations of index and valpred must execute serially but all of the other instructions are not

on the software critical path. Further, the two accumulations can execute in parallel, so the cross-

iteration serialization penalty is paid only once. Each VP loop iteration executes over a period of

30 cycles, but the combination of multiple lanes and cluster decoupling within each lane leads to

as many as six loop iterations executing simultaneously.

5.2 Memory Access Decoupling

 All VP loads and stores execute on cluster0 (c0) and it is specially designed to enable access-

execute decoupling. Typically, c0 loads data values from memory and sends them to other

clusters then computation is performed on the data and finally results are returned to c0 and

stored to the memory. With this type of basic cluster decoupling, c0 can continue execution after

a load without waiting for the other clusters to receive the data. Further, Cluster0 is enhanced to

hide memory latencies by continuing execution after a load misses in the cache and therefore it

might retrieve load data from the cache out of order. Even though like other instructions, load

operations on cluster0 use transport-ops to deliver data to other clusters in order and uses a load

data queue to buffer the data and preserve the correct ordering.

 Interestingly, when cluster0 encounters a store, it does not have to wait for the data to be

ready. Instead it buffers the store operation, including the store address and in the decoupled

store queue until the store data is available. When a SCALE VP instruction targets the store data

(sd)register, the resulting transport-op sends data to the store unit rather than to c0. Thus, the

store unit acts as a primary destination for inter-cluster transport operations and it handles the

writeback-ops for sd. Store decoupling allows a lane’s load stream to slip ahead of its store

stream but loads for a given VP are not allowed to bypass previous stores to the same address by

the same VP.

 Page | 29

5.3 Vector Memory Accesses

 As discussed above vector-memory commands are sent to the clusters as special execute

directives which generate micro-ops instead of reading them from the AIB cache. For a vector-

load, writeback-ops receive the load data on the destination cluster and for a vector-store,

compute-ops and transport-ops on the source cluster read and send the store data. To allow

overlapped execution of vector fetched AIBs and vector-memory operations, chaining is

provided.

 The vector-memory commands are also sent to the vector memory unit (VMU) which performs

the necessary cache accesses. The vector-memory unit can only send one address to the cache in

each cycle but it takes advantage of the structured access patterns to load or store multiple

elements with each access. The vector-memory unit uses load and store data to and from cluster

0 in each lane to reuse the buffering already provided for the decoupled VP loads and stores.

 Page | 30

Chapter 6

 Scale VT Instruction Set Architecture

 The Scale architecture is an instance of the vector-thread architectural paradigm. For the

Hardware /software interface, Scale is particularly targeted at embedded systems—the goal is to

provide high performance with low power dissipation for a wide range of applications while

using only a small area. The Instruction set is provided as follows:-

configure VPs

and set vector

length

vcfgvl rdst, rlen, nc0p, nc0s,

nc1p, nc1s, nc2p, nc2s, nc3p, nc3s

Configure the VPs with nc0p private and nc0s shared registers

in cluster 0, nc1p private and nc1s shared registers in cluster

1, etc. The nc0p parameter is also used as the number of private

store-data registers in cluster 0. State in the VPs becomes

undefined if the new configuration is not the same as the existing

configuration. The configuration determines the maximum

vector length which the VTU hardware can support, and this

 value is written to vlmax. The new vector length is then computed

as the minimum of rlen and vlmax, and this value is written to vl and

rdst.

set vector

length

setvl rdst, rlen The new vector length length is computed as the minimum of

rlen and vlmax, and this value is written to vl and rdst.

vector-fetch vf label Send the AIB located at the label to every active VP in the

VPV.

VP fetch vpf[.nb] rvp, label Send the AIB located at the label to the VP specified by rvp.

The .nb version is non-blocking.

vector sync Vsync Stall until every VP in the VPV is idle and has no outstanding

memory operations

vector fence Vfence Complete all memory operations from previous vector commands

(vector-fetch, vector-load, and vector-store) before

those from any subsequent vector commands.

VP sync vpsync rvp Stall until the VP specified by rvp is idle and has no outstanding

memory operations.

VTU kill Vkill Kill any previously issued VTU commands at an arbitrary

point of partial execution and reset the VTU into an idle state.

VP reg-read vprd[.nb] rvp, rdst, csrc/rsrc Copy csrc/rsrc in the VP specified by rvp to rdst. The .nb

version is non-blocking.

 Page | 31

VP reg-write vpwr[.nb] rvp, rsrc, cdst/rdst Copy rsrc to cdst/rdst in the VP specified by rvp. The .nb

version is non-blocking.

vector reg-write

shared

vwrsh rsrc, cdst/rdst Copy rsrc to cdst/rdst in every VP in the VPV. rdst must be

a shared register

cross-VP push xvppush rsrc, cdst Push a copy of rsrc to the cross-VP start/stop queue for cluster

cdst.

cross-VP pop xvppop rdst, csrc Pop from the cross-VP start/stop queue for cluster csrc and

store the value into rdst

cross-VP drop xvpdrop csrc Pop from the cross-VP start/stop queue for cluster csrc and

discard the value

 Basic VTU commands

 Page | 32

Operation Assembly format Summary

unit-stride

vector load

vL rbase, cdst/rdst

vLai rbase, rinc, cdst/rdst

Each active VP in the VPV loads the element with address:

rbase + width · VPindex

(where width is the number of bytes determined by the opcode,

and VPindex is the VP’s index number) to cdst/rdst.

The load-data is zero-extended for the u versions of the

opcodes,

or sign-extended otherwise. rdst must be a private register.

For the ai versions of the opcode, rbase is automatically

incremented by rinc.

segment-strided

vector load

vLsegst n, rbase, rstr, cdst/rdst

vLseg n, rbase, cdst/rdst

vLst rbase, rstr, cdst/rdst

Similar to unit-stride vector load, except each VP loads n

elements

with addresses:

rbase + rstr · VPindex + width · 0

rbase + rstr · VPindex + width · 1

. . .

rbase + rstr · VPindex + width · (n − 1)

to cdst/(rdst+0), cdst/(rdst+1), . . ., cdst/(rdst+(n−1)).

For the simplified seg versions of the opcode, the stride (rstr)

is equal to the segment width (width · n). For the simplified

st versions of the opcode, the segment size (n) is 1.

shared

vector load

vLsh rbase, cdst/rdst Every VP in the VPV loads the element with address rbase to

cdst/rdst. The load-data is zero-extended for the u versions

of the opcodes, or sign-extended otherwise. rdst must be a

shared or chain register.

unit-stride

vector store

vS rbase, c0/sdsrc

vS rbase, c0/sdsrc,P

vSai rbase, rinc, c0/sdsrc

vSai rbase, rinc, c0/sdsrc,P

Each active VP in the VPV stores the element in c0/sdsrc to

the address:

rbase + width · VPindex

(where width is the number of bytes determined by the opcode,

and VPindex is the VP’s index number). For the predicated

versions, the store only occurs if the store-data predicate

register in cluster 0 is set to one with the (c0/sdp) argument

or zero with the (!c0/sdp) argument. sdsrc must be a private

store-data register. For the ai versions of the opcode, rbase is

automatically incremented by rinc.

segment-strided

vector store

vSsegst n, rbase, rstr, c0/sdsrc

vSsegst n, rbase, rstr, c0/sdsrc,P

vSseg n, rbase, c0/sdsrc

vSseg n, rbase, c0/sdsrc,P

vSst rbase, rstr, c0/sdsrc

vSst rbase, rstr, c0/sdsrc,P

Similar to unit-stride vector store, except each VP stores the n

elements in c0/(sdsrc+0), c0/(sdsrc+1), . . ., c0/(sdsrc+

(n − 1)) to the addresses:

rbase + rstr · VPindex + width · 0

rbase + rstr · VPindex + width · 1

. . .

 Page | 33

rbase + rstr · VPindex + width · (n − 1)

For the simplified seg versions of the opcode, the stride (rstr)

is equal to the segment width (width · n). For the simplified

st versions of the opcode, the segment size (n) is 1.

L = {lb, lbu, lh, lhu, lw}

S = {sb, sh, sw}

P = {(c0/sdp), (!c0/sdp) Vector Load and Store commands

Below table : VP instruction opcodes

Arithmetic and Logical Instructions (all clusters)

 Memory (cluster 0)

Mnemonic Operation

addu addition

 La* load address

subu subtraction

 and logical and

or logical or

xor logical exclusive or

nor inverse logical or

sll shift left logical

srl shift right logical

sra shift right arithmetic

seq set if equal

sne set if not equal

slt set if less than

sltu set if less than

unsigned

psel select based on

predicate reg.

Copy* copy

li? load immediate

Mnemonic Operation

Lb load byte (sign-extend)

Lbu load byte unsigned

(zero-extend)

Lh load halfword (sign-

extend)

Lhu load halfword

unsigned (zero-extend)

Lw load word

Sb store byte

Sh store halfword

Sw store word

lw.atomic.add* atomic load-add-store

word

lw.atomic.and* atomic load-and-store

word

lw.atomic.or* atomic load-or-store

word

 Page | 34

 Fetch (cluster 1) Multiplication / Division (Cluster 3)

Fetch* fetch AIB at address

psel.fetch select address based on

predicate reg.

and fetch AIB

addu.fetch compute address with

addition and fetch

AIB

mulh 16-bit multiply (signed×signed)

mulhu 16-bit multiply

(unsigned×unsigned)

mulhus 16-bit multiply (unsigned×signed)

multu.lo 32-bit multiply

(unsigned×unsigned)

producing low-order bits

multu.hi 32-bit multiply

(unsigned×unsigned)

producing high-order bits

mult.lo 32-bit multiply (signed×signed)

producing

low-order bits

mult.hi 32-bit multiply (signed×signed)

producing

high-order bits

divu.q 32-bit divide (unsigned/unsigned)

producing

quotient

div.q 32-bit divide (signed/signed)

producing

quotient

divu.r 32-bit divide (unsigned÷unsigned)

producing

remainder

div.r 32-bit divide (signed÷signed)

producing

remainder

 Page | 35

Chapter 7

 Conclusion and Future Work

Conclusion

 The vector-thread architectural paradigm allows software to more efficiently encode the

parallelism and locality present in many applications, while the structure provided in the

hardware / software interface enables high-performance implementations that are efficient in

area and power. The VT architecture support for all types of parallelism and this flexibility

enables new ways of parallelizing codes. For example, by allowing vector-memory operations to

feed directly into threaded code. VT exploits parallelism and locality more effectively than

traditional superscalar, VLIW, or multithreaded architectures. The Scale VT architecture

demonstrates that the VT is well-suited to all-purpose embedded computing, letting a single

compact design provide competitive performance across a range of applications.

 VT abstraction introduces a small set of primitives to allow software to succinctly encode

parallelism and locality and seamlessly inter-mingle DLP, TLP, and ILP. For example, Virtual

processors, AIBs, vector-fetch and vector memory commands, thread-fetches, cross VP data

transfer.

Future Work

 This thesis provides good start for future work on VT-based data-parallel accelerators. It

gives specific directions for future work with respect to the instruction set, microarchitecture

and programming methodology.

 Improving Execution of Irregular DLP – This architecture indicates that the vector fragment

mechanism alone is not sufficient for efficient execution of highly irregular DLP. We have

introduced vector fragment merging, interleaving, and compression as techniques that can

potentially improve the performance and energy efficiency on such codes. The next step would

be to implement these techniques and measure their impact for our benchmarks using our

evaluation methodology.

 This thesis has focused on a single data-parallel core, but there are many interesting design

issues with respect to which how these cores can be integrated together.

 Page | 36

References

[1] Ronny Krashinsky, Christopher Batten, Mark Hampton, Steve Gerding, Brian Pharris, Jared

Casper, and Krste Asanovi´c MIT Computer Science and Artificial Intelligence Laboratory, 32

Vassar Street, Cambridge, MA 02139

� ronny, cbatten, krste_@csail.mit.edu

 [2] C. Batten. Simplified Vector-Thread Architectures for Flexible and Efficient Data-Parallel

Accelerators. PhD Thesis, MIT, 2010.

[3] C. Batten, R. Krashinsky, S. Gerding, and K. Asanovi´c. Cache Refill/Access Decoupling for

VectorMachines. Int’l Symp. on Microarchitecture (MICRO), Dec 2004.

[4] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Hanrahan. Brook

for GPUs:Stream Computing on Graphics Hardware. ACM Transactions on Graphics (TOG),

23(3):777–786,Aug 2004.

 [5] R. Espasa and M. Valero. Decoupled Vector Architectures. Int’l Symp. on High-

Performance ComputerArchitecture (HPCA), Feb 1996.

[6] W.W. Fung, I. Sham, G. Yuan, and T. M. Aamodt. DynamicWarp Formation: Efficient

MIMD ControlFlow on SIMD Graphics Hardware. ACM Transactions on Architecture and Code

Optimization (TACO), 6(2):1–35, Jun 2009.

[7] M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkin, Y. Watanabe, and T. Yamazaki.

Synergistic Processing in Cell’s Multicore Architecture. IEEE Micro, 26(2):10–24, Mar 2006.

[8] M. Hampton and K. Asanovi´c. Compiling for Vector-Thread Architectures. Int’l Symp. on

Code Generationand Optimization (CGO), Apr 2008

[9] T.-C. Chiueh. Multi-threaded vectorization. In ISCA-18, May 1991.

[10] C. R. Jesshope. Implementing an efficient vector instruction set in a chip multi-processor

using micro-threaded pipelines. Australia Computer Science Communications, 23(4):80–88,

2001.

 [11] C. Kozyrakis. Scalable vector media-processors for embedded systems. PhD thesis,

University of California at Berkeley, May 2002.

[12] C. Kozyrakis and D. Patterson. Overcoming the limitations of conventional vector

processors. In ISCA-30, June 2003.

 Page | 37

[13] Y. Lee, R. Avizienis, A. Bishara, R. Xia, D. Lockhart, C. Batten, and K. Asanovi´c.

Exploring the Tradeoffs between Programmability and Efficiency in Data-Parallel Accelerators.

Int’l Symp. on Computer Architecture (ISCA), Jun 2011

