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                                                        Abstract 
         

      The vector-thread (VT) architecture unifies the vector and threaded compute models. The VT 

abstraction provides the programmer a control processor with a vector of virtual processors 

(VPs). The control processor uses vector-fetch commands to broadcast instructions to all the VPs 

or each VP can use thread-fetch commands to direct its own control flow. A seamless 

intermixing of the vector and multithreaded control mechanisms allows a VT architecture to 

compactly and flexibly encode the applications like parallelism and locality and a VT design 

exploits these to improve performance and efficiency. We present a VT architecture which is 

considerably simpler to implement and easier to program. Using an extensive design-space 

exploration of full VLSI implementations of many accelerator design patterns, we evaluate the 

varying tradeoffs between the programmability and implementation efficiency among the 

MIMD, vector-SIMD, and VT patterns. 
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Chapter 1 

Introduction 

         For the productive use of increasing transistor counts while coping with the wire delay and 

power dissipation, Parallelism and locality are the key application characteristics exploited by 

computer architects. Conventional sequential architectural ISAs provide minimal support for 

encoding parallelism or locality, so high-performance implementations are needed to devote 

considerable area and power to on-chip structures that extract parallelism or that support 

arbitrary global communication. The large area and power overheads are studied by the demand 

for even small improvements in performance for popular ISAs. Many important applications 

have huge parallelism, however, with graph dependencies and communication patterns that can 

be statically determined. ISAs that expose more parallelism mitigate the need for area and power 

intensive structures. Similarly, ISAs that expose locality reduce the need for long range 

communication and complex interconnect. The challenge is to develop an efficient encoding 

architecture which provides more parallelism and locality to reduce the area and power 

consumption of the microarchitecture. 

       VT architecture allows large amounts of structured parallelism to be compactly encoded in a 

form that allows a simple microarchitecture to attain high performance at low power and small 

area by avoiding complex control and data path structures and by reducing activity on long 

wires. Implementation of the VT architecture also exploits   instruction-level parallelism within 

AIBs.  

       Thus the VT architecture supports all forms of application parallelism and this flexibility 

provides new ways to parallelize code which is difficult to vectorize or that gives excessive 

synchronization costs when threaded. Instruction Locality is improved by allowing common 

code to be factor out and executed once on the control processor and by executing the same AIB 

many times on each VP in turn. Data locality is improved as most operand communication is 

isolated within an individual VP. 

       We will first introduce a set of five architectural design patterns for DLP cores, comparing 

their programmability and efficiency. The MIMD pattern flexibly supports a mapping of data-

parallel tasks to a collection of simple scalar and multithreaded cores, but lacks the efficient 

execution of regular DLP. The vector-SIMD and subword-SIMD patterns can significantly 
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reduce the energy on regular DLP, but require complicated programming for irregular DLP. The 

single-instruction multiple-thread (SIMT) and vector thread (VT) patterns are hybrid patterns 

that attempt to offer alternative tradeoffs between programmability and efficiency.          

       There is a large design space to explore while reducing these patterns to an efficient VLSI 

design. There are a set of parameterized synthesizable micro-architectural components and  how 

these components can be combined to form various complete RTL designs for the different 

architectural design patterns so that it reduces total design effort and allowing a fairer 

comparison across different patterns. Another important thing is to use the same RISC ISA for 

both vector and scalar code which greatly reduces the effort required to develop an efficient VT 

compiler. Multi-lane implementations are usually more efficient than multi-core single-lane 

implementations and are easier to program as they require less partitioning and load balancing. 

. 
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Chapter 2 

Architectural design patterns 

        By considering the data parallel mechanisms in efficient computing environment, The data 

parallel applications can be categorized in two dimensions depending on the memory access and 

control flow access. The regularity with which data memory is accessed and the regularity with 

which control flow changes. The two categories are Regular data parallelism and Irregular data 

parallelism.  

      Regular data-level parallelism (DLP) has well structured data accesses where the data 

addresses can be compactly encoded and are known in advance of when the data is ready. 

Regular DLP also has well structured control flow where the control decisions are either known 

statically or well in advance of when the control flow actually occurs. Irregular DLP may have 

less structured data accesses where the addresses are more dynamic and difficult to predict and 

might also have less structured control flow. Irregular DLP also include some small number of 

inter-task dependencies that force a portion of each task to wait for previous tasks to finish. 

    Figure1 illustrate the spectrum from regular to irregular DLP. There are several studies which 

demonstrate that full DLP applications contain a mix of both regular and irregular DLP. First of 

all it is possible to improve performance and energy-efficiency even on irregular DLP. Finally, a 

consistent way of mapping both regular and irregular DLP simplifies the programming 

methodology. The next section presents five architectural design patterns and describes how each 

pattern handles both regular and irregular DLP. 

      for (i = 0; i < n ;  i++)                       for ( i=0 ; i < n ; i++ ) 

         C[i] = x * a [i] + B[2*i];                    E[C[i]] = D[A[i]] + B[i];        for ( i = 0; i < n; i++ ) 

                                                                                                                       C[i] = false; j = 0; 

(a)  Regular DA & Regular CA     (b) Irregular DA & Regular CA    while ( !C[i] & (j < m) ) 

                                                                                                             if ( A[i] == B[j++] ) 

     for (i=0; i < n ; i++)                       for (i=0 ; i < n ; i++)                              C[i] = true; 

       x = ( A[i] > 0 ) ? y : z ;                     if ( A[i] > 0 ) 

      C[i] = x * A[i] + B[i] ;                      C[i] = x * A[i] + B[i];     (e) Irregular DA & Irregular CF 

 

(c)Regular DA & Irregular CF     (d) Irregular DA & Irregular CF 
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Figure 1: Types of Data-Level Parallelism – Examples expressed in a C-like pseudo code and 

are ordered from regular DLP (i.e., regular (DA) and  (CF)) to irregular DLP (i.e. irregular DA 

and irregular (CF)).  

 

Different Architectural Patterns for Data-Parallel Accelerators 

 

1.1 MIMD Architectural Design Pattern  

       The multiple-instruction multiple-data (MIMD) pattern is the simplest one to build a data-

parallel accelerator. A large number of scalar cores are connected across a single chip. 

Programmers can map each data-parallel task to a separate core but without proper dedicated 

DLP mechanisms, it is difficult to get energy-efficiency advantages when executing DLP    

applications. These scalar cores can be extended to support multithreading per core which helps 

to improve performance by hiding various latencies. Figure1 (a) shows the programmer’s logical 

view and Figure1 (b) an example implementation for the multithreaded MIMD pattern. All of the 

design patterns include a host thread (HT) as part of the programmer’s logical view. The HT runs 

on the general-purpose processor and is responsible for configuration, application startup, 

interaction with the operating system and managing the data-parallel accelerator. We refer to the 

threads that run on the data parallel accelerator as micro-threads (μTs), as they are lighter weight 

than the threads which run on the GPP. The primary advantage of the MIMD pattern is the easier 

and flexible programming model, and since every core can execute an independent task, there 

will be little difficulty in mapping both the regular and irregular DLP applications. This can 

simplify parallel programming comparing to the other design patterns, but the primary 

disadvantage is that this pattern does little to improve the energy efficiency of DLP applications. 
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Fig1: (a) Programmer’s logical view – MIMD [2 & 13] 

 

                                                           

Fig1: (b) Typical core Microarchitecture – MIMD [2 & 13] 

 

 

1.2  Vector-SIMD Architectural Design Pattern 

          

       In the vector single-instruction multiple-data (Vector-SIMD) pattern as shown in figure2 (a) 

the control thread (CT) uses vector memory instructions to move data between main memory and 

vector registers whereas vector arithmetic instructions to operate on vectors of elements at once.  

One way to think of this pattern is as each CT manages an array of μTs that execute in lock-step; 

each μT is responsible for one element of the vector and the hardware vector length is the 

number of μTs (e.g., four in Figure2 (b)). In this context, μTs are sometimes referred to as virtual 

processors (VP). Unlike in the MIMD pattern, the HT in the Vector-SIMD only interacts with 

the CTs and does not directly manage the μTs. Even the HT and CTs must still allocate work at a 

coarse-grain among themselves via software, this configuration overhead is amortized by the 

hardware vector length. The CT distributes work to the μTs with vector instructions enabling 

very efficient execution of fine-grain DLP. In a typical vector-SIMD core, the CT is mapped to a 

control processor and the μTs are mapped across one or more vector lanes in the vector unit. The 
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vector memory unit (VMU) handles executing vector memory instructions and the vector issue 

unit (VIU) handles the dependency checking and dispatch of vector arithmetic instructions. 

       The vector memory commands are divided into two parts: the address portion goes to the 

VMU which issue the request to MEMORY while the register write/read portion goes to the 

VIU. For vector loads, the register writeback (wb) waits until the data returns from memory and 

then controls writing the vector register file two elements per cycle over two cycles. Note that 

the VMU/VIU are decoupled from the vector lanes to allow the implementation to overlap 

processing multiple vector loads. The vector arithmetic operations are also processed two 

elements per cycle over two cycles, some μTs are inactive because the corresponding vector flag 

is false. The temporal mapping of μTs to the same lane is an important aspect of the vector-

SIMD pattern. We can imagine that using a larger vector register file to support longer vector 

lengths that would keep the vector unit busy for tens of cycles. The fact that one vector command 

can keep the vector unit busy from any cycles but decreases instruction issue bandwidth 

pressure. So as in the MIMD pattern we can exploit instruction-level parallelism by adding 

support for executing multiple instructions per μT per cycle, but unlike the MIMD pattern in 

vector-SIMD it may not be necessary to increase the issue bandwidth since one vector instruction 

occupies a vector functional unit for many cycles and almost all vector-SIMD accelerators will 

take advantage of multiple functional units and also support bypassing (also called vector 

chaining) between these units. A final point to note is that how the control processor (CP) 

decoupling and multi-cycle vector execution enables the control thread to continue executing 

while the vector unit is still processing older vector instructions. This decoupling means the 

control thread can quickly work through the loop overhead instructions so that it can start issuing 

the next iteration of the loop as soon as possible. 

        Finally, vector-SIMD pattern can improve energy efficiency in three different ways:  

1. Some instructions are executed once by the CT instead for each μT like MIMD pattern  

2. For operations that the μTs do execute, the CP and VIU can amortize various overheads such 

as instruction fetch, decode, and dependency checking etc. 

3. For memory accesses which the μTs still execute the VMU can efficiently move the data in 

large blocks 
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                               Fig2: (a) Programmer’s logical view –     Vector-SIMD [2 & 13] 

                                                          

                               Fig2: (b) Typical core microarchitecture -   Vector-SIMD  [2 & 13] 

 

1.3  Subword-SIMD Architectural Design Pattern 

      

      The subword single-instruction multiple-data (subword-SIMD) architectural pattern shown in 

Figure3 (a) captures some important differences from the vector-SIMD pattern. In this pattern, A 

full-word scalar datapath is vector like unit with standard scalar registers often corresponding to 

a double-precision floating-point unit. The pattern leverages these existing scalar datapaths and 

registers to execute multiple operations in a single cycle. Some variants support bitwidths larger 

than the widest scalar datatype, in which case the datapath can only be fully utilized with 

subword-SIMD instructions and the other variants unify the CT and SIMD unit such that the 

same datapath is used for control, scalar arithmetic, and subword-SIMD instructions. Subword-
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SIMD has short vector lengths that are exposed to software as fixed width datapaths whereas 

vector-SIMD has longer vector lengths that are exposed to software as a true vector of elements. 

In vector-SIMD, the vector length is exposed in such a way that the same binary can run on 

many different implementations with varying hardware resources whereas code for one subword-

SIMD implementation is usually less portable to other implementations with varying h/w 

resources. Vector-SIMD has more flexible data-movement operations which alleviates the need 

for software data shuffling, while Subword-SIMD often requires shuffling elements via special 

permute instructions, and this leads to a large amount of cross-element communication 

       The vector-SIMD pattern is better suited to exploiting large amounts of data-parallelism as 

opposed to a more general-purpose workload with smaller amounts of data-parallelism so we do 

not focus more on subword-SIMD. 

 

      

                     

                         Fig3: (a) Programmer’s logical view –   Subword-SIMD [2 & 13] 

                                                       

                        Fig3: (b) Typical core microarchitecture -   Subword-SIMD [2 & 13]  

 

2.4  SIMT Architectural Design Pattern 
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       The single instruction multiple-thread (SIMT) pattern is a hybrid with a programmer’s 

logical view shown is similar to the MIMD pattern but an implementation similar to the vector-

SIMD pattern. As shown in Figure4 (a) below the SIMT pattern supports a large number of μTs 

but no CTs; the HT is responsible for directly managing the μTs and a μT block is mapped to a 

SIMT core which contains vector lanes similar to those in the vector-SIMD pattern. However, 

since there is no CT, the VIU is responsible for amortizing overheads and executing the μT 

scalar instructions in lock-step when they are coherent. The VIU also manages the situation 

when the μTs execute a scalar branch possibly causing them to diverge. μTs can sometimes re-

converge through static hints in the scalar instruction stream or dynamic hardware mechanisms. 

SIMT has only scalar loads and stores, but the VMU can include a memory coalescing unit to 

dynamically detect when these scalar accesses can be converted into vector memory operations. 

The SIMT pattern usually exposes the concept of a μT block to the programmer that the barriers 

are sometimes provided for intra-block synchronization and application performance depends 

heavily on the coherence and coalescing opportunities within a μT block. 

       The loop in Figure4 (b) maps to the SIMT pattern in a similar way as in the MIMD pattern 

except that each μT is only responsible for a single element as opposed to a number of elements. 

Since there are no control threads (CT) and thus no similarity to the vector-SIMD pattern, a 

combination of dedicated hardware and software is required to manage the stripmining. The host 

thread (HT) tells the hardware how many μT blocks are required for the computation and the 

hardware manages the case when the number of requested μT blocks is greater than what is 

available in the actual hardware. In the common case, where the application vector length is not 

statically guaranteed to be evenly divisible by the μT block size then each μT must use a scalar 

branch to verify that the computation for the corresponding element is actually necessary. 

       There are some issues that can prevent the SIMT pattern from achieving vector-like energy 

efficiencies on regular DLP that the μTs must redundantly execute instructions that would 

otherwise be amortized onto the CT. Regular data accesses are encoded as multiple scalar 

accesses which must be dynamically transformed into vector-like memory operations. On the 

other hand, the lack of a control thread (CT) necessitates per μT stripmining calculations and 

prevents access-execute decoupling which can efficiently tolerate memory latencies. Even 

though the ability to achieve vector-like efficiencies on coherent μT instructions helps to 

improve energy-efficiency compared to the MIMD pattern. However, The real strength of the 
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SIMT pattern is that it provides a simple way to map complex data-dependent control flow with 

μT scalar branches. 

        

                                      Fig4: (a) Programmer’s logical view –   SIMT [2 & 13] 

 

                                                         

                                  Fig4: (b) Typical core microarchitecture -   SIMT [2 & 13] 

 

2.5 VT Architectural Design Pattern 

       The vector-thread (VT) pattern is also a hybrid pattern like SIMT but it takes a very 

different approach. As shown in Figure5 (a) the HT manages a collection of CTs and each CT   

manages an array of μTs. Similar to the vector-SIMD pattern, this allows various overheads to be 

amortized onto the CT and CTs can execute vector memory commands to efficiently handle 

regular data accesses. In this pattern, the CT does not execute vector arithmetic instructions like 

vector-SIMD but instead uses a vector fetch instruction to indicate the start of a scalar instruction 

stream that should be executed by the μTs. The VIU allows μTs to execute coherently as in the 

SIMT pattern but they can also diverge after executing scalar branches. 
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       In VT pattern loop control, regular data accesses and stripmining are handled just as in the 

vector-SIMD pattern. Instead of vector arithmetic instructions (VAI), we use a vector fetch 

instruction (VFI) with one argument which indicates the instruction address at which all μTs 

should immediately start executing. All μTs execute the scalar instructions till the stop 

instruction. An important aspect of the VT pattern is that the interaction between vector registers 

as accessed by the control thread and scalar registers as accessed by each μT. Each μT’s scalar 

register an implicitly refers to that μT’s element of the vector register. In other words, the vector 

register as seen by the control thread and the scalar register as seen by the μTs are two views of 

the same register. The μTs cannot access the control thread’s scalar registers as this would 

significantly complicate control processor (CP) decoupling. Shared accesses are thus 

communicated with a scalar load by the control thread and a scalar-vector move instruction 

which copies the given scalar register value into each element of the given vector register. A 

scalar branch used to encode data-dependent control flow.  

       An explicit scalar-vector move instruction writes the scalar value into each element of the 

vector register with two elements per cycle over the two cycles. The unit-stride vector load 

instruction is executed as in the vector-SIMD pattern. The control processor (CP) then sends the 

vector fetch instruction to the VIU. The VIU fetches the branch instruction and issues them 

across μTs. The VIU waits until all μTs resolve the scalar branch as similar to the SIMT pattern. 

If all μTs either they take the branch or do not take, then the VIU can start fetching from the 

appropriate address. If some μTs take the branch while others do not, then the μT diverge and the 

VIU needs to keep track of which μTs are executing which side of the branch.  

      VT achieves vector-like energy-efficiency while maintaining the ability to flexibly map 

regular and irregular DLP. Control instructions are executed once by the control thread per-loop. 

A scalar branch provides a convenient way to map complex data-dependent control flow and the 

VIU is still able to amortize instruction fetch, decode and dependency checking for vector 

arithmetic instructions (VAI). VT uses the same vector memory instructions to move blocks of 

data efficiently between memory and vector registers. However there are some overheads 

including the extra scalar-vector move instruction, vector fetch instruction, and μT stop 

instruction. 
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                                    Fig5: (a) Programmer’s logical view –   VT [2 & 13] 

                           

                                                     

                                   Fig5: (b) Typical core microarchitecture -   VT [2 & 13] 

 

 

 

 

 

 

 

Chapter 3 

Vector Thread Processor 

      This section first describes the abstraction view of a VT architecture provides to a 

programmer then gives an overview of the physical model for a VT machine. 
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1.4 VT Abstract Model 

          

        The vector-thread architecture unifies the vector and multithreaded models. A conventional 

control processor (CP) interacts with a vector of virtual processor (VPV), as shown in Figure6 

(a). The programming model consists of two instruction sets, one for the control processor (CP) 

and one for the VPs. Applications can be mapped to the VT architecture in a variety of ways but 

it is especially well suited to executing loops. Each VP executes a single iteration of the loop and 

the control processor is responsible for managing the execution. 

 

                       

 

                     Figure 6: (a) Abstract model of a vector-thread architecture [1] 

 

 

        A VP contains a set of registers and has the ability to execute RISC-like instructions with 

virtual register specifiers. VP instructions are grouped into atomic instruction blocks (AIBs) and   

the unit of work issued to a VP at one time. There is no automatic program counter (PC) or 

implicit instruction fetch mechanism for VPs; all instruction blocks must be explicitly requested 

by either the control processor or the VP itself. 

       The control processor (CP) can direct VPs’ execution using a vector-fetch command to issue 

an AIB to all the VPs in parallel, or a Thread-fetch to target an individual VP. Vector-fetch 

commands provide a programming model similar to conventional vector machines but a large 

block of instructions can be issued at once. As a simple example, below Figure6 (b)  shows the 

mapping for a data parallel vector-vector add loop. The AIB for one iteration of the loop contains 



   Page | 14 
 

two loads, an add, and a store instructions. A vector-fetch command sends this AIB to all the 

VPs in parallel and thus initiates vl loop iterations, where vl is the length of the virtual processor 

vector (VPV) i.e., the vector length. Every VP executes the same instructions but operates on 

different data elements determined by its index number. Though a more efficient alternative to 

the individual VP loads and stores shown in the example, a VT architecture also provides vector 

memory commands issued by the control processor which move a vector of elements between 

memory and a register in each VP. 

         The VT abstract model connect VPs in a unidirectional ring topology and allows a sending 

instruction on VP(n) to transfer data directly to a receiving instruction on VP(n+1). This type of  

cross-VP data transfer is dynamically scheduled and resolved when the data becomes available. 

Cross-VP data transfers allow loops with cross-iteration dependencies to be efficiently mapped 

to the vector thread architecture, as shown in the figure6 (c). A single vector-fetch command 

introduces a chain of prevVP receives and nextVP sends that spans the VPV. The control 

processor can push an initial value into the cross-VP start/stop queue before executing the 

vector-fetch command. After the chain executes, the final cross-VP data value from the last VP 

turns around and is written into the same queue. It can then be popped by the control processor 

or consumed by a subsequent prevVP  VP0 during stripmined loop execution. 

          The ability to freely intermix vector-fetches and thread-fetches allows a VT architecture to 

combine the best attributes of both vector and multithreaded execution paradigms. As shown in 

figure6 (d), the control processor can broadcast a vector-fetch command to launch a vector of VP 

threads and each of which continues to execute as long as it issues thread-fetches. These thread-

fetches break the rigid control flow of traditional vector machines by enabling the VP threads to 

follow independent control paths. Thread-fetches are broadening the range of loops which can be 

mapped efficiently to VT, allowing the VPs to execute data-parallel loop iterations with 

conditionals or inner-loops. Beyond these loops, the VPs can also be used as free-running 

threads, where they operate independently from the control processor and retrieve tasks from a 

shared work queue. 
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                                          Figure 6: (b) Vector-fetch commands [1 & 9] 

 

                  

                            

                                         

                                         Figure 6: (c) Cross-VP data transfers [1 & 9] 

 

 

                                                    

  

                                           Figure 6: (d) VP threads [1 & 9] 

 

         The VT architecture allows software to efficiently expose structured parallelism and 

locality. Compared to a conventional threaded architecture, the VT model allows common book-

keeping code to be factored out and executed once on the control processor rather than in each 
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thread. AIBs enable a VT machine to efficiently amortize instruction fetch overhead and provide 

a framework for easily handling temporary state. Vector-fetch commands explicitly encode 

instruction locality and parallelism, allowing a VT machine to attain high performance while 

amortizing control overhead. Vector-memory commands avoid separate load and store requests 

for each element and can be used to exploit memory data-parallelism even in loops with non-

data-parallel. For loops with cross-iteration dependencies, cross-VP data transfers explicitly 

encode synchronization and communication, avoiding heavyweight inter-thread memory 

coherence and synchronization primitives. 

            

1.5 VT Physical Model 

         

          A physical model is the expected structure for efficient implementations of the abstract 

model. The VT physical model contains a conventional scalar control processor together with a 

vector thread unit (VTU) that executes the VP code. To exploit the parallelism exposed by the 

VT abstract model, the VTU contains an array of processing lanes parallel as shown in Figure7 

(a). VPs are mapped into the lanes and the VPV is striped across the lane array. Each lane 

contains   functional units, which are time-multiplexed across the VPs and physical registers, 

which hold the state of VPs mapped to the lanes. Unlike to the traditional vector machines, the 

lanes in a VT machine execute decoupled from each other. Figure7 (b) shows an abstract view of 

how VP execution is time multiplexed on the lanes for both vector-fetched and thread-fetched 

AIBs. This fine-grain interleaving helps VT machines hide memory, functional unit and thread-

fetch latencies. 

                   As shown in figure7 (a), each lane contains a command management unit (CMU) and 

an execution cluster. An execution cluster consists of a functional unit, register file and a small 

AIB cache. The CMU buffers commands from the control processor in a queue (cmd-Q) and 

holds pending thread-fetch addresses for the corresponding lane’s VPs. The CMU also holds the 

tags for the lane’s AIB cache in cache tag. The AIB cache holds one or more AIBs and must be 

at least large enough to hold an AIB of the maximum size defined in the VT architecture. 
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                             Figure 7: (a) Physical model of a VT machine [2] 

          

       The implementation has four parallel lanes in the vector-thread unit (VTU) and VPs are 

mapped across the lane array with the low-order bits of a VP index indicating the lane to which it 

is stripped. The configuration shown uses VPs with five virtual registers, and with twenty 

physical registers each lane is able to support four VPs. Each lane is divided into a command 

management unit (CMU) and an execution cluster. The execution cluster has an associated cross-

VP start-stop queue. 

                                

                Figure 7: (b) The control processor can use a vector-fetch command to 

                send an AIB to all the VPs, after which each VP can uses thread-fetch to fetch its own AIBs. 
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.  The CMU chooses a vector-fetch, VP-fetch or thread-fetch command to process. The fetch 

command contains an address which is looked up in the AIB tags and if there is a miss, a request 

is sent to the fill unit which retrieves the requested AIB from the primary cache. The fill unit 

handles one lane’s AIB miss at a time except if lanes are executing vector-fetch commands when 

refill overhead is amortized by broadcasting the AIB to all lanes at the same time. 

          

                   

 

                      Figure 7: (c) Lane Time-Multiplexing. Both vector-fetch and thread fetch 

                                              AIBs are time-multiplexed on the physical lanes. 

 

     After a miss refill has been processed or after a fetch command hits in the AIB cache, the 

CMU generates an execute directive which contains an index into the AIB cache. For a vector-

fetch command the execute directive provides that the AIB should be executed by all VPs 

mapped to the lane whereas for a VP-fetch or thread-fetch command it identifies a single VP to 

execute the AIB. The execute directive is sent to a queue in the execution cluster, leaving the 

CMU free to begin processing the new commands. The CMU is able to overlap the AIB cache 

refill for new commands with the execution of previous ones but must track which AIBs have 

outstanding execute directives to avoid overwriting their entries in the AIB cache. The CMU 

must also ensure that the VP threads execution has completed before initiating a subsequent 

vector-fetch. 

         In processing a execute directive, the cluster takes VP instructions one by one from the 

AIB cache and executes them for the appropriate VP. While processing an execute-directive 
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from a vector-fetch command, all of the instructions in the AIB are executed once for one VP 

before moving on to the next. The virtual register indices in the VP instructions are combined 

with an active VP number to create an index into the physical register file. To execute a fetch 

instruction, the cluster sends the requested AIB address to the CMU where the VP’s associated 

pending address of that thread-fetch register is updated. 

         The lanes in a VTU are connected with an unidirectional ring network to implement the 

cross-VP data transfers. When a cluster encounters an instruction with a prevVP receive, it stalls 

until the data is available from its previous lane. When the VT architecture allows multiple cross-

VP instructions in a single AIB with some sends preceding some receives, the hardware 

implementation must provide sufficient buffering of send data to allow all the receivers in an 

AIB to execute. By induction, deadlock is avoided if each lane ensures that its predecessor can 

never be blocked to send its cross-VP data. 
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Chapter 4 

SCALE Vector Thread Architecture 

      

     SCALE is an instance of the VT architectural paradigm designed for embedded systems 

applications. The SCALE architecture has a MIPS-based scalar control processor extended with 

a VTU. The SCALE VTU aims to provide high performance at low power for a wide range of 

applications while using a small area. In this section we will describe the SCALE VT         

architecture, a simple code example implemented on SCALE, and gives an overview of the 

SCALE microarchitecture. 

   

 4.1 Clusters 

      

     To improve the performance while reducing energy, area and circuit delay, SCALE extends 

the single-cluster VT model (shown in Figure1) by partitioning VPs into multiple execution 

clusters with independent register sets. VP instructions process an individual cluster and perform 

RISC-like operations. Source operands must be local to the cluster but results can be written to 

any cluster in the VP and its result from an instruction can be written to multiple destinations. 

Each cluster within a VP has a separate predicate register (pr), and instructions can be positively 

or negatively predicated.  

     SCALE clusters are heterogeneous, but all clusters support basic integer computations. 

Additionally, Cluster0 supports memory access instructions, cluster1 supports fetch instructions, 

and cluster3 supports integer multiply and divide. Though we do not consider, also the SCALE 

architecture allows clusters to be enhanced with layers of additional functionality (e.g., floating-

point operations, fixed-point operations, and sub-word SIMD operations), or new clusters to be 

added to perform specialized operations. 

 

 4.2 Registers and VP Configuration 

        

      The general registers in each cluster of a VP are categorized as either private registers (pr’s) 

and shared registers (sr’s). Both private and shared registers can be written and read by VP 
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instructions and by commands from the control processor. The main difference between them is 

that the private registers preserve their values between AIBs, while shared registers may be 

overwritten by a different VP. Shared registers can be used as temporary within an AIB to 

increase the number of VPs that can be supported by a fixed number of physical registers. The 

control processor can also use vector-write the shared registers to broadcast scalar values and 

constants used by all VPs. 

      In addition to the general registers, each cluster also has chain registers (cr0 and cr1) 

associated with the two ALU input operands and these can be used as sources and destinations to 

avoid reading and writing the register files. Like shared registers, chain registers may be 

overwritten between AIBs and they can also be implicitly overwritten when a VP instruction 

uses their associated operand position. Cluster0 has a special chain register called the store-data    

(sd) register through which all data for VP stores must pass. 

      In the SCALE architecture, the control processor configures the VPs by indicating how many 

shared and private registers are needed in each cluster. The length of the virtual processor vector   

(VPV) changes with each re-configuration to reflect the maximum number of VPs that can be 

supported. This operation is done once outside each loop and state in the VPs is undefined across 

reconfigurations. Within a processing lane, the VTU maps shared VP registers to shared physical 

registers. Control processor vector-write to a shared register are broadcast to each lane, but 

individual VP writes to a shared register are not coherent across lanes. 

 

4.3 Vector Memory Commands 

    

      In addition to the VP load and store instructions, SCALE defines vector-memory commands 

issued by the control processor for efficient execution of structured memory accesses. Like 

vector-fetch commands, these operate across the virtual processor vector (VPV); a vector-load 

writes the load data to a private register in each VP whereas a vector store reads the store data 

from a private register in each VP. SCALE also supports vector-load commands which target the 

shared registers to retrieve values used by all VPs. In addition to the unit stride and strided 

vector-memory access patterns, SCALE also provides vector segment accesses where each VP 

loads or stores several contiguous memory elements to support ―array-of-structures‖ data layouts 

efficiently. 
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4.4 SCALE Code Example 

     

    The SCALE code to implement the decoder function from the c code presented is shown 

below. The code is divided into two sections: one with MIPS control processor code in the .text 

section and SCALE VP code in the .sisa (SCALE ISA) section. The SCALE VP code 

implements one iteration of the loop with a single AIB. cluster0 accesses memory, cluster1 

accumulates index, cluster2 accumulates valpred, and cluster3 does the multiply. 

 

void decode_ex(int len, u_int8_t* in, int16_t* out)  

{ 

  int i; 

  int index = 0; 

  int valpred = 0; 

       for(i = 0; i < len; i++)  

             { 

              u_int8_t delta = in[i]; 

              index += indexTable[delta]; 

      index = index < IX_MIN ? IX_MIN : index; 

      index = IX_MAX < index ? IX_MAX : index; 

  valpred += stepsizeTable[index] * delta; 

  valpred = valpred < VALP_MIN ? VALP_MIN : valpred; 

  valpred = VALP_MAX < valpred ? VALP_MAX : valpred; 

       out[i] = valpred; 

  } 

} 

 

Figure 8: C code for decoder example. 
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 .text    # control processor code 

decode_ex: # a0=len, a1=in, a2=out 

# configure VPs: c0:p,s c1:p,s c2:p,s c3:p,s 

vcfgvl t1, a0, 1,2, 0,3, 1,3, 0,0                                                  # (vl,t1) = min(a0,vlmax) 

sll      t1, t1, 1                                                                            # output stride 

la       t0, indexTable 

vwrsh    t0, c0/sr0                                                                     # indexTable addr. 

la       t0, stepsizeTable 

vwrsh    t0, c0/sr1                                                                     # stepsizeTable addr. 

vwrsh    IX_MIN, c1/sr0                                                          # index min 

vwrsh    IX_MAX, c1/sr1                                                        # index max 

vwrsh    VALP_MIN, c2/sr0                                                    # valpred min 

vwrsh    VALP_MAX, c2/sr1                                                  # valpred max 

xvppush  $0, c1                                                                        # push initial index = 0 

xvppush  $0, c2                                                                        # push initial valpred = 0 

stripmineloop: 

setvl    t2, a0                                                                             # (vl,t2) = min(a0,vlmax) 

vlbuai   a1, t2, c0/pr0                                                                # vector-load input, inc ptr 

vf vtu_decode_ex                                                                     # vector-fetch AIB 

vshai    a2, t1, c2/pr0                                                                # vector-store output, inc ptr 

subu     a0, t2                                                                            # decrement count 

bnez     a0, stripmineloop  # loop until done 

xvppop   $0, c1                                                                        # pop final index, discard 

xvppop   $0, c2                                                                        # pop final valpred, discard 

vsync                                                                                       # wait until VPs are done 

jr ra                                                                                           # return 

 

.sisa # SCALE VP code 

vtu_decode_ex: 

.aib begin 

c0 sll   pr0, 2 -> cr1                                                        # word offset 

c0 lw    cr1(sr0) -> c1/cr0                                              # load index 

c0 copy  pr0 -> c3/cr0                                                    # copy delta 

c1 addu  cr0, prevVP -> cr0                                          # accum. index 

c1 slt   cr0, sr0 -> p                                                        # index min 

c1 psel  cr0, sr0 -> sr2                                                   # index min 
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c1 slt   sr1, sr2 -> p                                                      # index max 

c1 psel  sr2, sr1 -> c0/cr0, nextVP                              # index max 

c0 sll   cr0, 2 -> cr1                                                     # word offset 

c0 lw    cr1(sr1) -> c3/cr1                                            # load step 

c3 mult.lo cr0, cr1 -> c2/cr0                                       # step*delta 

c2 addu  cr0, prevVP -> cr0                                        # accum. valpred 

c2 slt   cr0, sr0 -> p                                                     # valpred min 

c2 psel  cr0, sr0 -> sr2                                                # valpred min 

c2 slt   sr1, sr2 -> p                                                     # valpred max 

c2 psel  sr2, sr1 -> pr0, nextVP                                  # valpred max 

.aib end 

 

 

 Figure :  SCALE code implementing decoder example 
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Chapter 5 

SCALE Microarchitecture 

    The SCALE microarchitecture is an extension of the general VT architecture model shown in 

figure7 (a). In each lane has a single CMU and one physical execution cluster per VP cluster. 

Each cluster has a dedicated output bus which broadcasts data to the other clusters in the lane 

and it also connects to its sibling clusters in neighboring lanes to support cross-VP data transfers. 

An overview of the SCALE lane microarchitecture is as shown in figure8 (a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                Figure 8: (a)  SCALE Lane Microarchitecture [1] 
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In the above Scale Lane Microarchitecture The AIB caches hold micro-op bundles. The 

compute-op is a local RISC operation on the cluster, the transport-op sends data to external 

clusters and the writeback-op receives data from external clusters. Clusters 1, Cluster 2 and 

Cluster 3 are basic cluster designs with writeback-op and transport-op decoupling resources 

(cluster 1 is shown in detail, clusters 2 and 3 are shown in abstract). Cluster 0 connects to 

memory and includes memory access decoupling resources.  

 

         

5.1 Micro-Ops and Cluster Decoupling 

   

      The SCALE ISA is portable across multiple SCALE implementations, but is designed to be 

easy to translate into implementation-specific micro-operations or micro-ops. The assembler 

translates the SCALE software ISA into the native hard-ware ISA at compilation time. There are 

three categories of hardware micro-ops. 1. A compute-op performs the main RISC-like operation 

of a VP instruction 2. A transport-op sends data to another cluster and 3. A writeback-op 

receives data sent from an external cluster. An assembler reorganizes micro-ops derived from an 

AIB into micro-op bundles which target a single cluster and do not access other clusters’ 

registers. Figure8 (b) how the SCALE VP instructions from the above decoder example are    

translated into micro-op bundles. All inter-cluster data dependencies are encoded by the 

transport-ops and writeback-ops which are added to the sending and receiving cluster 

respectively. This allows the micro-op bundles to be packed together independently for each 

cluster from the micro-op bundles for other clusters. 
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Figure 8: (b)  Execution of decoder example on SCALE architecture. Each cluster executes in-order, but   

cluster and lane decoupling allows the execution to automatically adapt to the software critical path. Arrows 

represent critical dependencies (solid for inter-cluster within a lane, dotted for cross-VP) [1] 

 

      Inter-cluster data transfers are partitioned into transport and writeback operations enables 

decoupled execution between clusters. In SCALE, a cluster’s AIB cache contains micro-op 

bundles and each cluster has a local execute directive queue and local control. Each cluster 

processes its transport-ops in order and broadcasts result values onto its dedicated output data 

bus and each cluster processes its writeback-ops in order, writing the values from external 

clusters to its local registers. The synchronization of the inter-cluster data dependencies with 

handshake signals which extend between the clusters and a transaction completes only when 

both the sender and the receiver are ready. Although compute-ops execute in order, each cluster 

contains a transport queue to allow execution to proceed without waiting for external destination 

clusters to receive the data, and a writeback queue to allow execution to proceed without waiting 

for data from external clusters until it is needed by a compute-op. Thus, queues make inter-

cluster synchronization more flexible and thereby enhance cluster decoupling. 
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      A schematic diagram of the example decoder loop executing on SCALE is shown in Figure8 

(b). Each cluster executes the vector-fetched AIB for each VP mapped to its lane and decoupling 

allows each cluster to target to the next VP independently. Execution adapts to the software 

critical path as each cluster’s local data dependencies resolve. In the above example, the 

accumulations of index and valpred must execute serially but all of the other instructions are not 

on the software critical path. Further, the two accumulations can execute in parallel, so the cross-

iteration serialization penalty is paid only once. Each VP loop iteration executes over a period of 

30 cycles, but the combination of multiple lanes and cluster decoupling within each lane leads to 

as many as six loop iterations executing simultaneously. 

 

5.2 Memory Access Decoupling 

        

      All VP loads and stores execute on cluster0 (c0) and it is specially designed to enable access-

execute decoupling. Typically, c0 loads data values from memory and sends them to other 

clusters then computation is performed on the data and finally results are returned to c0 and 

stored to the memory. With this type of basic cluster decoupling, c0 can continue execution after 

a load without waiting for the other clusters to receive the data. Further, Cluster0 is enhanced to 

hide memory latencies by continuing execution after a load misses in the cache and therefore it 

might retrieve load data from the cache out of order. Even though like other instructions, load 

operations on cluster0 use transport-ops to deliver data to other clusters in order and uses a load 

data queue to buffer the data and preserve the correct ordering. 

      Interestingly, when cluster0 encounters a store, it does not have to wait for the data to be 

ready. Instead it buffers the store operation, including the store address and in the decoupled 

store queue until the store data is available. When a SCALE VP instruction targets the store data 

(sd)register, the resulting transport-op sends data to the store unit rather than to c0. Thus, the 

store unit acts as a primary destination for inter-cluster transport operations and it handles the    

writeback-ops for sd. Store decoupling allows a lane’s load stream to slip ahead of its store 

stream but loads for a given VP are not allowed to bypass previous stores to the same address by 

the same VP. 
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5.3  Vector Memory Accesses 

         

     As discussed above vector-memory commands are sent to the clusters as special execute 

directives which generate micro-ops instead of reading them from the AIB cache. For a vector-

load, writeback-ops receive the load data on the destination cluster and for a vector-store, 

compute-ops and transport-ops on the source cluster read and send the store data. To allow 

overlapped execution of vector fetched AIBs and vector-memory operations, chaining is 

provided. 

    The vector-memory commands are also sent to the vector memory unit (VMU) which performs 

the necessary cache accesses. The vector-memory unit can only send one address to the cache in 

each cycle but it takes advantage of the structured access patterns to load or store multiple 

elements with each access. The vector-memory unit uses load and store data to and from cluster 

0 in each lane to reuse the buffering already provided for the decoupled VP loads and stores. 
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Chapter 6 

                           Scale VT Instruction Set Architecture 

       

    The Scale architecture is an instance of the vector-thread architectural paradigm. For the 

Hardware /software interface, Scale is particularly targeted at embedded systems—the goal is to 

provide high performance with low power dissipation for a wide range of applications while 

using only a small area. The Instruction set is provided as follows:-  

 

configure VPs 

and set vector 

length 

vcfgvl  rdst, rlen, nc0p, nc0s, 

nc1p, nc1s, nc2p, nc2s, nc3p, nc3s 

Configure the VPs with nc0p private and nc0s shared registers 

in cluster 0, nc1p private and nc1s shared registers in cluster 

1, etc. The nc0p parameter is also used as the number of private 

store-data registers in cluster 0. State in the VPs becomes 

undefined if the new configuration is not the same as the existing 

configuration. The configuration determines the maximum 

vector length which the VTU hardware can support, and this 

 value is written to vlmax. The new vector length is then computed 

as the minimum of rlen and vlmax, and this value is written to vl and 

rdst. 

set vector 

length 

 

setvl rdst, rlen The new vector length length is computed as the minimum of 

rlen and vlmax, and this value is written to vl and rdst. 

vector-fetch vf label Send the AIB located at the label to every active VP in the 

VPV. 

VP fetch vpf[.nb] rvp, label Send the AIB located at the label to the VP specified by rvp. 

The .nb version is non-blocking. 

vector sync Vsync Stall until every VP in the VPV is idle and has no outstanding 

memory operations 

vector fence Vfence Complete all memory operations from previous vector commands 

(vector-fetch, vector-load, and vector-store) before 

those from any subsequent vector commands. 

VP sync vpsync rvp Stall until the VP specified by rvp is idle and has no outstanding 

memory operations. 

VTU kill Vkill Kill any previously issued VTU commands at an arbitrary 

point of partial execution and reset the VTU into an idle state. 

VP reg-read vprd[.nb] rvp, rdst, csrc/rsrc Copy csrc/rsrc in the VP specified by rvp to rdst. The .nb 

version is non-blocking. 
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VP reg-write vpwr[.nb] rvp, rsrc, cdst/rdst Copy rsrc to cdst/rdst in the VP specified by rvp. The .nb 

version is non-blocking. 

vector reg-write 

shared 

vwrsh rsrc, cdst/rdst Copy rsrc to cdst/rdst in every VP in the VPV. rdst must be 

a shared register 

cross-VP push xvppush rsrc, cdst Push a copy of rsrc to the cross-VP start/stop queue for cluster 

cdst. 

cross-VP pop xvppop rdst, csrc Pop from the cross-VP start/stop queue for cluster csrc and 

store the value into rdst 

cross-VP drop xvpdrop csrc Pop from the cross-VP start/stop queue for cluster csrc and 

discard the value 

 

 

                                                             Basic VTU commands 
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Operation Assembly format Summary 

unit-stride 

vector load 

vL rbase, cdst/rdst 

vLai rbase, rinc, cdst/rdst 

Each active VP in the VPV loads the element with address: 

rbase + width · VPindex 

(where width is the number of bytes determined by the opcode, 

and VPindex is the VP’s index number) to cdst/rdst. 

The load-data is zero-extended for the u versions of the 

opcodes, 

or sign-extended otherwise. rdst must be a private register. 

For the ai versions of the opcode, rbase is automatically 

incremented by rinc. 

segment-strided 

vector load 

vLsegst n, rbase, rstr, cdst/rdst 

vLseg n, rbase, cdst/rdst 

vLst rbase, rstr, cdst/rdst 

Similar to unit-stride vector load, except each VP loads n 

elements 

with addresses: 

rbase + rstr · VPindex + width · 0 

rbase + rstr · VPindex + width · 1 

. . . 

rbase + rstr · VPindex + width · (n − 1) 

to cdst/(rdst+0), cdst/(rdst+1), . . ., cdst/(rdst+(n−1)). 

For the simplified seg versions of the opcode, the stride (rstr) 

is equal to the segment width (width · n). For the simplified 

st versions of the opcode, the segment size (n) is 1. 

shared 

vector load 

vLsh rbase, cdst/rdst Every VP in the VPV loads the element with address rbase to 

cdst/rdst. The load-data is zero-extended for the u versions 

of the opcodes, or sign-extended otherwise. rdst must be a 

shared or chain register. 

unit-stride 

vector store 

vS rbase, c0/sdsrc 

vS rbase, c0/sdsrc,P 

vSai rbase, rinc, c0/sdsrc 

vSai rbase, rinc, c0/sdsrc,P 

Each active VP in the VPV stores the element in c0/sdsrc to 

the address: 

rbase + width · VPindex 

(where width is the number of bytes determined by the opcode, 

and VPindex is the VP’s index number). For the predicated 

versions, the store only occurs if the store-data predicate 

register in cluster 0 is set to one with the (c0/sdp) argument 

or zero with the (!c0/sdp) argument. sdsrc must be a private 

store-data register. For the ai versions of the opcode, rbase is 

automatically incremented by rinc. 

segment-strided 

vector store 

vSsegst n, rbase, rstr, c0/sdsrc 

vSsegst n, rbase, rstr, c0/sdsrc,P 

vSseg n, rbase, c0/sdsrc 

vSseg n, rbase, c0/sdsrc,P 

vSst rbase, rstr, c0/sdsrc 

vSst rbase, rstr, c0/sdsrc,P 

Similar to unit-stride vector store, except each VP stores the n 

elements in c0/(sdsrc+0), c0/(sdsrc+1), . . ., c0/(sdsrc+ 

(n − 1)) to the addresses: 

rbase + rstr · VPindex + width · 0 

rbase + rstr · VPindex + width · 1 

. . . 
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rbase + rstr · VPindex + width · (n − 1) 

For the simplified seg versions of the opcode, the stride (rstr) 

is equal to the segment width (width · n). For the simplified 

st versions of the opcode, the segment size (n) is 1. 

   

 

L = {lb, lbu, lh, lhu, lw} 

S = {sb, sh, sw} 

P = {(c0/sdp), (!c0/sdp)                Vector Load and Store commands 

                                     

Below table :   VP instruction opcodes    

Arithmetic and Logical Instructions (all clusters) 

                           Memory (cluster 0)  

Mnemonic Operation 

addu addition 

 La* load address 

subu subtraction 

 and logical and 

or logical or 

xor logical exclusive or 

nor inverse logical or 

sll shift left logical 

srl shift right logical 

sra shift right arithmetic 

seq set if equal 

sne set if not equal 

slt set if less than 

sltu set if less than 

unsigned 

psel select based on 

predicate reg. 

Copy* copy 

li? load immediate 

Mnemonic Operation 

Lb load byte (sign-extend) 

Lbu load byte unsigned 

(zero-extend) 

Lh load halfword (sign-

extend) 

Lhu load halfword 

unsigned (zero-extend) 

Lw load word 

Sb store byte 

Sh store halfword 

Sw store word 

lw.atomic.add* atomic load-add-store 

word 

lw.atomic.and* atomic load-and-store 

word 

lw.atomic.or* atomic load-or-store 

word 
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 Fetch (cluster 1)                                    Multiplication / Division (Cluster 3)  

                                                                                                              

 

                                                                          

 

  

Fetch* fetch AIB at address 

psel.fetch select address based on 

predicate reg. 

and fetch AIB 

addu.fetch compute address with 

addition and fetch 

AIB 

mulh 16-bit multiply (signed×signed) 

mulhu 16-bit multiply 

(unsigned×unsigned) 

mulhus 16-bit multiply (unsigned×signed) 

multu.lo 32-bit multiply 

(unsigned×unsigned) 

producing low-order bits 

multu.hi 32-bit multiply 

(unsigned×unsigned) 

producing high-order bits 

mult.lo 32-bit multiply (signed×signed) 

producing 

low-order bits 

mult.hi 32-bit multiply (signed×signed) 

producing 

high-order bits 

divu.q 32-bit divide (unsigned/unsigned) 

producing 

quotient 

div.q 32-bit divide (signed/signed) 

producing 

quotient 

divu.r 32-bit divide (unsigned÷unsigned) 

producing 

remainder 

div.r 32-bit divide (signed÷signed) 

producing 

remainder 
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Chapter 7 

 Conclusion and Future Work   

 

Conclusion 

       The vector-thread architectural paradigm allows software to more efficiently encode the 

parallelism and locality present in many applications, while the structure provided in the 

hardware / software interface enables high-performance implementations that are efficient in 

area and power. The VT architecture support for all types of parallelism and this flexibility 

enables new ways of parallelizing codes. For example, by allowing vector-memory operations to      

feed directly into threaded code. VT exploits parallelism and locality more effectively than 

traditional superscalar, VLIW, or multithreaded architectures. The Scale VT architecture 

demonstrates that the VT is well-suited to all-purpose embedded computing, letting a single 

compact design provide competitive performance across a range of applications. 

       VT abstraction introduces a small set of primitives to allow software to succinctly encode 

parallelism and locality and seamlessly inter-mingle DLP, TLP, and ILP. For example, Virtual 

processors, AIBs, vector-fetch and vector memory commands, thread-fetches, cross VP data 

transfer. 

 

Future Work 

     This thesis provides good start for future work on VT-based data-parallel accelerators. It 

gives specific directions for future work with respect to the instruction set, microarchitecture  

and programming methodology.  

      Improving Execution of Irregular DLP – This architecture indicates that the vector fragment 

mechanism alone is not sufficient for efficient execution of highly irregular DLP. We have 

introduced vector fragment merging, interleaving, and compression as techniques that can 

potentially improve the performance and energy efficiency on such codes. The next step would 

be to implement these techniques and measure their impact for our benchmarks using our 

evaluation methodology. 

      This thesis has focused on a single data-parallel core, but there are many interesting design 

issues with respect to which how these cores can be integrated together.     
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