Cache Coherence Implementation on Ring Bus

A Project Report

submitted by

KARILLI SATISH KUMAR

in partial fulfilment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

Under the guidance of

Prof V. Kamakoti

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS

JUNE 2016

THESIS CERTIFICATE

This is to certify that the thesis titled Cache Coherence Implementation on Ring Bus,
submitted by Karilli Satish Kumar, to the Indian Institute of Technology, Madras, for
the award of the degree of Master Of Technology, is a bona fide record of the research
work done by him under our supervision. The contents of this thesis, in full or in parts,
have not been submitted to any other Institute or University for the award of any degree

or diploma.

Prof
Dr V. Kamakoti
Professor

Dept. of Computer Science
[I'T-Madras, 600 036

Place: Chennai

Date: 18th June 2016

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my guide, Dr. V.Kamakoti for his valu-
able guidance, encouragement and advice. His immense motivation helped me in mak-

ing firm commitment towards my project work.

My special thanks to Mr. G.S. Madhusudan for his encouragement and motivation
through out the project. His valuable suggestions and constructive feedback were very

helpful in moving ahead with my project work.

I would like to thank my co-guide Dr.Nitin Chandrachoodan and faculty advisor
Dr.Shreepad Karmalkar. who have patiently listened, evaluated, and guided us through

out the program.

My special thanks to my fellow labmates Rahul,Neel Gala,sirisha,mohmodh, Ar-

jun,abinay, venkata krishna,phani,Arnab for their help and support.

ABSTRACT

KEYWORDS: Cache coherance,Ring interconnect, MOESI protocol

It is desirable to pack in as many cores per chip as possible resulting in increased
performance per unit area.An interconnect is required for inter-core and off-chip trans-
port of user packets and also the coherency data. The conventional bus interconnect
although ordered and excellent for cache coherence traffic using snoopy protocol it
doesn’t support higher bandwidths as core count increases.Thus here we are imple-
menting a ring interconnect with TLM interfaces by parameterise the no of cores in the

ring interconnect.

We have used L1 cache as a private cache to all the cores in a ring interconnect
to reduce the average memory latency and memory traffic but private caches lead to
the possibility of cache incoherence problem. Over the years distinct kind of proto-
cols like MSI,MESI,MOESI etc. were proposed to solve this problem.Here we have
implemented the MOESI cache coherence protocol in all private L1 caches in a ring
interconnect.Thus we maintained the cache coherence among all the cores in a ring in-
terconnect.The code for the entire project is written in a HDL namely Bluespec System

Verilog(BSV).

il

Contents

ACKNOWLEDGEMENTS i
ABSTRACT ii
LIST OF TABLES vi
LIST OF FIGURES viii
ABBREVIATIONS ix
1 INTRODUCTION 1

1.1 Overall Microcontroller Architecture 1

2 INTERCONNECT TOPOLOGIES 2
2.1 RinglInterconnect. 2
2.2 Mesh Interconnecto 3
2.3 Ring-Mesh Hybrid Interconnect 5
2.4 Requirements to be met for Cache Coherence 6
3 CACHE COHERENCE 8
3.1 Modified: 8
32 Owned: e 8
33 Exclusive: 8
34 Shared: 9
3.5 Invalid: oL 10
3.6 Cachecontroller. 10
4 BLUESPEC SYSTEM VERILOG 11
4.1 KeyPFeaturesof BSV o oL 11
4.2 Study of the Bluespec System Verilog build process 11
4.3 Bluespec SystemVerilog Constructs 12

il

4.4
4.5

43.1 Rules
432 Modules
433 Imterfaces
434 Methods oL
435 Functions e
Application Areas of Bluespec System Verilog

Building a design in Bluespec System Verilog

S TLM INTERFACE

5.1

BSV TLMinterfaces
5.1.1 Datastructures
5.1.2 TLMRequest
5.1.3 TLMResponseo
5.1.4 Imterfaces

5.1.5 TLMadvantages

6 DESIGN AND IMPLEMENTATION

6.1

6.2

6.3

6.4

Interfaces
6.1.1 TLMRecvIFC.
6.1.2 TLMSendIFC
Fieldsin TLM packet
6.2.1 Address
622 Data
623 Command.
624 Custom
6.25 Lock
Working of Fifos o oo
6.3.1 NODE_IN_REQFIFO
6.3.2 NODE_OUT_REQFIFO.
6.33 CAHE REQFIFO
6.3.4 REQ2_CAHCEFIFO
Operation Of CoherentRing

6.4.1 Ruleinternal

v

12
12
13
13
13
13
13

14
14
14
15
15
16
16

17
19
20
21
21
22
22
22
22
22
23
23
24
24
24
24
25

6.4.2 Rule internal from_cache

643 Ruleexternal
6.5 Priority Logic
6.5.1 Priority and Routing

SIMULATIONS RESULTS AND SYNTHESIS REPORT

7.1 Hardware DesignFlow
7.2 Simulation L
721 TestCase:l
722 TestCase:2 e
7.3 Synthesis
7.3.1 Device utilization summary
7.3.2 Timing Report:

CONCLUSION AND FUTURE WORK

8.1 Conclusion

8.2 Future work

26
26
26
28

30
30
31
32
35
41
42
43

44
44
44

List of Tables

3.1 MOESI Table

vi

List of Figures

2.1 ringinterconnecto e
2.2 ringinterconnectrouting
2.3 meshinterconnecto
24 meshstructure
2.5 meshrouting
2.6 Ring-Mesh Hybrid Interconnect

2.7 graphical visualization of Ring_Mesh_hybrid Interconnect

3.1 Modify,Owned and Exclusive
3.2 Shared AndInvalid

4.1 BSVFlow
5.1 TLMlInterfaces e

6.1 ringinterconnect daiagram
6.2 ringwith8nodes
6.3 bottomupapproach Lo
6.4 topdownapproach
6.5 code snippetofinterfaces L.
6.6 single node with interfaces and fifos
6.7 FIFO VIEW OF SINGLENODE
6.8 WORKINGOFRULES
6.9 priority ordering logictable
6.10 priorityofnodes
6.11 ROUTING OF PACKETS WITH PRIORITY ORDER
6.12 rulefordeq

7.1 Flowofsynthesis
7.2 BSV SIMULATION RESULTS of 1ST and 2ND CLOCK CYCLES
7.3 BSV SIMULATION RESULTS of 3RD CLOCK CYCLE

vii

AN Ln R W

O

12

14

17
18
19
19
20
20
23
25
27
27
28
29

31
33
34

7.4
7.5
7.6
1.7
7.8

7.9

BSV SIMULATION RESULTS OF 1ST AND 2ND CLOCK CYCLES
BSV SIMULATION RESULTS OF 3RD AND 4TH CLOCK CYCLES
BSV SIMULATION RESULTS OF 5TH AND 6TH CLOCK CYCLES
BSV SIMULATION RESULTS OF 7TH AND 8TH CLOCK CYCLES

BSV SIMULATION RESULTS OF 9TH AND 10TH CLOCK CY-
CLES . . . e

Device utilization summary

7.10 timing report e e e

viii

36
37
38
39

40
42
43

™
RISE
BSV

HDL
FIFO
RISC
RTL

CMP
TLM

ABBREVIATIONS

Indian Institute of Technology, Madras
Reconfigurable and Intelligent Systems Engineering
Bluespec System Verilog

Hardware Description Language

First In First Out

Reduced Instruction Set Computer

Register Transfer Language

Chip-Multiprocessors

Transcaction level modeling

X

Chapter 1

INTRODUCTION

1.1 Overall Microcontroller Architecture

The processor design team of Reconfigurable and Intelligent Systems Engineering[RISE]
lab in the computer science department of IIT-Madras has been actively involved in
building few processors for academic purposes and other applications. The processor
strictly follows the RISC-V instruction set architecture[ISA].Entire design of the pro-
cessor is done using a Hardware Description Language[HDL] named Bluespec System
Verilog[BSV]. The I-Class processor is a 32-bit in-order variant aimed at 50-250MHz
microcontroller variants which have an optional memory protection and the design con-
sumes very low power. The integration forms the basis for synchronizing the core to dif-
ferent peripherals in the microcontroller, which have various operating frequencies.My
project work involves maintainace of cache coherence among all private L1 caches in
a ring interconnect network. Here we have implemented a ring interconnect with TLM
interfaces by parameterising the no of cores in a ring interconnect. And implemented
MOESI protocol in all private L1 caches in a ring interconnect for cache coherence.Thus

we have maintained cache coherence among all the cores in a ring interconnect.

Chapter 2

INTERCONNECT TOPOLOGIES

The components of an interconnect have been briefly discussed here. Topology is prob-
ably a design choice that has deep impact on the interconnect performance. A topology
primarily decides the minimum number of hops that a packet makes from source to des-
tination. Also since the number of hops require storing and forwarding of packets, the
power consumption depends directly on the number of hops. A metric for determining
the relative merit of the topologies is firstly the number of physical links between the

two nodes and secondly the complexity to physically route the wires of the interconnect.
Three basic interconnect topologies are

e Ring Interconnect
e Mesh Interconnect

e Ring-Mesh hybrid interconnect or Torus

2.1 Ring Interconnect

In Ring interconnect all the cores or nodes are connected in a ring fashion.where packets
can move in two directions to reach destination node.we have chosen the ring intercon-

nect.

Figure 2.1: ring interconnect

The rings main function is to facilitate the transfer of packets as the case may be
between the nodes or between caches and nodes.The top level of the ring is presented

in figure 2.1. Note that by convention we use East and West to indicate the directions.

Lle, Node —> R1|1|., Node — Ring Nudg‘"."""""’ Ring N()dtJ

N-1

Core Core Core Core
0 1 & N-1

G [EAST WEST —t

Figure 2.2: ring interconnect routing

To implement the above two functionalities discussed, multiple cores as they are
referred to in the code are instantiated.Rules are written to fetch packets from east facing

ports of the ring and push them into west facing ports of ring as shown in the Figure

2.2.

In the ring module the packets which are coming from the east or from the cache
block are first buffered at that node and in the next clock cycle depending on the logic
of ring module one of the packet either from cache or node will traverse through the
ring bus . That wraps the discussion on the modules of the ring interconnect. Next we

see the mesh interconnect.

2.2 Mesh Interconnect

In Mesh interconnect all the cores or nodes are connected in a mesh fashion.where
packets can move in all four directions to reach its destination node.The nodes which
are at the corners can move only two directions and the nodes which are at the edges of

mesh can move only in three directions.the Figure 2.3 shows the mesh network.

A

Figure 2.3: mesh interconnect

The mesh is observed to be made with the nodes which contain the sub-modules
as in the ring interconnect. However, the difference here is the routing logic since
the organisation of the nodes is different than in the ring. A major difference here is
the prominence of the standard routing algorithm i.e. Dimension Order Routing using
the XY routing algorithm. Each node in the interconnect is assigned two co-ordinate
values as is required for implementation of a 2D mesh. Figure 2.4 shows the numbering

of nodes in the mesh interconnect.

Core y Core Core
(0,2) (1,2) (2,2)

Core Core Core

0,1) T (1) T (2B

Core Core . Core
©o -~ - @GO - " (20

Figure 2.4: mesh structure

This mesh interconnect must facilitate transfer of packets between north and south
directions also in addition to the east and west ports. The nodes at periphery of the inter-
connect should be treated as special cases .since they don’t have in-out ports in all four

directions. Figure 2.5 shows different paths of routing packets in mesh interconnect.

—p (2.3)

T *
1 25T
| 27
(0.0) —)

Figure 2.5: mesh routing

As in the case of the ring the parameters number of nodes and the link width are
parameterized and therefore adjustable. The number of nodes are specified indirectly
by giving the number of nodes at one side of the mesh and the square of this number

gives the actual number of nodes in the interconnect.

2.3 Ring-Mesh Hybrid Interconnect

The interconnects seen above were the two most basic and widely used interconnects in
the commercial implementations. However, the ring interconnect latency grows linearly
with the number of tiles and the number of wires becomes extremely large in case of
mesh with large number of nodes due to multiple physical links per node. Hence, we
look for a different topology that combines the benefits of both the designs.this is new
topology that is a combination of the two. A ring-mesh hybrid connects multiple nodes
in a ring and multiple such rings are instantiated. Each of the rings is further connected

in a mesh superstructure.Figure 2.6 shows the Ring-Mesh Hybrid Interconnect . The

B

A

Figure 2.6: Ring-Mesh Hybrid Interconnect

intuition behind such a design is that applications can be assigned multiple cores of a
ring for computations. Since the number of tiles on a ring are limited and performance
of a ring is proved to be better than other topologies for limited number of cores, the

applications’ per packet latency is reduced.

Ring Ring
©,1) (1,1)

% g
N
v
-
. :
u m
Ring

Ring
0, &
©@1) ©,1)

Tile . Bridge . Router

Figure 2.7: graphical visualization of Ring_Mesh_hybrid Interconnect

A graphical visualization of such a topology is presented at figure 2.7. The figure
shows a network of 32 tiles wherein there are 8 tiles per ring and the collection of 4 such
rings are connected in a mesh. Addressing of the tiles is hierarchical. Each 5 ring in the
network gets associated with a two coordinate address and within the ring each tile has
a unique tile ID which in conjunction with the ring address is used by the routing logic
to route the packets. The router is identified with the same two coordinate address as

that of the ring.

2.4 Requirements to be met for Cache Coherence

The two most widely used coherence protocols are the Snoopy and Directory based
protocols. The traffic in both cases may be classified as point-to-point, point-to- multi
point or broadcast traffic. In case of a Directory based implementation, the majority
of the traffic is only point-to-point. Hence, the traffic on the interconnect is not much.
However, there may be a requirement to send out point-to-multi point messages like in

case of invalidation of a cache line shared by many.

Snoopy protocol on the other hand relies heavily on broadcast traffic. The request

messages are all of broadcast type however, the response messages are unicast. So
broadly the messages in the cache coherent systems may be classified as requests and
responses. It is also interesting to note that the requests tend to be short and responses
containing the cache lines is generally longer. Thus it makes sense to send them over
two physically different links . An important take away from current discussion is that
the interconnect should be able to provide support for the coherence protocol selected
and further should be designed keeping in view the nature of traffic that is intended to
be sent over it and thus arrive at an acceptable level of trade-off between performance

and area.

Chapter 3

CACHE COHERENCE

In a shared system, caches maintains same data and number of processors perform
different kind of operations on cache. So the problem of data inconsistency can happen.

Inconsistency can be avoided by cache coherence protocol.

We have a number of cache coherence protocols, namely MSI, MESI, MOESI,

MESIF etc. In this work we are implementing MOESI protocol.

3.1 Modified:

If a cache Block is in Modified state, then concerned processor can change data of cache
block and can read data of cache block. Figure 3.1 shows what are other cache block

states when cache block is in M,O,E states.

3.2 Owned:

As an extension of MESI protocol, We restrict write-back of data from cache to main
memory. New state “O” is invented to avoid unnecessary write-back of data to main
memory during transition from “M” to “S”. Cache block in owned state is not consistent

with main memory.

3.3 Exclusive:

Exclusive state is added to MSI protocol for solving the issue of unnecessary broadcast

of invalidation message.

Cache A Cache B

S - - Exclusive in cache A
Modified in cache A

Cache A Cache B Cache A Cache B
G e T e ||
Memory
- Shared in cache A
Memory Memory

Figure 3.1: Modify,Owned and Exclusive

Invalid in Cache A
Cache A Cache B Some Cache A CacheB
cache

ay

| have M

Memory Memory

Figure 3.2: Shared And Invalid

3.4 Shared:

Cache block is one of several copies in the system. This cache block does not have
right to modify the copy. Other remaining processors in the system may have copies of
the cache block in the Shared state. In this state processor can read data of cache block
it can not perform write operation. If any of other processor is not performing write
operation, then block is in shared state. Figure 3.2 shows what are other cache block

states when cache block is in S,I states.

Modified | Own Exclusive | Shared Invalid

Modified False False False False True

Own False False False True True
Exclusive False False False False True
Shared False True False True True
Invalid True True True True True

Table 3.1: MOESI Table

3.5 Invalid:

Invalid means either the block is absent or read/write operation is restricted. If a cache
block is in invalid state, then processor can not do either read or write operation. Table

3.1 gives details of states of blocks validity.

3.6 Cache controller

It performs two more extra operations

e Cache controller has extra three bits along with Tag, data, V/I bits. Three bits
represents state of the block (any of M,0,E,S,I). It updates block status for every
transaction and if it needs to change of block status of cache forwards intention
status of block address and status to snooping mechanism.

e [t reads data from other cache requests and verifies whether incoming address
is valid or not; it presents it updates block status otherwise leaves it. Figure
3.3 shows the entire structure of communication between processor and cache
through TileLink bus.

10

Chapter 4

BLUESPEC SYSTEM VERILOG

BSV is a HDL used in design of electronic systems such as FPGA, ASIC etc. Itis a
very high level language and results in synthesizable hardware which can run on FPGA
emulation platforms. BSV substantially extends the design subset of System Verilog
and also increases the programmer’s coding efficiency. It has more polymorphism than

System Verilog.

4.1 Key Features of BSV

e High level atomic rules in place of Verilog’s always block.
e High level interfaces instead of Verilog’s port list.

e Powerful Parametrization and Polymorphism.

e Powerful static checking.

e Fully synthesizable at all levels of abstraction.

4.2 Study of the Bluespec System Verilog build process

The following are the steps involved in building a BSV design:

e A developer writes a Bluespec System Verilog program. It may be optionally
have Verilog, System Verilog, VHDL and C components.

e The Bluespec System Verilog program is compiled in to Verilog or Bluesim. Then
it has two different stages:

1. pre elaboration - It do parsing and also do type checking.

2. post elaboration -It does code generation.

e The compilation output is either linked into a simulation environment or pro-
cessed by a synthesis tool. Once the Verilog or Bluesim implementation is gen-
erated, the workstation provides the following tools to help analyse your design:

BSV

(Language)

BSC Bluesim/SysC

(Bluespec 1 (Bluespec
Compiler) Simulator)

Production
RTL

Verilog RTL

Seému

(Bluespec
Emulator)

Figure 4.1: BSV Flow

1. Interface with an external waveform viewer with additional Bluespec pro-
vided annotations, including structure and type definitions. Figure 4.1 shows
Structure of BSV Compiler and BSV synthesis.

2. Schedule Analysis viewer provides multiple perspectives of a modules sched-
ule.

3. Scheduling graphs displaying schedules, conflicts, and dependencies among
rules and methods.

4.3 Bluespec SystemVerilog Constructs

4.3.1 Rules

Rules are used to explain how the data shifts from one state to another state, instead of
the Verilog methods of uses always blocks. Every Rule has two components:

e Rule conditions : In rule condition we declare condition like in while in c. if
condition satisfied then goes to rule body.

e Rule body : It is a set of actions these explains state transitions.

4.3.2 Modules

A module has of three kind of things: state, rules that operate on that state, and an
interface that has inputs and outputs of module. A module definition specifies a scheme
that can be instantiated multiple times.

12

4.3.3 Interfaces

Interfaces give a means to group of wires into bundles with mentioned uses, explained
by methods. An interface is a tend to remind one of something of a struct, where each
member is a method. Interfaces may have other interfaces also.

4.3.4 Methods

Signals and buses are driven in and out of modules using methods. These methods are
grouped together into interfaces. There are three kinds of methods:

e Value Methods: It takes zero or more parameters and returns a value.

e Action Methods: It takes zero or more parameters and It performs an action inside
of module.

e Action Value Methods: It takes Zero or more parameters, and performs an action,
and returns the result.

4.3.5 Functions

Functions are simply parametrized combinational circuits. Function application sim-
ply connects a parametrized combinational circuit to actual inputs.

4.4 Application Areas of Bluespec System Verilog

e Modeling for Software development
e Modeling for Architecture Exploration
e Verification

e [P creation

4.5 Building a design in Bluespec System Verilog

e The designer writes the BSV code and it may contain Verilog, Verilog Hardware
Description Language and C components.

e The Bluespec System Verilog code is compiled into either Verilog or a Bluesim.
This step has 2 stages:

1. Pre elaboration does parsing and it also does type checking.
2. Post elaboration does code generation.

The compiled output is either linked to a simulation environment or processed by
synthesis tool.

13

Chapter 5

TLM INTERFACE

Transaction Level modeling (TLM) is used to implement a digital systems where com-
munications happens between one to another module. Communication of modules have
FIFOs are as channels or buses.

e Every TLM has transaction requests and responses to communicate with other
modules.

e TLM interface has

1. SEND INTERFACE
2. RECEIVE INTERFACE

e Every send and receive interfaces have request and responses.

5.1 BSV TLM interfaces

5.1.1 Data structures

IN BSV TLM package has two data structures.
e TLMRequest

e TLMResponses

Figure 5.1 shows Interfaces and data structures of TLM.

Figure 5.1: TLM Interfaces

5.1.2 TLM Request

Each TLMRequest has two control signals and data. TLMRequest has tagged with
Request descriptor or Request data.

e Request descriptor has control signal information, these control signals are de-
clared in TLM packages by default and those are

command
mode

addr

data

burst length
byte enable
burst mode
burst size
prty

lock

. thread id

. transaction id

A T Al o i

p— e e
w N = O

. export id
14. custom

e Request data has data signals these are
erase

data
transaction-id

b=

custom

5.1.3 TLM Response

TLMResponse has valid values of members those are

1. command
2. data

3. status
4. prty

5. thread id
6. transaction id
7. export id

8

. custom

15

5.1.4 Interfaces

Interfaces of TLM define how TLM blocks are interconnected and how they communi-
cated. The TLM package includes two basic interfaces:

e TLMSendIFC interface
o TLMRecvIFC interface

These two interfaces use Get and Put sub interfaces as requests and responses.
e TLMRecvIFC interface receives (Put) requests and generates (Get) responses.

e TLMSendIFC interface generates (Get) requests and receives (Put) responses.

5.1.5 TLM advantages

TLM interfaces has following advantages:

TLM model is accuracy.
By using TLM interfaces we can connect easily to other modules.
Most of the design errors can be detected during the TLM verification phase.

TLM code is more compact and readable than its RTL (VHDL or Verilog or
Bluespec) equivalent.

el S

16

Chapter 6

DESIGN AND IMPLEMENTATION

Here we will discuss how we have implemented the coherent ring interconnect to
achieve cache coherence. In this coherent Ring interconnect design all the cores or
nodes are connected in a ring fashion.where packets can move in a ring in clock wise

direction to reach any other node in a ring interconnect.

The routing of Basic ring interconnect will be shown in the Figure 6.1

Ring Node —> Ring Node — Ring N[:-du*""""""* Ring Node
P,

0 1 2 N-1

Core Core Core Core

0 1 2 N-1
p— [AST WEST e—f

Figure 6.1: ring interconnect daiagram

We identify that the interconnect itself is the topmost module of our design. The
main components of the ring module are the nodes and the caches that connect them.
We observe that the rings main function is to facilitate the transfer of packets . It may
be between the nodes or between the nodes and caches. The top level of the ring is
presented shown in the Figure 6.2. Note that by convention we use East and West to

indicate the directions.

CACHED CACHE1 CACHE 2 CACHE 3

CACHE 7 CACHE 6 CACHES5 CACHE 4

Figure 6.2: ring with 8 nodes

If we go through this coherent ring interconnect design, any Implementation of the
design is carried out in either top down approach or a bottom up approach. In top down
approach, the highest module in the hierarchy is implemented first and functionality of
the lower level modules is assumed whereas in the bottom up approach, the lower level
modules are first created and the internal working of each lower level is well known
prior to dealing with the higher level modules. Figures 6.3 and Figure 6.4 gives an idea
of these two approaches. The selection of an approach is left on the coder and is made
as per the level of comfort one has with the concept. We have implemented the design

in a top down approach.

18

block
Macno macro macro macro
/mll 1\ | oll2 | cell3 cell4
| et | [t | [t | [t | et | [t | [t | [
cll | | ool || ol ||l | |l || col| | cel]] od

sub- ub- sub- | sub-

block 1 block 2 | block3 block 4
jaf | [teaf | | laf | [leaf | [et | [et | [iear | [heat
cell | | el cell | | cll | | cell I el | | ol | l ctTi]

Figure 6.4: top down approach

We are following top down approch in our project. Since Bluespec System Verilog
allows behavioural modeling of the design, we describe the working of the ring using
rules and interfaces. Put simply, the rules are the part of the code that are fired or
executed at every clock cycle in parallel to other rules if all their implicit and explicit

conditions are met. The interfaces define the input and output signals of the module.

6.1 Interfaces

Here we have used two basic types of TLM interfaces .

e TLMRecvIFC interface
e TLMSendIFC interface

The TLM interfaces will act as input and output ports for communication with other

modules. These interfaces use basic Get and Put sub interfaces as the requests and

19

responses, The TLMSendIFC interface generates (Get) requests and receives (Put) re-
sponses. The TLMRecvIFC interface receives (Put) requests and generates (Get) re-
sponses. Interfaces used in our code are shown in the Figure 6.5
interface Ring_Ifc;
interface Vector #(No_of_nodes, TLMSendIFC #(Req_from_node,Rsp_to_node)) node_out_ifc;
|'1nterface Vector #(My_No_of_nodes, TLMRecvIFC #(Req_from_node,Rsp_to_node)) node_in_ifc;
interface Vector #(1, TLMRecvIFC #(Req_from_node,Rsp_to_node)) node_in_ifc3;

interface Vector #(No_of_nodes, TLMRecvIFC #(Req_from_node,Rsp_to_node)) cache_ifc;

interface Vector #(No_of_nodes, TLMSendIFC #(Req_from_node,Rsp_to_node)) req2_cache_ifc;

endinterface

Figure 6.5: code snippet of interfaces

we can see how these interfaces connected to the node in the Figure 6.6. It is single
node which shows all the interfaces that are connected to one particular node in a ring

interconnect.We just replicated this node to design the complete ring interconnect.

CACHE_IFC
e REQ2_CACHE_IFC
N 7
NODE_IN_IFC ™~ _ NODE_OUT_IFC
~F

HODE_Ii_FIFD UT_FIRD

RECEIVE INTERFACE
SEND INTERFACE

| AW

Figure 6.6: single node with interfaces and fifos

6.1.1 TLMRecvIFC

The TLMRecvIFC interface receives the requests and transmits the responses.

20

interface Vector #My_No_of_nodes, TLMRecvIFC #(Req_from_node,Rsp_to_node))
node_in_ifc;

interface Vector (1, TLMRecvIFC (Req_from_node,Rsp_to_node)) node_in_ifc3;

interface Vector #(No_of_nodes, TLMRecvIFC#(Req_from_node,Rsp_to_node)))

cache_ifc;

node_in_ifc is the vector of receive interfaces which receive the requests from the
previous nodes connected through the ring. cache_ifc is the receive interface which

receive the requests from the caches connected to the nodes in the ring interconnect.

6.1.2 TLMSendIFC

The TLMSendIFC interface transmits the requests and receives the responses.

interface Vector #(No_of_nodes, TLMSendIFC #(Req_from_node,Rsp_to_node))

node_out_ifc;

interface Vector #(No_of_nodes, TLMSendIFC #(Req_from_node,Rsp_to_node))

req2_cache_ifc;

node_out_ifc is the vector of send interfaces which forwards the request from one
node to other node in a ring interconnect . req2_cache_ifc is the send interface which

sends the requests from nodes to caches.

The packets that route through the ring interconnect are TLM packets which comes
from cache module. we will send that packet into our ring interconnect.It will route
through all the nodes and update all the other caches block status thus coherence main-

tained.

6.2 Fields in TLM packet

e address
e data
e command

e custom
lock

21

6.2.1 Address

This field has 32 bit address. It gives the address of the shared memory block requested

by the cache .It helps us to identify the block in any cache and update its status.

6.2.2 Data

This field contains 32 bit data. It gives the data of the cache request .It helps us to get

the data of that block in any cache

6.2.3 Command

This field tell about type of request the core was received either READ or WRITE.

6.2.4 Custom

We have used this field to send/receive cache block status .i.e we are using MOESI
protocol in our project.The no of states required to implement MOESI protocol are 5
.For that we need 3bits to represent the cache block status.So this custom field will be

Bit(3) type which will inform about the status of the block.

6.2.5 Lock

This field have Bool as its data type .It is used to know weather the cache has send the

request or not.
We used these feilds like this
req_from_node.addr =32h00000001;
req_from_node.data = 0;
req_from_node.command = READ;
req_from_node.custom =001;

req_from_node.lock =True;

22

6.3 Working of Fifos

The memory elements used in our design are FIFOs.we have used some special FIFOs
like BYPASSFIFOs to resolve the timing issues occured when feedback is connected
.Which can enq and deq at same time (i.e in the same clock cycle).where as in ordinary
FIFO we can only enq or deq one at a time.Figure 6.7 will show how the packets rout

from one fifo to another fifo in our design .

LOGIC BOX
TO
DECIDE
WHICH
REOQUEST
SHOULD
SENDTO
NODE_OUT FIFD

FIDOAE_[B_FIF) HODE_OUT_RFD

Figure 6.7: FIFO VIEW OF SINGLE NODE

Let us look into the purpose of each FIFO .

e NODE_IN_REQ FIFO

e NODE_OUT_REQ FIFO
e CACHE_REQ FIFO

e REQ2_CAHE FIFO

6.3.1 NODE_IN_REQ FIFO

node_in_fifo is vector of fifos .We have used all these fifos as bypassfifos expect the

initial fifo which is ordinary fifo.The reason for using ordinary fifo is to connect the

23

feedback from NODE?7 to NODEOQ. Here the node_in_fifos vector is used to store the
packets coming into the node.These packets will be send to req2_cache fifo which will
send the updtes to cache.These packets will also send to bypassfifos depends on the

cache requests at that time.

6.3.2 NODE_OUT_REQ FIFO

node_out_fifo is vector of bypassfifos .We have used all these fifos as bypassfifos .So
we can do enq and deq at same time (i.e in the same clock cycle).Here the node_out_req
fifos vector is used to store the packets that is received from the cache_req fifo or
node_in_req fifo depends on which rule fired first. These packets will be send to node_in_fifos
of other node. This fifos will facilitate the routing of the packets inside the ring inter-

connect.

6.3.3 CAHE_REQ FIFO

cache_req_fifo is vector of bypassfifos .we have used all these fifos as bypassfifos .In
this fifos we can do enq and deq at the same time (i.e in the same clock cycle).This
vector fifos are used to store the packets that is received from the cache.These packets

will be send to node_out_req fifos depends on the cache request lock status.

6.3.4 REQ2_CAHCE FIFO

req2_cache fifo is vector of bypassfifos .We have used all these fifos as bypassfifos .In
this fifos we can do enq and deq at same time (i.e in the same clock cycle).Here the
req2_cache fifos vector is used to store the packets that is received from the node.These

packets will be send to cache to update the cache memory status.

6.4 Operation Of Coherent Ring

As a part of coherent ring design we have used rules as a part of our code .which

will trigger at every clock pulse.we have designed each node operation in with help

24

of 3rules.which will fire one after the other because of using bypass fifos .Which will
allow enq first and then deq.Hence rules will be fired in a particular order.Three rules
were used to rout the packets in ring interconnect

e Rule internal:

e rule internal from_cache:

e rule external:

Figure 6.8 explains the working of these three rules

NODE_IN_FIFO[i] NODE_ouT FIFo[j] NODE_IN_FIFO[i+1]

EE) wrermaLrRomNooE MNP NTERMALFROMCAGHE [I5)> EXTERNALFROM NODE

Figure 6.8: WORKING OF RULES

6.4.1 Rule internal

The pink arrow shows the transfer of packet from node_in_req fifo to node_out_req
fifo.The request is transfered from node in fifo to node out fifo with in the same node.This
rule will fire when there is no cache request .When ever this rule fires a wire named
wr_lock will become False.If all the nodes wr_locks becomes False then it indicates

that all the requests are serviced.Than cache fifos will enque new set of cache requests.

25

6.4.2 Rule internal from_cache

The red arrow shows the transfer of packet from cache_req fifo to node_out_req fifo.This
rule will fire when there is a cache request .When ever this rule fires the request packet
from cache is transferred from cache fifo to node out fifo of the same node and wr_lock

will become True.This wire wr_lock is used in priority ordering of ring interconnect.

6.4.3 Rule external

The yellow arrow shows the transfer of packet from node_out_req fifo to node_in_req
fifo of the next node.This rule will always fire what ever may be the cache request.This
rule helps in forwarding the packet inside the ring .The packet which reached the
node_in_req fifo of next node will forward through the rule internal at next node and so

on.

6.5 Priority Logic

Some times we may face situation like more than one core put requests at the same
instance of time.Then we need to give priority to one among them .After the completion
of one request we will service the request of other core.In our coherent ring we have
given a priority ordering in the clock wise order.According to the given priority ordering
node(has given 1st priority and node7 has given the last priority. We have implemented
the priority ordering with the help of the following logic which is included in the Figure
6.9.

Let all the cores sends its cache requests at same time then cache(request will be
serviced first and cache7 request will be serviced at the end.Figure 6.9 will explain the
cache requests and the operation of our coherent ring.Here True means cache sent the
request .False means cache has not sent request.Dont care means what ever may be the

cache request either its True or Fasle.

26

CACHEO | CACHE1 | CACHE2 | CACHE3 CACHE4 | CACHES CACHE6 CACHE7 OPERATION
Don’t Don’t Don’t Don’t Don’t Don’t

Don’t care Request from cache0 is serviceOd and new cache

TRUE care care care care care care requests are not enqued into cache_req FIFO

FALSE TRUE Don’t Don’tcare Don’t Don’t Don’t Don’t Request from cachel is serviced and new cache
care care care care care requests are not enqued into cache_req FIFO

FALSE FALSE TRUE Don’tcare Don’t Don’t Don’t Don’t Request from cache? is serviced and new cache
care care care care requests are not enqued into cache_req FIFO

FALSE FALSE FALSE TRUE Don’t Don’t Don’t Don’t Request from cache3 is serviced and new cache
care care care care requests are not enqued into cache_req FIFO

FALSE FALSE FALSE FALSE TRUE Don’t Don’t Don’t Request from cache4 is serviced and new cache
care care care requests are not enqued into cache_req FIFO

FALSE FALSE FALSE FALSE FALSE TRUE Don’t Don’t Request from cache5 is serviced and new cache
care care requests are not enqued into cache_req FIFO

FALSE FALSE FALSE FALSE FALSE FALSE TRUE Don’t Request from cacheé is serviced and new cache
care requests are not enqued into cache_req FIFO

FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE Request from cache7 is serviced and new cache

requests are not enqued into cache_req FIFO

Figure 6.9: priority ordering logic table

So if we receive a request from cacheO independent of the other caches requests
always cacheO request will be served with highest priority .Similarly cachel has more
priority independent of other caches requests when cache0 has not sent request and so

on.

1**PRIORITY 2™ PRIORITY| 3™ PRIORITY4'" PRIORITY
Cache 0 Cache 1 Cache 2 Cache 3

8" PRIORITY{7'" PRIORITYf6"" PRIORITYJ>" PRIORITY

Cache 4

Cache 7 Cache b Cache 5

Figure 6.10: priority of nodes

Figure 6.10 shows the priority ordering of different cores in a ring interconnect.

27

6.5.1 Priority and Routing

Now we look into the routing of the packets through the coherent network when more
than one core send requests at same time.We already know from the priority order-
ing cache0 request will be served first if it sends a request.all the other nodes are acti-
vated their "rule internal" and deactivated the rule "internal_from_cache" .so the request
packet received by the cache(will be routed successfully through the coherent ring net-
work and updates all the caches connect to the ring.We can see the routing of packets

in the Figure 6.11

1**PRIORITY 2" PRIORITY| 3™ PRIORITY{4'" PRIORITY

Cache 0

5% PRIORITY)|
Cache 4

Figure 6.11: ROUTING OF PACKETS WITH PRIORITY ORDER

Figure 6.11 shows that when it services one request all the other nodes are discon-
nected from their respective caches through receive interfaces. But always connected
through send interfaces. Through these send interfaces block status of caches will up-

date.

If all the cache requests are serviced. wr_lock of all the nodes will become Fasle
then rule "rule_for_deq” will be fired .All cache_req fifos will be dequed.And new
cache requests will enque into the cache fifos.Figure 6.12 shows the code snippet for

this rule.

28

rule rule_for_deg|(wr_locke == False

&& wr_lockl == False

False&& wr_locké == False&& wr_lock7 == False);
cache_req[0].deq;
cache_req[1].deq;
cache _req[2].deq;
cache_req[3].deq;
cache_req[4].deq;
cache_req[5].deq;
cache_req[6].deq;
cache_req[7].deq;

tocken®
tocken1
tocken2
tocken3
tocken4d
tockens
tockens6
tocken7
endrule

<=True;
<=True;
<= True;
<=True;
<=True;
<=True;
<= True;
<=True;

Figure 6.12: rule for deq

&& wr_lock2

Because of the rule shown in the Figure 6.12 ,we can dynamically enque the new

cache requests into cache fifos when ever the ring becomes idle .That wraps the discus-

sion on the Design and Implementation .

29

Chapter 7

SIMULATIONS RESULTS AND SYNTHESIS
REPORT

7.1 Hardware Design Flow

Coding the design in a high level language is job only half complete. The final real-
ization of the hardware is the ultimate goal of any project. The hardware or the VLSI
design flow as depicted in Figure 7.1 gives the major steps taking the design towards

physical realization. A short detour explaining this flow is in order at this stage.

The design of any product starts with an idea. The idea is born out of a client re-
quirement. This idea is put down as a higher level behavioural model of the final product
using the high level languages like BSV. The behavioural model is then compiled into
a RTL using a suitable compiler. RTL are generally the description of the circuit at the
module level where input output interfaces, clock and other signals are visible. Any

design can be described in RTL using the Huffman’s model.

Once the RTL is arrived at, the next step in the design flow is the logic synthesis.
Using commercial EDA tools, the designer converts the RTL into a netlist which is
nothing but a list of gates and wires whose input output are specified. The EDA tools
gives a lot of options like types of gates to be used, constraints for the design with
respect to the power, area and timing, thus a highly optimized netlist is achieved after

logic synthesis.

On getting the netlist, more EDA tools are used to do place and route of gates and
wires or floor planning as it is popularly called. The result of place and route is the
mask that could be handed over to the foundry for carrying out the fabrication of the
chip. Two most important part of the design flow are the testing and verification. Testing
is done to ensure final chip does not suffer from manufacturing defects and verification

is done at each stage of the flow to ensure the design meets the requirements as were

N\

Partitioning and Clustering

|

Floor Planning

» Placement

I

Clock Tree Synthesis

Signal Routing

Timing Closure

I

Figure 7.1: Flow of synthesis

originally projected. In our case however, we limit the scope to design, implementation

of the design in BSV, simulations and logic synthesis is done to verify performance.

Since the design process has been dealt with in earlier chapters adequately. We
already looked at implementation in the BSV. As previously mentioned we have adopted
the top down approach for coding the design. Hence, higher level module of ring was
first implemented using behavioural modeling and then the behaviour is realized using
the lower modules that implements the functionality and are instantiated in the higher

modules.

7.2 Simulation

On completion of the BSV coding, the project is compiled with BSV compiler which
gives options to compile for BSV simulator or to generate verilog files for further pro-
cessing. In our case we need both. We simulate the design using the Bluesim simulator
and observe the number of clock cycles which was shown to be a good indicator of the
latency in the network. The results of the simulation are observed on the BSV GUI and

recorded for analysis.The Simulation Results for some test cases are shown below

31

In our project we have represented MOESI protocol states as 3 bit binary numbers.

e MODIFIED :001
e OWNED :010
EXCLUSIVE:011
SHARED :100
INVALID :101

7.2.1 Test Case:1

Let core0 and corel have a particular shared memory block in both of their private
L1 caches.Let Core0 modified the data in that memory block .At the same instance of
time corel want to read the data from that memory block.According to cache coher-
ence corel should receive the latest updated value of that particular memory block.For
this to be happen first the block status of cache0O should changed to “MODIFY” and
propagate the block status “INVALID” to all the other caches connected in the coher-
ent ring inteconnect. When the packets were routing in the ring innerconnect corel will
update its private cache block status to “INVALID”.So that the read request received by
cachel will not service the wrong data(old data) to corel.In the next clock cycle corel
READ request will be serviced with updated data by making its cache block status
“SHARED”and sending the block status update “OWNED” through the ring bus.So the
cache0 will update its block status to “OWNED” and cachel which is in "SHARED"
mode can get the updated data.Hence data consistency is maintained.We can see the

Blue spec simulation results for this test case in the figures 7.2 and 7.3.

32

Project Edit Build Tools Window Message

O = & | G| | @ == @ ||

Figure 7.2: BSV SIMULATION RESULTS of 1ST and 2ND CLOCK CYCLES

In the Figure 7.2 in first clock cycle core0 want to write the data into cache0 .So

cache(will change its state to “MODIFIED ” and cacheO will propagate block status

“INVALID”(101) to all the other caches. In the Figure 7.2 we can see the propagation

of INVALID(101) signal through the ring interconnect. So cachel which have the same

memory block will update its status to "INVALID".

33

Simulation shared library created: out.so
Simulation executable created: ./out
+ . /out
———-EREEEEEEEREERRERRcount value: 1ERRRERRRRRERRRRRRRRRR——m——mmmmmm
ring module ====== interal0_from_cache is working Oth cache: block status is 101
ring module ====== externalltol is working Uth node_out: block status 1s LUl 20
ring module == interall is working 1st node_in: block status is 101 20
ring module ====== externallto? is working 1st node_out: block status is 101 20
ring module = == interal? is working 2nd node_in: command is 101 20
ring module ====== externalZ?tol is working 2nd node_out: block status is 101 20
ring module ====== interall is working 3rd node_in: block status is 101 20
ring module == external3tod is working 3rd node_out: block status is 101 20
ring module ====== interald is working 4th node_in: block status is 101 20
ring module == externaldto5 is working 4th node_out: block status is 101 20
ring module ====== interal5 is working 5th node_in: block status is 101 20
ring module ====== externalbtoft is working 5th node_out: block status is 101 20
ring module = == interalé is working 6th node_in block status is 101 20
ring module === external6toT is working 6th node_out: block status is 101 20
ring module == interal7 is working 7th node_in block status is 101 20
ring module ====== external7tol is working 7th node_out: block status is 101 20
———-EREEEEEEEREERRERRcount value: I ERRRRRERRREERRRRRRRRR——m——mmmmmm
ring module ====== interal0 is working Oth node_in: block status is 101 30
ring module ====== externalltol is working Oth node_out: block status is 101 30
ring module = interall_from cache is working 1st cache: block status is 010
ring module ====== externalltoZ 1is working lst node_out: block status is 010 30
ring module == interal? is working 2nd node_in: command is 010 30
ring module ====== externalZ?tol is working 2nd node_out: block status is 010 30
ring module ====== interall is working 3rd node_in: block status is 010 i}
ring module === external3tod is working 3rd node_out: block status is 010 30
ring module = == interald is working 4th node_in: block status is 010 30
ring module === externaldto5 is working 4th node_out: block status is 010 30
ring module = == interal5 is working 5th node_in: block status is 010 30
ring module === external5to6 is working 5th node_out: block status is 010 30
ring module ====== interalé is working 6th node_in block status is 010 30
ring module ====== externalbftoT is working 6th node_out: block status is 010 30
ring module = == interal7 is working 7th node_in block status is 010 30
ring module ====== external7tol is working 7th node_out: block status is 010 30
i:[jj@@@@@@@@@@@@@@@@@Cﬂunt value: 3EEERRARRRRRARRRRARRRAR -~~~

Project Edit Build Tools Window Message

Oz = =l (e [ed || = B|E @0 &

ring module ====== externalTtol is working 7th node out: block status is 101 20
—-—-EEEEEEREEEEEREEEEERAcount walue: ZECEEREEEEEREEERRERREER
ring module === interall is working 0th node_in: block status is 101 30
ring module == externaldtol is working Oth node_out: block status is 101 30
ring module interall_ from cache is working lst cache: block status is 010
ring module = = externallte? is working lst node_out: block status is 010 30
ring module == interal? is working 2nd node_in: command is 010 30
ring module == external2to3 is working Znd node_out: block status is 010 30
ring module == interald is working 3rd node_in: block status is 010 30
ring module == external3tod is working 3rd node_out: block status is 010 30
ring module == interald4 is working 4th node_in: block status is 010 30
ring module == externald4to’ is working 4th node_out: block status is 010 30
ring module == interal’ is working 5th node_in: block status is 010 30
ring module == externalitof is working 5th node_out: block status is 010 30
ring module == interalf is working 6th node_in block status is 010 30
ring module == externalftoT is working 6th node_out: block status is 010 30
ring module == interal? is working 7th node_in block status is 010 30
ring module == external7tol is working 7th node_out: block status is 010 30
—-—-EEEEEERAEEERARREEERACcount value:] ey o G Gl et
ring module ====== interall is working 0th node_in: block status is 010 40
ring module == externalltel is working 0Oth node out: block status is 010 40
ring module == interall is working 1lst node_in: block status is 010 40
ring module == externallteo? is working 1lst node out: block status is 010 40
ring module == interalZ is working 2Znd node_in: command is 010 40
ring module == external?ted is working 2Znd node out: block status is 010 40
ring module == interal3 is working 3rd node_in: block status is 010 40
ring module == external3tod4 is working 3rd node _out: block status is 010 40
ring module == interald4 is working 4th node_in: block status is 010 40
ring module == external4tel is working 4th node out: block status is 010 40
ring module == interal’ is working 53th node_in: block status is 010 40
ring module == externalStof is working 5th node out: block status is 010 40
ring module == interaldé is working 6th node_in block status is 010 40
ring module == externalfto’? is working 6th node out: block status is 010 40
ring module == interal? is working 7th node_in block status is 010 40
ring module ====== externalTtol is working 7th node out: block status is 010 40

(el elelaaaeeeda e e legaddelegadeeaaadeleaa e eada degada delgadd e gaadeleaaaaelel et e d elel e e eleld
IALL cores REQUESTS SERVICED..MOW FETCHING NEW SET OF INSTRUCTIONS
(el elelaaaeeeda e e legaddelegadeeaaadeleaa e eada degada delgadd e gaadeleaaaaelel et e d elel e e eleld
—-—-EEEEEERAEEERARREEERACcount value: R e e Gl el Gl] ettt
ring module ====== interald_from cache is working 0th cache: block status is 101

#_I-I

Figure 7.3: BSV SIMULATION RESULTS of 3RD CLOCK CYCLE

Now in the 3rd clock cycle when corel READ request is serviced it will change its
cache block status to “SHARED” mode and propagates “OWNED”(010) block status
to all the other cahes.In the figure 7.3 we can see the propagation of OWNED(010)
signal through the Ring inteconnect. Finally the memory block in cache0 will be in
“OWNED” state and cachel will be in “SHARED” state.Both the memory blocks have
same updated data which was updated by WRITE request of core0 .Once all the requests

are serviced caches will enque new requests.Hence cache coherency is maintained.

34

7.2.2 Test Case:2

Let us consider the worst case in which all the cores wanted to WRITE into the same
memory block at the same instance.All the cache blocks get the write requests from their
respective cores.As per our design we have given more priority to core0 and then corel
,core2 and so on.So first core0 request will be serviced, i.e memory block in cache(will
changed to “MODIFIED” state and update its value through WRITE operation. Propa-
gate the block status “INVALID” to all the other caches. In the 2nd clock cycle corel
request will be serviced this time corel will update the memory block .finally in the 8th
clock cycle expect cache7 all the caches blocks status becomes INVALID.cache7 only
have the latest updated value with block status “MODIFIED” .So cache coherency is
maintained even in worst case situation.We can see the Blue Spec simulation results of

Test Case:2 in the figures 7.4 to 7.8.

35

Project Edit Build Tools Window Message

ol=z(al SelEl=] B8] Bt
Simulation executable created: ./out
+ ./out
--—-QERRERRERRRRRRRERcount value: 1@RARRRRERARRRCRRARRRRA———————————
ring module = == interall_from cache is working Oth cache: block status is 101 20
ring module == = externalltol is working Oth node_out: block status is 101 20
ring module === interall is working 1lst node_in: block status is 101 20
ring module ====== externallto2? is working 1lst node_out: block status is 101 20
ring module ====== interal? is working 2nd node_in: command is 101 20
ring module == externalZto3 is working 2nd node_out: block status is 101 20
ring module ====== interal3 is working 3rd node_in: block status is 101 20
ring module ====== external3tod is working 3rd node_out: block status is 101 20
ring module === interald is working 4th node_in: block status is 101 20
ring module == = externaldto5 is working 4th node_out: block status is 101 20
ring module === interal’ is working 5th node_in: block status is 101 20
ring module ====== external5tof is working 5th node_out: block status is 101 20
ring module ====== interalf is working 6th node_in block status is 101 20
====== external6tod is working 6th node_cut: block status is 101 20
====== interal7 is working 7th node_in block status is 101 20
externalTtol is working 7th node_out: block status is 101 20
--—-QERRERRERRRRRRRERcount value: 2QRQRARGARARRRRAARRRRRRR-———-———————-
= interal0 is working Oth node_in: block status is 101 30
externalQtol is working Oth node_out: block status is 101 30
interall_from_cache is working 1st cache: block status is 101 30
externalltod 15 working lst node_out: block status i1s 101 30
====== interal? is working Znd node_in: command is 101 30
externalZto3 is working 2nd node_out: block status is 101 30
interal3 is working 3rd node_in: block status is 101 Qﬁl
external3tod is working 3rd node_out: block status is 101 30
interald is working 4th node_in: block status is 101 30
externaldtob is working 4th node_out: block status is 101 30
====== interal’ is working 5th node_in: block status is 101 30
externalS5tob is working 5th node_out: block status is 101 30
====== interalf is working 6th node_in block status is 101 30
====== external6tod is working 6th node_cut: block status is 101 30
ring module === interal’d is working 7th node_in block status is 101 30
ring module ====== externalTtol is working 7th node_out: block status is 101 30
--—-QERRERRERRRRRRRERcount value: 3ERARRRRERARRACRRARRRRA - ———————————
|l =i madnla e ietmralfll So weelins Ok da o hleosl statwae fo 101 An

Figure 7.4: BSV SIMULATION RESULTS OF 1ST AND 2ND CLOCK CYCLES

In the figure 7.4 according to priority logic in first clock cycle coreO writes the data
into cache(.So cache0 changes its block status to “MODIFIED ” state and it propagates
block status “INVALID”(101) to all other caches. In the figure 7.4 we can see the
propagation of INVALID(101) signal through the Ring interconnect.So memory blocks
in all the other caches will be in “INVALID” state.

In second clock cycle corel writes the data into cachel .So cachel changes its block
status to “MODIFIED ” state and it propagates the block status “INVALID”(101) to all
other caches. In the figure 7.4 we can see the propagation of INVALIDATE(101) signal
through the Ring . So memory blocks in all the other caches will be in “INVALID”

state.

36

Project Edit Build Tools Window Message

O & &

o | 0 | [ad] = @ |Uo

ring module

ring module

ring module
-

interal7 is working Tth node_in block status is 101 30

ring module ====== externalTtol is working Tth node_out: block status is 101 30
———-BREREEEEEREREEERRECcouUnt value: R EEERRREEEERRRRRRRRR
ring module ====== interall is working Oth node_in: block status is 101 40
====== gxternalltol is working Oth node_out: block status is 101 40
ring module ====== interall is working 1st node_in: block status is 101 40
ring module ====== externalltoZ is working 1lst node_out: block status is 101 40
ring module interal? from cache is working 2nd cache : block status is 101 40
ring module ====== externalZto3 is working Znd node_out: block status 1s 101 40
ring module == interal3 is working 3rd node_in: block status is 101 40
ring module ====== external3tod is working 3rd node_out: block status is 101 40
ring module ====== interald4 is working 4th node_in: block status is 101 40
ring module == externaldtoS is working 4th node_out: block status is 101 40
ring module ====== interal’ is working 5th node_in: block status is 101 40
ring module ====== externalStof is working 5th node_out: block status is 101 40
ring module === interalt is working 6th node_in block status is 101 40
ring module == = external6to7 is working 6th node_out: block status is 101 40
ring module === interal7 is working Tth node_in block status is 101 40
ring module ====== externalTtol is working Tth node_out: block status is 101 40
———-BREREEEEEREREEERRECcouUnt value: AR EREREREERREERRRRRRRR—————————————
ring module ====== interall is working Oth node_in: block status is 101 30
ring module == = externalOtol is working Oth node_out: block status is 101 50
ring module === interall is working 1lst node_in: block status is 101 30
ring module == = externallto?Z is working 1st node_out: block status is 101 50
ring module === interal? is working Znd node_in: command is 101 50
ring module ====== externalZto3 is working Znd node_out: block status is 101 50
ring module ====== interal3_from_cache is working 3rd cache: block status is 101 50
ring module == externalitod is working 3rd node_out: block status 1s 101 b 50
ring module ====== interald4 is working 4th node_in: block status is 101 30
ring module ====== externaldto5 is working 4th node_out: block status is 101 50
ring module interall is working 5th node_in: block status is 101 30
ring module ====== externalStof is working 5th node_out: block status is 101 50
ring module interalf is working 6th node_in block status is 101 50
ring module ====== externalétol is working 6th node_out: block status is 101 50
ring module ====== interal7 is working Tth node_in block status is 101 50
ring module ====== externalTtol is working Tth node_out: block status is 101 50
———-BREREEEEEREREEERRECcouUnt value: OREEEERREEEEERRRRRRRRR
====== interall is working Oth node_in: block status is 101 B0

+ |

Figure 7.5: BSV SIMULATION RESULTS OF 3RD AND 4TH CLOCK CYCLES

In the figure 7.5 according to priority logic in third clock cycle core2 writes the data
into cache2 .So cache0 changes its block status to “MODIFIED ” state and it propagates
block status “INVALID”(101) to all other caches. In the figure 7.5 we can see the
propagation of INVALID(101) signal through the Ring interconnect.So memory blocks
in all the other caches will be in “INVALID” state.

In fourth clock cycle core3 writes the data into cache3 .So cache3 changes its block
status to “MODIFIED ” state and it propagates the block status “INVALID”(101) to all
other caches. In the figure 7.5 we can see the propagation of INVALIDATE(101) signal
through the Ring . So memory blocks in all the other caches will be in “INVALID”

state.

37

Project Edit Build Tools Window Message

0|z H o | 0 | [ad] = C N %
TiNg MoOUle ==—==== INCEral'! 1S WOLRINGg /tn node_I0 BIOCK Srartas 1s IUl 5U
ring module ====== external7tol is working T7th node_out: block status is 101 50
-——-CGEREREEEREREEERRERcount wvalue: SRR EEREEEERRRRRRRRRR -~~~ ——————
ring module === interall is working Oth node_in: block status is 101 60
ring module == = externalOtol is working Oth node_out: block status is 101 60
ring module === interall is working 1st node_in: block status is 101 60
ring module ====== externalltoZ is working 1st node_out: block status is 101 60
ring module ====== interal? is working Znd node_in: command is 101 60
ring module == externalZto3 is working Znd node_out: block status is 101 60
ring module ====== interal3 is working 3rd node_in: block status is 101 60
ring module ====== external3tod is working 3rd node_out: block status is 101 60
ring module interald from cache is working 4th cache block status is 101 60
ring module ====== externaldtod is working 4th node_out: block status 1s LUL 60
ring module interal’ is working 5th node_in: block status is 101 60
ring module ====== external5tot is working 5th node_out: block status is 101 60
ring module ====== interalf is working 6th node_in block status is 101 60
ring module = external6to7 is working 6th node_out: block status is 101 60
ring module ====== interal7 is working 7th node_in block status is 101 60
ring module ====== external7tol is working T7th node_out: block status is 101 60
-——-CGEREREEEREREEERRERcount wvalue: R EEER R EERRRRRRRRRR -~~~ ——————
ring module === interall is working Oth node_in: block status is 101 10
ring module ====== externalltol is working Oth node_out: block status is 101 10
ring module ====== interall is working 1st node_in: block status is 101 10
ring module = externallto? is working 1st node_out: block status is 101 10
ring module ====== interal? is working Znd node_in: command is 101 10
ring module ====== externalZto3 is working Znd node_out: block status is 101 10
ring module === interal3 is working 3rd node_in: block status is 101 10
ring module == = external3tod is working 3rd node_out: block status is 101 J}TO
ring module === interald is working 4th node_in: block status is 101 T
ring module ====== externaldto5 is working 4th node_out: block status is 101 70
ring module ====== interal5_from cache is working 5th cache : block status is 101 70
ring module == external3tob is working 5th node_out: block status 1s 101 10
ring module ====== interalf is working 6th node_in block status is 101 10
ring module ====== externalé6to7 is working 6th node_out: block status is 101 10
ring module === interal7 is working Tth node_in block status is 101 10
ring module ====== external7tol is working T7th node_out: block status is 101 10
-——-CGEREREEEREREEERRERcount wvalue: TR EREREERRRRRRRRRRER— — =~
ring module ====== interall is working Oth node_in: block status is 101 80

e

Figure 7.6: BSV SIMULATION RESULTS OF 5TH AND 6TH CLOCK CYCLES

In the figure 7.6 according to priority logic in fifth clock cycle core4 writes the data

into cache4 .So cache4 changes its block status to “MODIFIED ” state and it propagates
block status “INVALID”(101) to all other caches. In the figure 7.6 we can see the

propagation of INVALID(101) signal through the Ring interconnect.So memory blocks
in all the other caches will be in “INVALID” state.

In sixth clock cycle core5 writes the data into cache5 .So cache5 changes its block

status to “MODIFIED ” state and it propagates the block status “INVALID”(101) to all

other caches. In the figure 7.6 we can see the propagation of INVALIDATE(101) signal

through the Ring . So memory blocks in all the other caches will be in “INVALID”

state.

38

Project Edit Build Tools Window Message

0| = o | 0 | [ad] = B2 C N %

Figure 7.7: BSV SIMULATION RESULTS OF 7TH AND 8TH CLOCK CYCLES

In the figure 7.7 according to priority logic in seventh clock cycle core6 writes

the data into cache6 .So cache6 changes its block status to “MODIFIED ” state and it

propagates block status “INVALID”(101) to all other caches. In the figure 7.7 we can

see the propagation of INVALID(101) signal through the Ring interconnect.So memory

blocks in all the other caches will be in “INVALID” state.

In 8 th clock cycle core7 writes the data into cache7 .So cache7 changes its block

status to “MODIFIED ” state and it propagates the block status “INVALID”(101) to all

other caches. In the figure 7.7 we can see the propagation of INVALIDATE(101) signal

through the Ring . So memory blocks in all the other caches will be in “INVALID”

state.

39

ring module ====== externalTtol is working Tth node_out: block status is 101 10
———-REREEEEEREREEEEERcount value: TR RCRRERRRRRRRRRR
ring module ====== interall is working Oth node_in: block status is 101 80
ring module = externalltol is working Oth node_out: block status is 101 80
ring module ====== interall is working 1st node_in: block status is 101 80
ring module ====== externallto? is working 1st node_out: block status is 101 80
ring module === interal? is working 2nd node_in: command is 101 80
ring module == = external?to3 is working 2Znd node_out: block status is 101 80
ring module === interal3 is working 3rd node_in: block status is 101 80
ring module ====== external3tod is working 3rd node_out: block status is 101 80
ring module ====== interald is working 4th node_in: block status is 101 80
ring module == externaldto5 is working 4th node_out: block status is 101 80
ring module ====== interal5 is working 5th node_in: block status is 101 80
ring module ====== external5tof is working 5th node_out: block status is 101 80
ring module === interal6_from_cache is working 6th cache block status is 101 80
ring module == = externalbto/ 1s working &th node_out: block status 1s LUL 80
ring module === interal7 is working 7th node_in block status is 101 80
ring module == externalTtol is working 7th node_out: block status is 101 80
———-REREEEEEREREEEEERcount value: BREEEEERCREERRRRRRRRRR
ring module ====== interall is working Oth node_in: block status is 101 80
ring module == = externalltol is working Oth node_out: block status is 101 80
ring module === interall is working 1st node_in: block status is 101 80
ring module ====== externallto? is working 1st node_out: block status is 101 80
ring module ====== interal? is working 2nd node_in: command is 101 80
ring module = external?to3 is working 2Znd node_out: block status is 101 80
ring module ====== interal3 is working 3rd node_in: block status is 101 80
ring module = external3tod is working 3rd node_out: block status is 101 80
ring module ====== interald is working 4th node_in: block status is 101 hﬂ
ring module ====== externaldto5 is working 4th node_out: block status is 101 80
ring module interalS is working 5th node_in: block status is 101 80
ring module ====== external5tof is working 5th node_out: block status is 101 80
ring module interalf is working 6th node_in block status is 101 80
ring module ====== external6to7 is working 6th node_out: block status is 101 50
ring module ====== interal7_from cache is working 7th cache: block status is 101 80
ring module ====== external/tol i1s working /th node_out: block status i1s 101 50
———-REREEEEEREREEEEERcount value: EEEEEREERERERRRRRERRRRE ————————————
ring module interalQ is working Oth node_in: block status is 101 100
1£"|I_|:_ir'1nri'1'n=- ====== pxternalltnl is working Oth node ont: block statwus is 101 100

Project Edit

Bulld Tools Window Message

O ==

= (= e E|E 2|08

ring module

ring module
ring module
ring module
ring module
ring module
ring module
ring module

ring module

ring module
ring module
ring module
ring module
ring module
ring module
ring module

ring module

————RREEEERRRRRRERRRRcount value:

ring module ====== interall is working 0Oth node_in: block status is 101

ring module =

ring module =

ring module =

ring module

ring module

ring module

ring module

ring module

ring module

====== externalTtol is working 7th node_out: block status is 101

R RERRERCRRRRRRRRRRR

s externalQtol is working 0th node_out: block status is 101
== interall is working 1st node_in: block status is 101

- externallto? is working 1lst node_out: block status is 101

ring module ====== interal? is working 2nd node_in: command is 101

====== externalZto3 is working 2Znd node_put: block status is 101
== interal3 is working 3rd node_in: block status is 101
====== external3tod is working 3rd node_put: block status is 101
== interald is working 4th node_in: block status is 101
= externaldto5 is working 4th node_out: block status is 101

ring module = == interal’ is working 5th node_in: block status is 101

- external3tof is working 5th node_out: block status is 101
== interalf is working 6th node_in block status is 101
- externalb6to7 is working 6th node_out: block status is 101
== interal7 is working Tth node_in block status is 101
====== externalTtol is working 7th node_out: block status is 101

10 ERCRRRRRRRRRRRR

s externalQtol is working 0th node_out: block status is 101
== interall is working 1st node_in: block status is 101

= externallto? is working 1st node_out: block status is 101
== interal? is working 2nd node_in: command is 101

====== externalZto3 is working 2Znd node_put: block status is 101

ring module ====== interal3 is working 3rd node_in: block status is 101

s external3tod is working 3rd node_out: block status is 101

ring module = == interald is working 4th node_in: block status is 101

s externaldto5 is working 4th node_out: block status is 101
== interal’ is working 5th node_in: block status is 101
externalStof is working 5th node_out: block status is 101
== interalf is working 6th node_in block status is 101
====== externalfto? is working 6th node_put: block status is 101

ring module ====== interal7 is working Tth node_in block status is 101

====== externalTtol is working 7th node_out: block status is 101

100

110

90

100
100

100
100

100
100
100
100
100
100
100
100
100
100
100

R R R R R R R R R R A R R A R R R R R A R R R A R R A R R RRRRRCRERRRRCRRRRRRE
IALL cores REQUESTS SERVICED..NOW FETCHING NEW SET OF INSTRUCTIONS
R RRCRRRRRRCRRRRRRCRRRRRRE
———-EEREREERERRERERERcount wvalue:

110
110
110

%nﬂ
11

110
110
110
110
110
110
110
110
110

110

#_l-.

Figure 7.8: BSV SIMULATION RESULTS OF 9TH AND 10TH CLOCK CYCLES

In the ninth clock cycle the INVALID signal sent by cache7 routing in the ring. All

cache requests were serviced by this time.Finally one cache i.e cache7 will have the

most updated data. Hence data consistency is maintained. Once all the cache requests

were serviced caches will now enque new requests from 10th clock cycle onwards.

40

7.3 Synthesis

Further the design is compiled to generate the verilog files which are required for the
EDA tool to complete the logic synthesis as discussed in the design flow diagram. We
not only receive an optimized netlist after logic synthesis but also reports for area and

timing which are required for analysis.

The synthesis tool accepts the verilog files of the design and runs the synthesis algo-
rithm for logic minimization. The synthesis culminates with generation of synthesized
design schematic and detailed synthesis report with hardware units used in the final de-
sign. It is possible to selectively visualize the flow of the signals and the modules of

interest making it convenient for the designer to verify the correctness of the design.

41

7.3.1 Device utilization summary

Final Register Report

Macro Statistics
\# Registers t 9017
Flip-Flops 19017

‘subsection{Device utilization summary: }
Device utilizati on summary:

Selected Device : 7al00tfgg484-3

Slice Logic Uil ization:

Mumber of Slice Registers: 9017 out of 126800 7%
Number of Slice LUTs: 19033 outof 63400 300%
Mumber used as Logic: 19033 owt of 63400 300%

Slice Logic Distribution:
Mumber of LUT Flip Flop pairs used: 19223
Mumber with an unosed Flip Flop: 10206 out of 19223 53\%

Murmber with an unused LUT: 190 out of 19223 0%
Mumber of fully used LUT-FF pairs: 8827 out of 19223 45%

Mumber of unique control sets: 25

10 Ui lization:
Mumber of 10s: 20450
Mumber of bonded 10Bs: 16010 outof 285 S617L(*)

Specific Feature Utilization:

Mumber of BUFG/BUFGCTRLSs: 2 mtof 32 6%

Figure 7.9: Device utilization summary

42

7.3.2 Timing Report:

Timing Sumnary:
Speed Grade: -3
Minimum period: BA858ns (Maximum Frequency: 112.893MHz)
Minimum input arrival time before clock: 8.8%5n0s
Maximum output requived time after clock: B.739ns
Maximum combinational path delay: 8.776ns
Timing Details:

All values displayed in nanoseconds (ns)

Timing constraint: Default period analvsis for Clock "CLE
Clock period: 8.858ns (frequency: 112 893MHz)
Total number of paths / destination ports: 1015241542 / 11730

Delay: 8.858ns {Levels of Logic = 17)
Sowrce! cache_req 0 rv_358 (FF)
Destination: node_in_req3 0/datal_reg 356 (FF)
Sowce Clock: CLK rising
Destination Clock: CLEK rising
Data Path: cache_req 0 _rv_358 tonode_in_req3 Ovdatal reg 356
Gate Met
Celliin-=out fanout Delay Delay Logical Nane (Met Name)

FD:C-=0) 2 0361 0.299 cache req 0 rv_358 {cache_req 0_rv_35H)
LUT3[2->0 4 0097 0.525 cache_req O_rvSport]_ resd<358>1 (cache_req 0 _rvSpot]_ read<358=)
LUT&I3=>0 2 0097 0.384 CAN_FIRE_RL_interal0_from_cache<359=1_1

{CAMN_FIRE_RL _interald_from_cache <359>1)

LUTG I4=0 3 0097 0.389 node_in_req 0_rvSportl_ read<359=1 (node_in_req 0 rvSportl_read<359=)
LUTE [4=0 2 0097 0.299 WILL_FIRE RL_interalll 1 {WILL_FIRE_RL interal11)

LUTE15=0 3 0097 0.389 node_in_req 1_rvSportdl _ read<359-1 (node_in req 1_rvSportl_read-<350-)
LUTE [4=>0 2 0097 0.299 WILL_FIRE RL _interal?1 1 (WILL FIRE_RL interal21)

LUTGI5=0 3 0097 0.389 node_in_req 2_rvSportl_ read<359=1 (node_in_req 2_rvSpoitl__read<359=)
LUTE 14-=0 2 0097 0.299 WILL_FIRE_RL_interal31_1 (WILL_FIRE_RL_interal31)

LUTEI5=0 2 0097 0.383 node_in_req 3_rvSportl_ read<359=1 (node_in_req 3_rvSportl_read-<359>)
LUTE [4=0 553 0.097 0.475 WILL_FIRE_RL_interal41 (WILL_FIRE_RL interald)

LUTE15=0 8 0097 0.543 node_in_req 4_rvSportdl _ read<358>1 (node_in req 4_rvSportl_read-<358=)
LUT&11-=0 6 0097 0402 node_out_req 5_mvEport]l_ wad<359-1 (RDY_node_out_ifc_5_tx_get OBUF)
LUT&I4=0 1460 0.097 0.503 WILL_FIRE_RL interal61 (WILL_FIRE_RL _interal6)

LUTE15=0 190 0,097 0.426 node_in_weq 6_rvSportl_ read<359=1 (node_in_req 6 rvSportl read<359=)
LUTEI5=0 359 0.097 0.452 node_in_weq3_0/dohl (node_in_req3_0/d0h)

LUTE 50 1 0097 0.379 node_in_req3 0SD_IN<178>1_SW (N1122)

LUTS:13=0 1 0097 0.000 node_in_reg3 0vd0di_dOh_or 8§ OUT<178>1

(node_in_req3_0vd0di_doh_or B_OUT<178>)

FD:D

0.008

node_in_req3 O/datal_reg 178

8.858ns (2.018ns logic, 6.840ns route)
(22.8% logic, 77.2% route)

Figure 7.10: timing report

43

Chapter 8

CONCLUSION AND FUTURE WORK

8.1 Conclusion

The effort of the work presented here is to solve the coherence problem in multi-
core system in a ring interconnect.The Cache module with(MOESI) protocol Using
TLM(Transaction level modeling) have been successfully implemented in Ring inter-
connect with Parameterised no of nodes in BSV.All the nodes in a ring interconnect
are communicated through TLM send and receive interfaces. Communication between
cache and node is done with TLM send and receive interfaces and also implemented the
priority ordering in the interconnect. This routing between all the nodes will be done

with latency of ONE clock cycle.

8.2 Future work

The research on coherence on interconnect design for multi-core networks is relatively
new field. With acceptance of the fact that multi-cores are the only viable option for

performance scaling for next few decades to come.

Shrinking the transistor sizes do come with possibility of manufacturing defects
and process variations. So although as of now ring interconnect is assumed to be fault
free, reliable solution for packet exchange, the future interconnects will have to care for
such challenges by exploring the possibility of using encoding schemes and other such

protocols so that the interconnect can continue to provide reliable end to end solutions.

Here we implemented MOESI Protocol in L1 cache and maintained a coherence
in ring interconnect network. To further this implementation we can implement All
protocols in one module by giving some input bit it will select which protocol to use(like
1-MSI, 2-MESI, 3-MOESI,4-MESIF etc) to achieve more efficient in timing point of

view.

Not only ring bus topology, We can also further implement cache coherence to
Ring,Mesh and torus. As the no of cores in processor increases its better to go for
mesh ,torus so that latency will be reduced. We can also implement all topologies in a
single system and can access any one by giving request (Like 1-Ring, 2-Mesh ,3-Star

etc) depends on no of cores in the processor.

45

Bibliography

[1] Bluespec Inc.Bluespec System Verilog Reference Guide,Revision 30 July 2014.

[2] Coherence Ordering for Ring-based Chip Multiprocessors,39th Annual IEEE/ACM
Symposium on Microarchitecture (MICRO-39), 2006

[3] RING-DATA ORDER: A new cache coherence protocol for ring-based multi-
cores,High Performance Computing Simulation, 2009. HPCS ’09. International

Conference on, June 2009

[4] The Performance of Cache-Coherent Ring-based Multiprocessors,L.uiz An Barroso

and Michel Dubois
[5] RISE Lab,Shakti Series Processors.ppt

[6] A Cache Coherence Protocol for the Bidirectional Ring Based Multiproces-

sor,Hitoshi O1 and N. Ranganathan

46

