
Cache Coherence Implementation on Ring Bus

A Project Report

submitted by

KARILLI SATISH KUMAR

in partial fulfilment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

Under the guidance of

Prof V. Kamakoti

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS

JUNE 2016

THESIS CERTIFICATE

This is to certify that the thesis titled Cache Coherence Implementation on Ring Bus,

submitted by Karilli Satish Kumar, to the Indian Institute of Technology, Madras, for

the award of the degree of Master Of Technology, is a bona fide record of the research

work done by him under our supervision. The contents of this thesis, in full or in parts,

have not been submitted to any other Institute or University for the award of any degree

or diploma.

Prof
Dr V. Kamakoti
Professor
Dept. of Computer Science
IIT-Madras, 600 036

Place: Chennai

Date: 18th June 2016

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my guide, Dr. V.Kamakoti for his valu-

able guidance, encouragement and advice. His immense motivation helped me in mak-

ing firm commitment towards my project work.

My special thanks to Mr. G.S. Madhusudan for his encouragement and motivation

through out the project. His valuable suggestions and constructive feedback were very

helpful in moving ahead with my project work.

I would like to thank my co-guide Dr.Nitin Chandrachoodan and faculty advisor

Dr.Shreepad Karmalkar. who have patiently listened, evaluated, and guided us through

out the program.

My special thanks to my fellow labmates Rahul,Neel Gala,sirisha,mohmodh, Ar-

jun,abinay, venkata krishna,phani,Arnab for their help and support.

i

ABSTRACT

KEYWORDS: Cache coherance,Ring interconnect, MOESI protocol

It is desirable to pack in as many cores per chip as possible resulting in increased

performance per unit area.An interconnect is required for inter-core and off-chip trans-

port of user packets and also the coherency data. The conventional bus interconnect

although ordered and excellent for cache coherence traffic using snoopy protocol it

doesn’t support higher bandwidths as core count increases.Thus here we are imple-

menting a ring interconnect with TLM interfaces by parameterise the no of cores in the

ring interconnect.

We have used L1 cache as a private cache to all the cores in a ring interconnect

to reduce the average memory latency and memory traffic but private caches lead to

the possibility of cache incoherence problem. Over the years distinct kind of proto-

cols like MSI,MESI,MOESI etc. were proposed to solve this problem.Here we have

implemented the MOESI cache coherence protocol in all private L1 caches in a ring

interconnect.Thus we maintained the cache coherence among all the cores in a ring in-

terconnect.The code for the entire project is written in a HDL namely Bluespec System

Verilog(BSV).

ii

Contents

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES vi

LIST OF FIGURES viii

ABBREVIATIONS ix

1 INTRODUCTION 1

1.1 Overall Microcontroller Architecture 1

2 INTERCONNECT TOPOLOGIES 2

2.1 Ring Interconnect . 2

2.2 Mesh Interconnect . 3

2.3 Ring-Mesh Hybrid Interconnect 5

2.4 Requirements to be met for Cache Coherence 6

3 CACHE COHERENCE 8

3.1 Modified: . 8

3.2 Owned: . 8

3.3 Exclusive: . 8

3.4 Shared: . 9

3.5 Invalid: . 10

3.6 Cache controller . 10

4 BLUESPEC SYSTEM VERILOG 11

4.1 Key Features of BSV . 11

4.2 Study of the Bluespec System Verilog build process 11

4.3 Bluespec SystemVerilog Constructs 12

iii

4.3.1 Rules . 12

4.3.2 Modules . 12

4.3.3 Interfaces . 13

4.3.4 Methods . 13

4.3.5 Functions . 13

4.4 Application Areas of Bluespec System Verilog 13

4.5 Building a design in Bluespec System Verilog 13

5 TLM INTERFACE 14

5.1 BSV TLM interfaces . 14

5.1.1 Data structures . 14

5.1.2 TLM Request . 15

5.1.3 TLM Response . 15

5.1.4 Interfaces . 16

5.1.5 TLM advantages . 16

6 DESIGN AND IMPLEMENTATION 17

6.1 Interfaces . 19

6.1.1 TLMRecvIFC . 20

6.1.2 TLMSendIFC . 21

6.2 Fields in TLM packet . 21

6.2.1 Address . 22

6.2.2 Data . 22

6.2.3 Command . 22

6.2.4 Custom . 22

6.2.5 Lock . 22

6.3 Working of Fifos . 23

6.3.1 NODE_IN_REQ FIFO . 23

6.3.2 NODE_OUT_REQ FIFO 24

6.3.3 CAHE_REQ FIFO . 24

6.3.4 REQ2_CAHCE FIFO . 24

6.4 Operation Of Coherent Ring . 24

6.4.1 Rule internal . 25

iv

6.4.2 Rule internal_from_cache 26

6.4.3 Rule external . 26

6.5 Priority Logic . 26

6.5.1 Priority and Routing . 28

7 SIMULATIONS RESULTS AND SYNTHESIS REPORT 30

7.1 Hardware Design Flow . 30

7.2 Simulation . 31

7.2.1 Test Case:1 . 32

7.2.2 Test Case:2 . 35

7.3 Synthesis . 41

7.3.1 Device utilization summary 42

7.3.2 Timing Report: . 43

8 CONCLUSION AND FUTURE WORK 44

8.1 Conclusion . 44

8.2 Future work . 44

List of Tables

3.1 MOESI Table . 10

vi

List of Figures

2.1 ring interconnect . 2

2.2 ring interconnect routing . 3

2.3 mesh interconnect . 4

2.4 mesh structure . 4

2.5 mesh routing . 5

2.6 Ring-Mesh Hybrid Interconnect 5

2.7 graphical visualization of Ring_Mesh_hybrid Interconnect 6

3.1 Modify,Owned and Exclusive . 9

3.2 Shared And Invalid . 9

4.1 BSV Flow . 12

5.1 TLM Interfaces . 14

6.1 ring interconnect daiagram . 17

6.2 ring with 8 nodes . 18

6.3 bottom up approach . 19

6.4 top down approach . 19

6.5 code snippet of interfaces . 20

6.6 single node with interfaces and fifos 20

6.7 FIFO VIEW OF SINGLE NODE 23

6.8 WORKING OF RULES . 25

6.9 priority ordering logic table . 27

6.10 priority of nodes . 27

6.11 ROUTING OF PACKETS WITH PRIORITY ORDER 28

6.12 rule for deq . 29

7.1 Flow of synthesis . 31

7.2 BSV SIMULATION RESULTS of 1ST and 2ND CLOCK CYCLES 33

7.3 BSV SIMULATION RESULTS of 3RD CLOCK CYCLE 34

vii

7.4 BSV SIMULATION RESULTS OF 1ST AND 2ND CLOCK CYCLES 36

7.5 BSV SIMULATION RESULTS OF 3RD AND 4TH CLOCK CYCLES 37

7.6 BSV SIMULATION RESULTS OF 5TH AND 6TH CLOCK CYCLES 38

7.7 BSV SIMULATION RESULTS OF 7TH AND 8TH CLOCK CYCLES 39

7.8 BSV SIMULATION RESULTS OF 9TH AND 10TH CLOCK CY-
CLES . 40

7.9 Device utilization summary . 42

7.10 timing report . 43

viii

ABBREVIATIONS

IITM Indian Institute of Technology, Madras

RISE Reconfigurable and Intelligent Systems Engineering

BSV Bluespec System Verilog

HDL Hardware Description Language

FIFO First In First Out

RISC Reduced Instruction Set Computer

RTL Register Transfer Language

CMP Chip-Multiprocessors

TLM Transcaction level modeling

ix

Chapter 1

INTRODUCTION

1.1 Overall Microcontroller Architecture

The processor design team of Reconfigurable and Intelligent Systems Engineering[RISE]

lab in the computer science department of IIT-Madras has been actively involved in

building few processors for academic purposes and other applications. The processor

strictly follows the RISC-V instruction set architecture[ISA].Entire design of the pro-

cessor is done using a Hardware Description Language[HDL] named Bluespec System

Verilog[BSV]. The I-Class processor is a 32-bit in-order variant aimed at 50-250MHz

microcontroller variants which have an optional memory protection and the design con-

sumes very low power. The integration forms the basis for synchronizing the core to dif-

ferent peripherals in the microcontroller, which have various operating frequencies.My

project work involves maintainace of cache coherence among all private L1 caches in

a ring interconnect network. Here we have implemented a ring interconnect with TLM

interfaces by parameterising the no of cores in a ring interconnect. And implemented

MOESI protocol in all private L1 caches in a ring interconnect for cache coherence.Thus

we have maintained cache coherence among all the cores in a ring interconnect.

Chapter 2

INTERCONNECT TOPOLOGIES

The components of an interconnect have been briefly discussed here. Topology is prob-

ably a design choice that has deep impact on the interconnect performance. A topology

primarily decides the minimum number of hops that a packet makes from source to des-

tination. Also since the number of hops require storing and forwarding of packets, the

power consumption depends directly on the number of hops. A metric for determining

the relative merit of the topologies is firstly the number of physical links between the

two nodes and secondly the complexity to physically route the wires of the interconnect.

Three basic interconnect topologies are

• Ring Interconnect

• Mesh Interconnect

• Ring-Mesh hybrid interconnect or Torus

2.1 Ring Interconnect

In Ring interconnect all the cores or nodes are connected in a ring fashion.where packets

can move in two directions to reach destination node.we have chosen the ring intercon-

nect.

Figure 2.1: ring interconnect

The rings main function is to facilitate the transfer of packets as the case may be

between the nodes or between caches and nodes.The top level of the ring is presented

in figure 2.1. Note that by convention we use East and West to indicate the directions.

Figure 2.2: ring interconnect routing

To implement the above two functionalities discussed, multiple cores as they are

referred to in the code are instantiated.Rules are written to fetch packets from east facing

ports of the ring and push them into west facing ports of ring as shown in the Figure

2.2.

In the ring module the packets which are coming from the east or from the cache

block are first buffered at that node and in the next clock cycle depending on the logic

of ring module one of the packet either from cache or node will traverse through the

ring bus . That wraps the discussion on the modules of the ring interconnect. Next we

see the mesh interconnect.

2.2 Mesh Interconnect

In Mesh interconnect all the cores or nodes are connected in a mesh fashion.where

packets can move in all four directions to reach its destination node.The nodes which

are at the corners can move only two directions and the nodes which are at the edges of

mesh can move only in three directions.the Figure 2.3 shows the mesh network.

3

Figure 2.3: mesh interconnect

The mesh is observed to be made with the nodes which contain the sub-modules

as in the ring interconnect. However, the difference here is the routing logic since

the organisation of the nodes is different than in the ring. A major difference here is

the prominence of the standard routing algorithm i.e. Dimension Order Routing using

the XY routing algorithm. Each node in the interconnect is assigned two co-ordinate

values as is required for implementation of a 2D mesh. Figure 2.4 shows the numbering

of nodes in the mesh interconnect.

Figure 2.4: mesh structure

This mesh interconnect must facilitate transfer of packets between north and south

directions also in addition to the east and west ports. The nodes at periphery of the inter-

connect should be treated as special cases .since they don’t have in-out ports in all four

directions. Figure 2.5 shows different paths of routing packets in mesh interconnect.

4

Figure 2.5: mesh routing

As in the case of the ring the parameters number of nodes and the link width are

parameterized and therefore adjustable. The number of nodes are specified indirectly

by giving the number of nodes at one side of the mesh and the square of this number

gives the actual number of nodes in the interconnect.

2.3 Ring-Mesh Hybrid Interconnect

The interconnects seen above were the two most basic and widely used interconnects in

the commercial implementations. However, the ring interconnect latency grows linearly

with the number of tiles and the number of wires becomes extremely large in case of

mesh with large number of nodes due to multiple physical links per node. Hence, we

look for a different topology that combines the benefits of both the designs.this is new

topology that is a combination of the two. A ring-mesh hybrid connects multiple nodes

in a ring and multiple such rings are instantiated. Each of the rings is further connected

in a mesh superstructure.Figure 2.6 shows the Ring-Mesh Hybrid Interconnect . The

Figure 2.6: Ring-Mesh Hybrid Interconnect

intuition behind such a design is that applications can be assigned multiple cores of a

ring for computations. Since the number of tiles on a ring are limited and performance

of a ring is proved to be better than other topologies for limited number of cores, the

applications’ per packet latency is reduced.

5

Figure 2.7: graphical visualization of Ring_Mesh_hybrid Interconnect

A graphical visualization of such a topology is presented at figure 2.7. The figure

shows a network of 32 tiles wherein there are 8 tiles per ring and the collection of 4 such

rings are connected in a mesh. Addressing of the tiles is hierarchical. Each 5 ring in the

network gets associated with a two coordinate address and within the ring each tile has

a unique tile ID which in conjunction with the ring address is used by the routing logic

to route the packets. The router is identified with the same two coordinate address as

that of the ring.

2.4 Requirements to be met for Cache Coherence

The two most widely used coherence protocols are the Snoopy and Directory based

protocols. The traffic in both cases may be classified as point-to-point, point-to- multi

point or broadcast traffic. In case of a Directory based implementation, the majority

of the traffic is only point-to-point. Hence, the traffic on the interconnect is not much.

However, there may be a requirement to send out point-to-multi point messages like in

case of invalidation of a cache line shared by many.

Snoopy protocol on the other hand relies heavily on broadcast traffic. The request

6

messages are all of broadcast type however, the response messages are unicast. So

broadly the messages in the cache coherent systems may be classified as requests and

responses. It is also interesting to note that the requests tend to be short and responses

containing the cache lines is generally longer. Thus it makes sense to send them over

two physically different links . An important take away from current discussion is that

the interconnect should be able to provide support for the coherence protocol selected

and further should be designed keeping in view the nature of traffic that is intended to

be sent over it and thus arrive at an acceptable level of trade-off between performance

and area.

7

Chapter 3

CACHE COHERENCE

In a shared system, caches maintains same data and number of processors perform

different kind of operations on cache. So the problem of data inconsistency can happen.

Inconsistency can be avoided by cache coherence protocol.

We have a number of cache coherence protocols, namely MSI, MESI, MOESI,

MESIF etc. In this work we are implementing MOESI protocol.

3.1 Modified:

If a cache Block is in Modified state, then concerned processor can change data of cache

block and can read data of cache block. Figure 3.1 shows what are other cache block

states when cache block is in M,O,E states.

3.2 Owned:

As an extension of MESI protocol, We restrict write-back of data from cache to main

memory. New state “O” is invented to avoid unnecessary write-back of data to main

memory during transition from “M” to “S”. Cache block in owned state is not consistent

with main memory.

3.3 Exclusive:

Exclusive state is added to MSI protocol for solving the issue of unnecessary broadcast

of invalidation message.

Figure 3.1: Modify,Owned and Exclusive

Figure 3.2: Shared And Invalid

3.4 Shared:

Cache block is one of several copies in the system. This cache block does not have

right to modify the copy. Other remaining processors in the system may have copies of

the cache block in the Shared state. In this state processor can read data of cache block

it can not perform write operation. If any of other processor is not performing write

operation, then block is in shared state. Figure 3.2 shows what are other cache block

states when cache block is in S,I states.

9

Modified Own Exclusive Shared Invalid

Modified False False False False True

Own False False False True True

Exclusive False False False False True

Shared False True False True True

Invalid True True True True True

Table 3.1: MOESI Table

3.5 Invalid:

Invalid means either the block is absent or read/write operation is restricted. If a cache

block is in invalid state, then processor can not do either read or write operation. Table

3.1 gives details of states of blocks validity.

3.6 Cache controller

It performs two more extra operations

• Cache controller has extra three bits along with Tag, data, V/I bits. Three bits
represents state of the block (any of M,O,E,S,I). It updates block status for every
transaction and if it needs to change of block status of cache forwards intention
status of block address and status to snooping mechanism.

• It reads data from other cache requests and verifies whether incoming address
is valid or not; it presents it updates block status otherwise leaves it. Figure
3.3 shows the entire structure of communication between processor and cache
through TileLink bus.

10

Chapter 4

BLUESPEC SYSTEM VERILOG

BSV is a HDL used in design of electronic systems such as FPGA, ASIC etc. It is a

very high level language and results in synthesizable hardware which can run on FPGA

emulation platforms. BSV substantially extends the design subset of System Verilog

and also increases the programmer’s coding efficiency. It has more polymorphism than

System Verilog.

4.1 Key Features of BSV

• High level atomic rules in place of Verilog’s always block.

• High level interfaces instead of Verilog’s port list.

• Powerful Parametrization and Polymorphism.

• Powerful static checking.

• Fully synthesizable at all levels of abstraction.

4.2 Study of the Bluespec System Verilog build process

The following are the steps involved in building a BSV design:

• A developer writes a Bluespec System Verilog program. It may be optionally
have Verilog, System Verilog, VHDL and C components.

• The Bluespec System Verilog program is compiled in to Verilog or Bluesim. Then
it has two different stages:

1. pre elaboration - It do parsing and also do type checking.

2. post elaboration -It does code generation.

• The compilation output is either linked into a simulation environment or pro-
cessed by a synthesis tool. Once the Verilog or Bluesim implementation is gen-
erated, the workstation provides the following tools to help analyse your design:

Figure 4.1: BSV Flow

1. Interface with an external waveform viewer with additional Bluespec pro-
vided annotations, including structure and type definitions. Figure 4.1 shows
Structure of BSV Compiler and BSV synthesis.

2. Schedule Analysis viewer provides multiple perspectives of a modules sched-
ule.

3. Scheduling graphs displaying schedules, conflicts, and dependencies among
rules and methods.

4.3 Bluespec SystemVerilog Constructs

4.3.1 Rules

Rules are used to explain how the data shifts from one state to another state, instead of
the Verilog methods of uses always blocks. Every Rule has two components:

• Rule conditions : In rule condition we declare condition like in while in c. if
condition satisfied then goes to rule body.

• Rule body : It is a set of actions these explains state transitions.

4.3.2 Modules

A module has of three kind of things: state, rules that operate on that state, and an
interface that has inputs and outputs of module. A module definition specifies a scheme
that can be instantiated multiple times.

12

4.3.3 Interfaces

Interfaces give a means to group of wires into bundles with mentioned uses, explained
by methods. An interface is a tend to remind one of something of a struct, where each
member is a method. Interfaces may have other interfaces also.

4.3.4 Methods

Signals and buses are driven in and out of modules using methods. These methods are
grouped together into interfaces. There are three kinds of methods:

• Value Methods: It takes zero or more parameters and returns a value.

• Action Methods: It takes zero or more parameters and It performs an action inside
of module.

• Action Value Methods: It takes Zero or more parameters, and performs an action,
and returns the result.

4.3.5 Functions

Functions are simply parametrized combinational circuits. Function application sim-
ply connects a parametrized combinational circuit to actual inputs.

4.4 Application Areas of Bluespec System Verilog
• Modeling for Software development

• Modeling for Architecture Exploration

• Verification

• IP creation

4.5 Building a design in Bluespec System Verilog
• The designer writes the BSV code and it may contain Verilog, Verilog Hardware

Description Language and C components.

• The Bluespec System Verilog code is compiled into either Verilog or a Bluesim.
This step has 2 stages:

1. Pre elaboration does parsing and it also does type checking.
2. Post elaboration does code generation.

The compiled output is either linked to a simulation environment or processed by
synthesis tool.

13

Chapter 5

TLM INTERFACE

Transaction Level modeling (TLM) is used to implement a digital systems where com-
munications happens between one to another module. Communication of modules have
FIFOs are as channels or buses.

• Every TLM has transaction requests and responses to communicate with other
modules.

• TLM interface has

1. SEND INTERFACE
2. RECEIVE INTERFACE

• Every send and receive interfaces have request and responses.

5.1 BSV TLM interfaces

5.1.1 Data structures

IN BSV TLM package has two data structures.
• TLMRequest

• TLMResponses

Figure 5.1 shows Interfaces and data structures of TLM.

Figure 5.1: TLM Interfaces

5.1.2 TLM Request

Each TLMRequest has two control signals and data. TLMRequest has tagged with
Request descriptor or Request data.

• Request descriptor has control signal information, these control signals are de-
clared in TLM packages by default and those are

1. command
2. mode
3. addr
4. data
5. burst length
6. byte enable
7. burst mode
8. burst size
9. prty

10. lock
11. thread id
12. transaction id
13. export id
14. custom

• Request data has data signals these are

1. erase
2. data
3. transaction-id
4. custom

5.1.3 TLM Response

TLMResponse has valid values of members those are
1. command

2. data

3. status

4. prty

5. thread id

6. transaction id

7. export id

8. custom

15

5.1.4 Interfaces

Interfaces of TLM define how TLM blocks are interconnected and how they communi-
cated. The TLM package includes two basic interfaces:

• TLMSendIFC interface

• TLMRecvIFC interface

These two interfaces use Get and Put sub interfaces as requests and responses.
• TLMRecvIFC interface receives (Put) requests and generates (Get) responses.

• TLMSendIFC interface generates (Get) requests and receives (Put) responses.

5.1.5 TLM advantages

TLM interfaces has following advantages:

1. TLM model is accuracy.
2. By using TLM interfaces we can connect easily to other modules.
3. Most of the design errors can be detected during the TLM verification phase.
4. TLM code is more compact and readable than its RTL (VHDL or Verilog or

Bluespec) equivalent.

16

Chapter 6

DESIGN AND IMPLEMENTATION

Here we will discuss how we have implemented the coherent ring interconnect to

achieve cache coherence. In this coherent Ring interconnect design all the cores or

nodes are connected in a ring fashion.where packets can move in a ring in clock wise

direction to reach any other node in a ring interconnect.

The routing of Basic ring interconnect will be shown in the Figure 6.1

Figure 6.1: ring interconnect daiagram

We identify that the interconnect itself is the topmost module of our design. The

main components of the ring module are the nodes and the caches that connect them.

We observe that the rings main function is to facilitate the transfer of packets . It may

be between the nodes or between the nodes and caches. The top level of the ring is

presented shown in the Figure 6.2. Note that by convention we use East and West to

indicate the directions.

Figure 6.2: ring with 8 nodes

If we go through this coherent ring interconnect design, any Implementation of the

design is carried out in either top down approach or a bottom up approach. In top down

approach, the highest module in the hierarchy is implemented first and functionality of

the lower level modules is assumed whereas in the bottom up approach, the lower level

modules are first created and the internal working of each lower level is well known

prior to dealing with the higher level modules. Figures 6.3 and Figure 6.4 gives an idea

of these two approaches. The selection of an approach is left on the coder and is made

as per the level of comfort one has with the concept. We have implemented the design

in a top down approach.

18

Figure 6.3: bottom up approach

Figure 6.4: top down approach

We are following top down approch in our project. Since Bluespec System Verilog

allows behavioural modeling of the design, we describe the working of the ring using

rules and interfaces. Put simply, the rules are the part of the code that are fired or

executed at every clock cycle in parallel to other rules if all their implicit and explicit

conditions are met. The interfaces define the input and output signals of the module.

6.1 Interfaces

Here we have used two basic types of TLM interfaces .

• TLMRecvIFC interface

• TLMSendIFC interface

The TLM interfaces will act as input and output ports for communication with other

modules. These interfaces use basic Get and Put sub interfaces as the requests and

19

responses, The TLMSendIFC interface generates (Get) requests and receives (Put) re-

sponses. The TLMRecvIFC interface receives (Put) requests and generates (Get) re-

sponses. Interfaces used in our code are shown in the Figure 6.5

Figure 6.5: code snippet of interfaces

we can see how these interfaces connected to the node in the Figure 6.6. It is single

node which shows all the interfaces that are connected to one particular node in a ring

interconnect.We just replicated this node to design the complete ring interconnect.

Figure 6.6: single node with interfaces and fifos

6.1.1 TLMRecvIFC

The TLMRecvIFC interface receives the requests and transmits the responses.

20

interface Vector #(My_No_of_nodes, TLMRecvIFC #(Req_from_node,Rsp_to_node))

node_in_ifc;

interface Vector (1, TLMRecvIFC (Req_from_node,Rsp_to_node)) node_in_ifc3;

interface Vector #(No_of_nodes, TLMRecvIFC#(Req_from_node,Rsp_to_node)))

cache_ifc;

node_in_ifc is the vector of receive interfaces which receive the requests from the

previous nodes connected through the ring. cache_ifc is the receive interface which

receive the requests from the caches connected to the nodes in the ring interconnect.

6.1.2 TLMSendIFC

The TLMSendIFC interface transmits the requests and receives the responses.

interface Vector #(No_of_nodes, TLMSendIFC #(Req_from_node,Rsp_to_node))

node_out_ifc;

interface Vector #(No_of_nodes, TLMSendIFC #(Req_from_node,Rsp_to_node))

req2_cache_ifc;

node_out_ifc is the vector of send interfaces which forwards the request from one

node to other node in a ring interconnect . req2_cache_ifc is the send interface which

sends the requests from nodes to caches.

The packets that route through the ring interconnect are TLM packets which comes

from cache module. we will send that packet into our ring interconnect.It will route

through all the nodes and update all the other caches block status thus coherence main-

tained.

6.2 Fields in TLM packet

• address

• data

• command

• custom

• lock

21

6.2.1 Address

This field has 32 bit address. It gives the address of the shared memory block requested

by the cache .It helps us to identify the block in any cache and update its status.

6.2.2 Data

This field contains 32 bit data. It gives the data of the cache request .It helps us to get

the data of that block in any cache

6.2.3 Command

This field tell about type of request the core was received either READ or WRITE.

6.2.4 Custom

We have used this field to send/receive cache block status .i.e we are using MOESI

protocol in our project.The no of states required to implement MOESI protocol are 5

.For that we need 3bits to represent the cache block status.So this custom field will be

Bit(3) type which will inform about the status of the block.

6.2.5 Lock

This field have Bool as its data type .It is used to know weather the cache has send the

request or not.

We used these feilds like this

req_from_node.addr =32’h00000001;

req_from_node.data = 0;

req_from_node.command = READ;

req_from_node.custom =001;

req_from_node.lock =True;

22

6.3 Working of Fifos

The memory elements used in our design are FIFOs.we have used some special FIFOs

like BYPASSFIFOs to resolve the timing issues occured when feedback is connected

.Which can enq and deq at same time (i.e in the same clock cycle).where as in ordinary

FIFO we can only enq or deq one at a time.Figure 6.7 will show how the packets rout

from one fifo to another fifo in our design .

Figure 6.7: FIFO VIEW OF SINGLE NODE

Let us look into the purpose of each FIFO .

• NODE_IN_REQ FIFO

• NODE_OUT_REQ FIFO

• CACHE_REQ FIFO

• REQ2_CAHE FIFO

6.3.1 NODE_IN_REQ FIFO

node_in_fifo is vector of fifos .We have used all these fifos as bypassfifos expect the

initial fifo which is ordinary fifo.The reason for using ordinary fifo is to connect the

23

feedback from NODE7 to NODE0. Here the node_in_fifos vector is used to store the

packets coming into the node.These packets will be send to req2_cache fifo which will

send the updtes to cache.These packets will also send to bypassfifos depends on the

cache requests at that time.

6.3.2 NODE_OUT_REQ FIFO

node_out_fifo is vector of bypassfifos .We have used all these fifos as bypassfifos .So

we can do enq and deq at same time (i.e in the same clock cycle).Here the node_out_req

fifos vector is used to store the packets that is received from the cache_req fifo or

node_in_req fifo depends on which rule fired first.These packets will be send to node_in_fifos

of other node. This fifos will facilitate the routing of the packets inside the ring inter-

connect.

6.3.3 CAHE_REQ FIFO

cache_req_fifo is vector of bypassfifos .we have used all these fifos as bypassfifos .In

this fifos we can do enq and deq at the same time (i.e in the same clock cycle).This

vector fifos are used to store the packets that is received from the cache.These packets

will be send to node_out_req fifos depends on the cache request lock status.

6.3.4 REQ2_CAHCE FIFO

req2_cache fifo is vector of bypassfifos .We have used all these fifos as bypassfifos .In

this fifos we can do enq and deq at same time (i.e in the same clock cycle).Here the

req2_cache fifos vector is used to store the packets that is received from the node.These

packets will be send to cache to update the cache memory status.

6.4 Operation Of Coherent Ring

As a part of coherent ring design we have used rules as a part of our code .which

will trigger at every clock pulse.we have designed each node operation in with help

24

of 3rules.which will fire one after the other because of using bypass fifos .Which will

allow enq first and then deq.Hence rules will be fired in a particular order.Three rules

were used to rout the packets in ring interconnect

• Rule internal:

• rule internal_from_cache:

• rule external:

Figure 6.8 explains the working of these three rules

Figure 6.8: WORKING OF RULES

6.4.1 Rule internal

The pink arrow shows the transfer of packet from node_in_req fifo to node_out_req

fifo.The request is transfered from node in fifo to node out fifo with in the same node.This

rule will fire when there is no cache request .When ever this rule fires a wire named

wr_lock will become False.If all the nodes wr_locks becomes False then it indicates

that all the requests are serviced.Than cache fifos will enque new set of cache requests.

25

6.4.2 Rule internal_from_cache

The red arrow shows the transfer of packet from cache_req fifo to node_out_req fifo.This

rule will fire when there is a cache request .When ever this rule fires the request packet

from cache is transferred from cache fifo to node out fifo of the same node and wr_lock

will become True.This wire wr_lock is used in priority ordering of ring interconnect.

6.4.3 Rule external

The yellow arrow shows the transfer of packet from node_out_req fifo to node_in_req

fifo of the next node.This rule will always fire what ever may be the cache request.This

rule helps in forwarding the packet inside the ring .The packet which reached the

node_in_req fifo of next node will forward through the rule internal at next node and so

on.

6.5 Priority Logic

Some times we may face situation like more than one core put requests at the same

instance of time.Then we need to give priority to one among them .After the completion

of one request we will service the request of other core.In our coherent ring we have

given a priority ordering in the clock wise order.According to the given priority ordering

node0 has given 1st priority and node7 has given the last priority.We have implemented

the priority ordering with the help of the following logic which is included in the Figure

6.9.

Let all the cores sends its cache requests at same time then cache0 request will be

serviced first and cache7 request will be serviced at the end.Figure 6.9 will explain the

cache requests and the operation of our coherent ring.Here True means cache sent the

request .False means cache has not sent request.Dont care means what ever may be the

cache request either its True or Fasle.

26

Figure 6.9: priority ordering logic table

So if we receive a request from cache0 independent of the other caches requests

always cache0 request will be served with highest priority .Similarly cache1 has more

priority independent of other caches requests when cache0 has not sent request and so

on.

Figure 6.10: priority of nodes

Figure 6.10 shows the priority ordering of different cores in a ring interconnect.

27

6.5.1 Priority and Routing

Now we look into the routing of the packets through the coherent network when more

than one core send requests at same time.We already know from the priority order-

ing cache0 request will be served first if it sends a request.all the other nodes are acti-

vated their "rule internal" and deactivated the rule "internal_from_cache" .so the request

packet received by the cache0 will be routed successfully through the coherent ring net-

work and updates all the caches connect to the ring.We can see the routing of packets

in the Figure 6.11

Figure 6.11: ROUTING OF PACKETS WITH PRIORITY ORDER

Figure 6.11 shows that when it services one request all the other nodes are discon-

nected from their respective caches through receive interfaces. But always connected

through send interfaces.Through these send interfaces block status of caches will up-

date.

If all the cache requests are serviced. wr_lock of all the nodes will become Fasle

then rule "rule_for_deq” will be fired .All cache_req fifos will be dequed.And new

cache requests will enque into the cache fifos.Figure 6.12 shows the code snippet for

this rule.

28

Figure 6.12: rule for deq

Because of the rule shown in the Figure 6.12 ,we can dynamically enque the new

cache requests into cache fifos when ever the ring becomes idle .That wraps the discus-

sion on the Design and Implementation .

29

Chapter 7

SIMULATIONS RESULTS AND SYNTHESIS

REPORT

7.1 Hardware Design Flow

Coding the design in a high level language is job only half complete. The final real-

ization of the hardware is the ultimate goal of any project. The hardware or the VLSI

design flow as depicted in Figure 7.1 gives the major steps taking the design towards

physical realization. A short detour explaining this flow is in order at this stage.

The design of any product starts with an idea. The idea is born out of a client re-

quirement. This idea is put down as a higher level behavioural model of the final product

using the high level languages like BSV. The behavioural model is then compiled into

a RTL using a suitable compiler. RTL are generally the description of the circuit at the

module level where input output interfaces, clock and other signals are visible. Any

design can be described in RTL using the Huffman’s model.

Once the RTL is arrived at, the next step in the design flow is the logic synthesis.

Using commercial EDA tools, the designer converts the RTL into a netlist which is

nothing but a list of gates and wires whose input output are specified. The EDA tools

gives a lot of options like types of gates to be used, constraints for the design with

respect to the power, area and timing, thus a highly optimized netlist is achieved after

logic synthesis.

On getting the netlist, more EDA tools are used to do place and route of gates and

wires or floor planning as it is popularly called. The result of place and route is the

mask that could be handed over to the foundry for carrying out the fabrication of the

chip. Two most important part of the design flow are the testing and verification. Testing

is done to ensure final chip does not suffer from manufacturing defects and verification

is done at each stage of the flow to ensure the design meets the requirements as were

Figure 7.1: Flow of synthesis

originally projected. In our case however, we limit the scope to design, implementation

of the design in BSV, simulations and logic synthesis is done to verify performance.

Since the design process has been dealt with in earlier chapters adequately. We

already looked at implementation in the BSV. As previously mentioned we have adopted

the top down approach for coding the design. Hence, higher level module of ring was

first implemented using behavioural modeling and then the behaviour is realized using

the lower modules that implements the functionality and are instantiated in the higher

modules.

7.2 Simulation

On completion of the BSV coding, the project is compiled with BSV compiler which

gives options to compile for BSV simulator or to generate verilog files for further pro-

cessing. In our case we need both. We simulate the design using the Bluesim simulator

and observe the number of clock cycles which was shown to be a good indicator of the

latency in the network. The results of the simulation are observed on the BSV GUI and

recorded for analysis.The Simulation Results for some test cases are shown below

31

In our project we have represented MOESI protocol states as 3 bit binary numbers.

• MODIFIED :001

• OWNED :010

• EXCLUSIVE:011

• SHARED :100

• INVALID :101

7.2.1 Test Case:1

Let core0 and core1 have a particular shared memory block in both of their private

L1 caches.Let Core0 modified the data in that memory block .At the same instance of

time core1 want to read the data from that memory block.According to cache coher-

ence core1 should receive the latest updated value of that particular memory block.For

this to be happen first the block status of cache0 should changed to “MODIFY” and

propagate the block status “INVALID” to all the other caches connected in the coher-

ent ring inteconnect.When the packets were routing in the ring innerconnect core1 will

update its private cache block status to “INVALID”.So that the read request received by

cache1 will not service the wrong data(old data) to core1.In the next clock cycle core1

READ request will be serviced with updated data by making its cache block status

“SHARED”and sending the block status update “OWNED” through the ring bus.So the

cache0 will update its block status to “OWNED” and cache1 which is in "SHARED"

mode can get the updated data.Hence data consistency is maintained.We can see the

Blue spec simulation results for this test case in the figures 7.2 and 7.3.

32

Figure 7.2: BSV SIMULATION RESULTS of 1ST and 2ND CLOCK CYCLES

In the Figure 7.2 in first clock cycle core0 want to write the data into cache0 .So

cache0 will change its state to “MODIFIED ” and cache0 will propagate block status

“INVALID”(101) to all the other caches. In the Figure 7.2 we can see the propagation

of INVALID(101) signal through the ring interconnect. So cache1 which have the same

memory block will update its status to "INVALID".

33

Figure 7.3: BSV SIMULATION RESULTS of 3RD CLOCK CYCLE

Now in the 3rd clock cycle when core1 READ request is serviced it will change its

cache block status to “SHARED” mode and propagates “OWNED”(010) block status

to all the other cahes.In the figure 7.3 we can see the propagation of OWNED(010)

signal through the Ring inteconnect. Finally the memory block in cache0 will be in

“OWNED” state and cache1 will be in “SHARED” state.Both the memory blocks have

same updated data which was updated by WRITE request of core0 .Once all the requests

are serviced caches will enque new requests.Hence cache coherency is maintained.

34

7.2.2 Test Case:2

Let us consider the worst case in which all the cores wanted to WRITE into the same

memory block at the same instance.All the cache blocks get the write requests from their

respective cores.As per our design we have given more priority to core0 and then core1

,core2 and so on.So first core0 request will be serviced, i.e memory block in cache0 will

changed to “MODIFIED” state and update its value through WRITE operation. Propa-

gate the block status “INVALID” to all the other caches. In the 2nd clock cycle core1

request will be serviced this time core1 will update the memory block .finally in the 8th

clock cycle expect cache7 all the caches blocks status becomes INVALID.cache7 only

have the latest updated value with block status “MODIFIED” .So cache coherency is

maintained even in worst case situation.We can see the Blue Spec simulation results of

Test Case:2 in the figures 7.4 to 7.8.

35

Figure 7.4: BSV SIMULATION RESULTS OF 1ST AND 2ND CLOCK CYCLES

In the figure 7.4 according to priority logic in first clock cycle core0 writes the data

into cache0 .So cache0 changes its block status to “MODIFIED ” state and it propagates

block status “INVALID”(101) to all other caches. In the figure 7.4 we can see the

propagation of INVALID(101) signal through the Ring interconnect.So memory blocks

in all the other caches will be in “INVALID” state.

In second clock cycle core1 writes the data into cache1 .So cache1 changes its block

status to “MODIFIED ” state and it propagates the block status “INVALID”(101) to all

other caches. In the figure 7.4 we can see the propagation of INVALIDATE(101) signal

through the Ring . So memory blocks in all the other caches will be in “INVALID”

state.

36

Figure 7.5: BSV SIMULATION RESULTS OF 3RD AND 4TH CLOCK CYCLES

In the figure 7.5 according to priority logic in third clock cycle core2 writes the data

into cache2 .So cache0 changes its block status to “MODIFIED ” state and it propagates

block status “INVALID”(101) to all other caches. In the figure 7.5 we can see the

propagation of INVALID(101) signal through the Ring interconnect.So memory blocks

in all the other caches will be in “INVALID” state.

In fourth clock cycle core3 writes the data into cache3 .So cache3 changes its block

status to “MODIFIED ” state and it propagates the block status “INVALID”(101) to all

other caches. In the figure 7.5 we can see the propagation of INVALIDATE(101) signal

through the Ring . So memory blocks in all the other caches will be in “INVALID”

state.

37

Figure 7.6: BSV SIMULATION RESULTS OF 5TH AND 6TH CLOCK CYCLES

In the figure 7.6 according to priority logic in fifth clock cycle core4 writes the data

into cache4 .So cache4 changes its block status to “MODIFIED ” state and it propagates

block status “INVALID”(101) to all other caches. In the figure 7.6 we can see the

propagation of INVALID(101) signal through the Ring interconnect.So memory blocks

in all the other caches will be in “INVALID” state.

In sixth clock cycle core5 writes the data into cache5 .So cache5 changes its block

status to “MODIFIED ” state and it propagates the block status “INVALID”(101) to all

other caches. In the figure 7.6 we can see the propagation of INVALIDATE(101) signal

through the Ring . So memory blocks in all the other caches will be in “INVALID”

state.

38

Figure 7.7: BSV SIMULATION RESULTS OF 7TH AND 8TH CLOCK CYCLES

In the figure 7.7 according to priority logic in seventh clock cycle core6 writes

the data into cache6 .So cache6 changes its block status to “MODIFIED ” state and it

propagates block status “INVALID”(101) to all other caches. In the figure 7.7 we can

see the propagation of INVALID(101) signal through the Ring interconnect.So memory

blocks in all the other caches will be in “INVALID” state.

In 8 th clock cycle core7 writes the data into cache7 .So cache7 changes its block

status to “MODIFIED ” state and it propagates the block status “INVALID”(101) to all

other caches. In the figure 7.7 we can see the propagation of INVALIDATE(101) signal

through the Ring . So memory blocks in all the other caches will be in “INVALID”

state.

39

Figure 7.8: BSV SIMULATION RESULTS OF 9TH AND 10TH CLOCK CYCLES

In the ninth clock cycle the INVALID signal sent by cache7 routing in the ring. All

cache requests were serviced by this time.Finally one cache i.e cache7 will have the

most updated data. Hence data consistency is maintained. Once all the cache requests

were serviced caches will now enque new requests from 10th clock cycle onwards.

40

7.3 Synthesis

Further the design is compiled to generate the verilog files which are required for the

EDA tool to complete the logic synthesis as discussed in the design flow diagram. We

not only receive an optimized netlist after logic synthesis but also reports for area and

timing which are required for analysis.

The synthesis tool accepts the verilog files of the design and runs the synthesis algo-

rithm for logic minimization. The synthesis culminates with generation of synthesized

design schematic and detailed synthesis report with hardware units used in the final de-

sign. It is possible to selectively visualize the flow of the signals and the modules of

interest making it convenient for the designer to verify the correctness of the design.

41

7.3.1 Device utilization summary

Figure 7.9: Device utilization summary

42

7.3.2 Timing Report:

Figure 7.10: timing report

43

Chapter 8

CONCLUSION AND FUTURE WORK

8.1 Conclusion

The effort of the work presented here is to solve the coherence problem in multi-

core system in a ring interconnect.The Cache module with(MOESI) protocol Using

TLM(Transaction level modeling) have been successfully implemented in Ring inter-

connect with Parameterised no of nodes in BSV.All the nodes in a ring interconnect

are communicated through TLM send and receive interfaces. Communication between

cache and node is done with TLM send and receive interfaces and also implemented the

priority ordering in the interconnect. This routing between all the nodes will be done

with latency of ONE clock cycle.

8.2 Future work

The research on coherence on interconnect design for multi-core networks is relatively

new field. With acceptance of the fact that multi-cores are the only viable option for

performance scaling for next few decades to come.

Shrinking the transistor sizes do come with possibility of manufacturing defects

and process variations. So although as of now ring interconnect is assumed to be fault

free, reliable solution for packet exchange, the future interconnects will have to care for

such challenges by exploring the possibility of using encoding schemes and other such

protocols so that the interconnect can continue to provide reliable end to end solutions.

Here we implemented MOESI Protocol in L1 cache and maintained a coherence

in ring interconnect network. To further this implementation we can implement All

protocols in one module by giving some input bit it will select which protocol to use(like

1-MSI, 2-MESI, 3-MOESI,4-MESIF etc) to achieve more efficient in timing point of

view.

Not only ring bus topology, We can also further implement cache coherence to

Ring,Mesh and torus. As the no of cores in processor increases its better to go for

mesh ,torus so that latency will be reduced. We can also implement all topologies in a

single system and can access any one by giving request (Like 1-Ring, 2-Mesh ,3-Star

etc) depends on no of cores in the processor.

45

Bibliography

[1] Bluespec Inc.Bluespec System Verilog Reference Guide,Revision 30 July 2014.

[2] Coherence Ordering for Ring-based Chip Multiprocessors,39th Annual IEEE/ACM

Symposium on Microarchitecture (MICRO-39), 2006

[3] RING-DATA ORDER: A new cache coherence protocol for ring-based multi-

cores,High Performance Computing Simulation, 2009. HPCS ’09. International

Conference on, June 2009

[4] The Performance of Cache-Coherent Ring-based Multiprocessors,Luiz An Barroso

and Michel Dubois

[5] RISE Lab,Shakti Series Processors.ppt

[6] A Cache Coherence Protocol for the Bidirectional Ring Based Multiproces-

sor,Hitoshi Oi and N. Ranganathan

46

