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ABSTRACT

Most of the today's computer architecture research is focussed around improving the performance 

of a processor. Instruction level parallelism is one among the processor design techniques that speed 

up the processor by allowing individual machine operations such as integer addition subtractions, 

floating  point  operations,  memory  operations  to  execute  in  parallel.  As  a  result,  most  modern 

processors aim at getting better performance through parallel instruction processing. This project 

aims at improving the speed of the processor by processing three instructions simulteneously. It is 

implemented in Bluespec systemverilog, a high level HDL (Hardware Description Language) with 

good modularity, flexibility, and with good ease of testing and debugging and hence easy to add 

new design modules and features. This processor is included in open source cores development 

project at RISE lab, IIT Madras.

Following features are implemented in I-Class processor. i) Fetch width of 3 ii) Parameterised FTB 

(Fetch Target Buffer) size, entry ROB size, issue queue size, load store queue size etc iii) Merged 

Register file renaming iv) Operand forwarding and wake up logic v) Speculative load store unit to 

achieve out of order execution of load store instructions vi) Unified issue queue vii) Fetch target 

buffer to store fetched instruction block viii) Tournament branch predictor unit.

Keywords: I-Class, Fetch target buffer, Superscalar processor,  speculative load-store unit, unified  

issue queue, tree based priority encoder logic, merged register file renamer, tournament branch  

prediction .
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Chapter-1

Introduction

Computers have become essential component of our day to day life. Microprocessor is the heart of 

any computer  which  incorporates  the  functions  of  CPU in a  single  integrated  circuit  or  a  few 

integrated circuits.  A processor is a programmable electronic device that accepts binary data as 

input, processes it as per the instructions stored in memory and provides the output result.

1.1 Generations of Microprocessor:

1.1.1 First Generation:

              Microprocessors introduced in 1971-1972 comes under this category. They processed their  

instructions serially. Each instruction is fetched, decoded and executed serially. After execution of 

one instruction next instruction will be fetched by the microprocessor.

1.1.2 Second Generation:

               Pipelined instruction processing and 16 bit arithmetic were introduced in this generation. 

Newer semiconductor technology was introduced in this generation which resulted in high speed 

and high chip densities.

1.1.3 Third Generation:

                It was introduced in 1978 when the IC transistor count reached 2,50,000. Onchip cache  

was implemented and pipeline depth is also raised to more than 5 stages.

1.1.4 Fourth Generation:

               These Processors can retire more than one instruction per clock cycle and the IC transistor  

count crossed million. Intel’s 80960CA and Motorola’s 88100 comes under this generation.

1.1.5 Fifth Generation:

                The design of these processors exceeded ten million transistors. They implemented 

decoupled superscalar processing for the first time.

1.2 Classification of Microprocessors:

1



Microprocessors can be classified into three categories based on their characterstics:

a)RISC processors

b)CISC processors

c)Special processors

1.2.1 RISC processor: RISC stands for Reduced Instruction Set Computer.

The distinguished characteristics of a RISC processors are:

• Few instructions 

• Relatively less addressing modes 

• All ALU operations done within the CPU registers     

• Memory access allowed only for load and store instructions 

• Hardwired control Unit

• Fixed Instruction length.

Some architectural features of RISCs are:

• Relatively large number of registers  are present in the processing unit 

• Good compiler support for translation of high level language programs into machine level 

language programs.

• Efficient instruction pipeline mechanism is employed

• Overlapped register windows are used to speedup procedure, call and return. 

1.2.2 CISC processor: CISC stands for Complex Instruction Set computer.

The distinguished characteristics of a CISC processors are:

• More than one cycle may be required to execute one instruction

• Relatively more addressing modes 

• Microprogrammed control unit

• Variable instruction length  

• Control transfer instructions.

• Different execution times for different instructions. 

• Some instructions that perform specialized tasks. 

1.2.3  Special Processors: These are application specific processors.Core Processors,Input/output 

processor ,Transputer,Digital signal processors comes under this category. 
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1.3 Classification of Processor Microarchitecture:

Processor microarchitecture can be classified along several dimensions.The most common ones are 

discussed here.

1.3.1 Pipelined/Nonpipelined Processors:  Execution of each instruction is  furthur divided into 

various  phases  and  allow  several  instructions  to  be  processed  simulteneosly.  Pipelining  is 

implemented in almost all the processors.

1.3.2 In-Order/Out-of-Order Processors:An inorder processor processes the instructions in the 

same order as they appear in the binary code where as an out of order processor can process the 

instuctions in different order. The instructions which are independent of other instructions can be 

sent to execution earlier than those which are prior to them in the binary. The purpose of executing 

instructions out of order is to increase the instruction level parallelism by giving more freedom to 

hardware to choose which instruction to process in each clock cycle.

1.3.3 Scalar/Superscalar Processors: A scalar processor is the one which cannot execute more 

than  one  instruction  in  aleast  one  of  its  pipeline  stages.  The maximum throughput  of  a  scalar 

processor is one instruction per clock cycle. Whereas a superscalar processor can execute more than 

one instruction per cycle in all its stages and hence can achieve a throughput greater than one.

VLIW(very long instruction word) processors are a special kind of superscalar processors. They can 

process multiple instructions in all its pipeline stages.

The special features of VLIW processor are:

• It processes the instructions in the same order as binary.

• The instructions to be executed in parallel is indicated by the binary code.

• Execution  latencies  are  exposed to  the  programmer and hence constraints  regarding the 

distance between particular  types  of  instructions  need to  be satisfied  in  order  to  ensure 

correct execution.

1.3.4 Vector Processors:The ISA of a vector processor includes significant number of instructions 
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that perform vector operations. Traditionally vector processors contained instructions that operate 

on long vector lengths.But now most processors include large set of instructions that operate on 

small vectors. These are often refered to as SIMD(single instruction multiple data) instructions.Now 

a days many processors are termed as vector processors but their support  for vector instructions 

vary significantly among them.

1.3.5 Multicore processors: Processors containing more than one core are termed as multicore 

processors.  A core is  a  unit  that  processes  a  sequence of  instructions.  Most of the current  day 

processors  have  multiple  cores.A multicore  processor  can  process  different  sets  of  instructions 

parallelly and can allow them to syncronize with each other. Multicore processors normally support 

interconnects among the cores to communicate with each other and to share data among them.

1.3.6 Multithreaded processors: A Multithreaded processor can support more than one thread on 

atleast one of its cores.Multicores are different from multithreaded ia a way that multicores use 

different hardware resources whereas multithreaded share same hardware resources.

  The Processor which we aim to implement is out of order, superscalar with a fetch width of 3 and 

pipelined one.It is called I-Class processor which is included in  open source cores project in Rise 

Lab,IIT Madras. 
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CHAPTER-2

                              OVERVIEW OF PIPELINE AND ITS HAZARDS

This chapter deals with the details of processor architecture and the basics of pipelining. Generally 

pipeline stages of a processor are fetch,decode,execute and write back.

These are not necessarily the pipeline stages in every processor.A particular implementation can 

divide each of these into several stages or can group many of them into one single stage.The latency 

of each stage may vary slightly. Its quite common to add buffers between the pipeline stages which 

allows the processor to hide some of the stalls like operand not ready etc.

2.1 Pipeline Basics:

Pipelining  is  a  technique  through  which  instruction  level  parallelism  can  be  employed  in  a 

processor.The instruction cycle is split into several steps so that different steps can be executed 

parallelly  and  hence  instructions  can  be  processed  concurrently  rather  than  serially.  Pipelining 

cannot reduce instruction latency as it has to go through all the stages of pipeline but increases 

throughput by allowing multiple instructions to get processed concurrently.

2.1.1 Design considerations:

• Speed: Pipelining keeps all the stages of the processor busy all the time and hence speed of 

the processor increases.Hazards reduces the speed of the pipeline.

• Economy:  Pipelining  enables  complex  operations  to  perform  more  economically  than 

adding complex circuitry.

• Predictability:Comparitively it is easier for the non pipelined processor to predict the exact 

sequence of instructions.

2.2.2 Overview of pipeline flow:

CPU  is driven by a clock.Each clock period need not perform the same task.There are so many 

effects that cannot happen at the same time. Pipelining modulates those effects as different stages of 

pipeline. 

Number  of  steps:  Number  of  steps  varies  with  machine  architecture.  IBM proposed  the  terms 

fetch,decode,execute which has become common.

Some processors like Intel pentium 4 have pipelines as long as 10 and 20 stages also.

The Xelerated X10q Network Processor has a pipeline of thousand stages.
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As the number of pipeline stages increases each step can be implemented using a simple circuitry. 

This enables the processor clock to run faster. Such pipelines are termed as superpipelines.

The classic RISC pipeline comprises: 

1. Instruction fetch 

2. Instruction decode and register fetch 

3. Execute 

4. Memory access 

5. Register write back

The  general  description  of  each  of  the  stages  is  given  below.Details  of  our  I_Class  processor 

pipeline stages is discussed in later sections. 

• Instruction fetch:Getting single or group of instructions from memory.

• Instruction Decode:This stage of pipeline performs decode operation to find the addressing 

mode of instruction and extract the immediate operands.

• Execute/effective address calculation: This stage consists of Arthematic and logic unit and a 

bit shifter.It may include multiply and divide unit. Calculate the effective address in case of 

memory access instructions. Performs ALU operations in case of arthematic instructions.

• Memory access:Data memory is accessed in case of load/store instructions.

• Write back:Write the calculated result or loaded memory value to the destination register.

 The figure 2.1 shows the implementation details of five stage pipeline discussed above. 

Table 2.1 shows the overlapping of instructions in the five stage pipeline.  The coloured 

column indicates parallel execution of five instructions.

                                    Table 2.1: Five stage pipeline flow diagram
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                                              Figure 2.1:  Five stage pipeline implementation 

       If there are N instructions and M pipeline stages then the number of clock periods required for 

the execution=M+N-1.We cannot increase the pipeline stages infinitely because of the following 

reasons.

• Pipeline  overhead:  Interstage  buffer  delay  (set  up  and  hold  times)  and  clock  skew 

(difference in arrival of the clock at different registers) resulted in pipeline overhead. As we 

increase the number of pipeline stages this delay becomes dominant and increases the clock 

period. 

• Pipeline latency: The pipeline frequency depends on the stage with maximum delay.If that 

stage cannot be split furthur,there is no use of splitting the other stages of the pipeline. 

• Pipeline  stalls:  Branch  mispredictions  and  data  dependencies  results  in  Pipeline 

stalls/flushes which   incur huge penalties in the case deep pipelines.

A pipeline stall stops the instruction pipeline because of pipeline hazards.

2.2 Pipeline Hazards:

Hazard  is  a  situation  in  which  the  next  instruction  is  prevented  from  getting  executed  in  its  

designated clock period. There are basically three kinds of hazards which are discussed below.

2.2.1 Structural Hazards: They arise due to resource conflicts.When a single piece of hardware is 

used in more than one stage, many instructions may require it at the same time which it cannot 
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support leading to stall in the pipeline.

For instance if we use single unit of memory both for instructions and data then fetch stage might be 

fetching  instruction  when  memory  access  stage  wants  to  read/write  data  for  load  and  store 

instructions. This can be solved by splitting the memory into orthogonal units like instruction cache 

and data cache.

2.2.2 Data Hazards:  This arises  when write and read operations occur in different order  in the 

pipeline than in the binary. Data hazard can occur in three situations.

1.Read after Write data dependency (RAW): This occurs when an instruction is supposed to read a 

location after it is written by the earlier instruction,but in the pipeline write operation is happening 

after the read that means the read instruction is getting the stale data.

2.Write  after  Read  data  dependency  (WAR):  This  is  the  reverse  case  of  RAW  dependency. 

According to the code write should occur after read but read occurs before write in the pipeline. 

3.Write  after  Write  data  dependency  (WAW):  This  situation  occurs  when  two  instructions  are 

supposed to write the same location but write opeartion is happening out of order.

Consider the example    

                                                         R2 <- R1 + R3          

                        R4 <- R2 + R3

                        R3 <- R1 + R5

Here R2 should not be read before it is written by adding R1 and R3.While R3 should not be written 

before being read to write R4. 

2.2.3  Control  Hazards:  Control  hazards  occur  due  to  branch  mispredicrions.  Sometimes  the 

processor will not know the outcome of a branch and it predicts based on past history which need  

not be correct all the time.On branch mispredictions the pipeline needs to be flushed and a new 

instruction should be fetched from instruction cache.

2.3 Eliminating Hazards:

2.3.1 Add extra hardware: This  technique resolves resource conflicts.If a single unit of hardware 

has to be used twice in an instruction, we should maintain a replica of it so that two instructions can 

access it at the same time.

2.3.2 Pipeline Bubbling: Pipeline bubbling helps in preventing all kinds of hazards. After fetching 

instructions from instruction cache the control logic finds whether a hazard could occur. If it comes 
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true  the  control  logic  introduces  NOP(no  operation)  in  the  pipeline.  Hence  before  the  next 

instruction (ie., the instruction which would have caused hazard) comes for execution the earliar 

instruction would have completed and the hazard can be prevented. But this technique introduces 

delay in the pipeline.

2.4 WAYS OF EXPLOITING INSTRUCTION LEVEL PARALLELISM:  There are a wide 

variety of techniques to improve instruction level parallelism. Some of them are discussed below.

2.4.1 Out of order execution:  Instructions which are independent of earliar instructions can be 

scheduled between the producer and consumer instructions so that the pipeline continues without 

introducing NOPs. All the pipeline stalls due to RAW hazards are due to data dependencies among 

them. We can exploit the parallelism of instructions to keep the pipeline full. Such stalls can be 

avoided  if  the  producer-consumer  instructions  are  separated  by  number  of  cycles  equal  to  the 

latency of producer instructions.

Consider the examle

                                       DIV R5 R1 R2 

                                       SUB R6 R5 R3 

                                       ADD R4 R2 R1 

                                       MUL R7 R4 R2

                                       LOAD R10 A

                    In the above sequence of instructions, DIV operation takes more number of clock  

cycles and SUB instruction should stall for DIV operation to finish but ADD instruction has both its 

operands ready and MUL should wait for ADD to finish to resolve data dependency.Here the ADD 

can be scheduled between DIV and SUB and Load can be scheduled before MUL to avoid stall in 

the pipeline. As soon as R4 is available MUL can be sent for execution.Hence the overall clock 

frequency is improved since the out of order execution is hiding the latency caused by DIV and 

MUL instructions.

But this out of order execution of instructions results in the following impediments in the pipeline.

•   Probability of WAW and WAR hazards: As the instructions are now executed out of order 

there is  a possibility that an instruction present lower in the binary code writes a register 

before it is read/written by an instruction present above in the binary. This can be eliminated 
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by renaming the registers before sent for execution.

•   Handling  precise  Exception: Out  of  order  instruction  execution  may  cause  imprecise 

exceptions ie.,when an exception is arised the state of the processor is not exactly the same 

as  if  the  instructions  were  executed  in  program order.We can  get  precise  exception  by 

delaying the exception notification  till all the instructions above the instruction generated 

exection are finished.

•   Managing speculative instructions: Processors using branch predictors issues instructions 

after branch eventhough the branch outcome is not known.Such instructions are termed as 

speculative instructions.In order to maintain precise exception,the register file  should be 

updated  only  when  the  instructioin  is  no  longer  speculative.This  can  be  done  if  the 

instructions write the reg file in the same order as in the binary code. This stage of pipeline 

is called 'commit' stage.

 Now we see how the above discussed methods are actually implemented in hardware.

2.4.1.1 Register rename:

 Register  rename  is  generally  seen  in  out  of  order  processors.  In  an  out  of  order  processor, 

instructions are reordered to improve the amount of instruction level parallelism that is exploited. 

But this out of order execution gives incorrect results because of data dependencies among the 

instructions which force them to get executed in program order. Register renaming is a well known 

scheme for out of order execution. It effectively resolves the data dependencies by allocating a free 

register to every instruction. The destination register of every instruction is given a new name when 

it comes to map stage.This eliminates Write after Read and Write after Write hazards. 

Consider the example given below

                                              ADD R1 R2 R3

                                              SUB  R5 R1 R4

                                              MUL R1 R7 R8

                                              DIV R11 R1 R12

                                              STR R1 6(R10)

WAW hazard can occur if MUL is sent for exection before ADD. WAR hazard can occur if MUL is 

sent for execution before SUB.similarly STR and DIV are also WAR hazard pairs.The renamed 

instructions look like the following:
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                                              ADD R1 R2 R3

                                              SUB  T5 R1 R4

                                              MUL T1 R7 R8

                                              DIV T11 T1 R12

                                              STR T2 6(R10)

T1,T2,T5,T11 are introduced to store the short term results of MUL,STR,SUB,DIV instructions 

WAW hazard is eliminated by using T1.WAR hazard between MUL and SUB is also eliminated 

using T1.WAR hazard is eliminated by using T2. Hence the false dependencies are removed. 

2.4.2 Operand Forwarding:

Sometimes it happens that the data is available somewhere but not exactly where we want.In such 

situations we create extra paths to transfer the data to the location where it is needed. This technique 

sees advantages over other techniques because it does not slow down the processor and does not 

affect the semantics of the instruction set.

       As we have seen that the data hazards stall the pipeline till the result of the producer instruction  

is written into the destination register. Instead of waiting for that, result calculated in the MEM and 

EXE stages of the pipeline can be sent to the Id stage of consumer instruction in the same cycle.

  

                                                     Figure 2.2: Operand Forwarding
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2.4.3  Instruction Prefetcher: 

 Instructiion level parallelism can be improved effectively by employing prefetchers. Cache miss 

stalls the instruction pipeline flow for one or more clock cycles.To nullify this effect, prefetchers 

fetch instructions before they are needed. These prefetched instructions are enqued into a special 

queue named instruction queue. Typically the instruction queue size is around 16. By implementing 

instruction prefetcher,we can hide the memory latency and memory appears to have a performance 

equal to processor register.

To hide latency effectively, a prefetcher should:

1.Predict the address of memory access for being accurate.

2.Predict when to issue a prefetch ie., it must be timely

3.Effectively select where to place the prefetched data and which other data to replace.

Various kinds of instruction prefetchers are discussed here

2.4.3.1 Next line prefetcher: 

Next line prefetching is simplest kind of instruction prefetching which is widely used in current day 

processors. Since code is laid sequentially in consecutive memory locations,over half of the cache 

look up is for sequential address. The logic of generating sequential address is relatively simple and 

is easy to incorporate it into processor and cache hierarchy.

          

                                                         Figure 2.3 :  A Next line prefetcher

Figure 2.3 dipicts the anatomy of next line prefetcher used in current day processors. An instruction 

prefetch  buffer  strores  the  instruction  cache  blocks  prefetched  from  lower  cache  hierarchy 

levels.Each  time  a  block  from the  stream buffer/prefetch  buffer  is  explicitely  required  by  the 

processor, it is sent to cache and a new block is fetched from memory.
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2.4.3.2 Fetch Directed Prefetching: 

Next  line  prefetchers  are  quite  simple  to  implement  but  only  half  of  the  cache  lookups  are 

sequential. Control transfer instructions break the sequential flow and create discontinuities. Hence 

a prefetcher which predicts future control flow is needed.

                           Branch predictor directed prefetchers use branch predictors to detect the control  

flow. Branch predictors recursively make predictions to explore instruction addresses for prefetch. 

Fetch  directed  instruction  prefetching  is  one  of  the  best  branch  prediction  based  instruction 

prefetcher.

                             Fetch directed architecture implements a decoupled branch predictor and an 

instruction cache. The decoupled branch predictor runs ahead of execution pc and make predictions. 

The other  components  of  this  architecture  makes  use  of  these  predictions  and helps  supplying 

instruction addresses to the fetch engine. The predicted instruction addresses are stored in the FTQ 

whose corresponding instructions are fetched from L2 cache and then placed in a fully associative 

buffer.The buffer is accessed by the fetch unit in parallel with the instruction cache. FDIP utilizes 

idle instruction cache ports to probe the cache for the addresses in the FTQ to see whether they are 

already present and inserts only the missing addresses in the prefetch instruction queue(PIQ).

The anatomy of FDIP is shown below.

  

                                        Figure 2.4:  Fetch-directed instruction prefetching

2.4.3.3 Discontinuity prefetching:

Next line and fetch directed prefetchers fail  to address control flow discontinuities.  Prefetching 

instructions  when  there  are  function  calls,  taken  branches  and  traps  is  a  great  challenge. 

Discontinuity predictor addresses this discontinuity to some extent. It maintains a table of fetch 

discontinuities which maps the program counter of the block containing the taken branch to its 

corresponding branch target. Even though this predictor is simple and easy to implement, it can 
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only bridge single fetch discontinuity. Further the coverage is limited since the table can record 

single discontinuity per cache block. In reality there can be multiple taken branches in a single 

instruction block.

  

                                                          Figure 2.5: A Discontinuity predictor

2.4.3.4 Return address stack directed instruction prefetching: 

The pitfall of  Fetch  directed  branch  predictors  is  that  they  cannot  past  loop  return  branches. 

Dicontinuity  prefetchers  address  these  limitations  but  they  rely  on  a  single  PC  to  predict  an 

upcoming fetch discontinuity. Hence both of these techniques fail when there are multiple control 

flow paths out of a particular cache block.

              Return address stack directed prefetching makes use of additional program context 

information to improve lookahead and prediction accuracy. This kind of prefetching is based on two 

obsravations:

         1.Program context as recorded in the call stack correlates with L1 instruction cache misses.

         2.The return address stack briefly summarizes the program context.

 

                 Proactive instruction fetch, Temporal instruction fetch streaming, Prescient fetch are 

some of the other notable instruction prefetchers.

               Prefetching needs to be done to data in order to hide the latency due to data miss patterns. 

Some  of  the  most  common  data  prefetchers  are  stride  and  stream prefetchers  and  Address 

correlating prefetchers. 

1.Stride and stream prefetchers generalize next line instruction prefetching concepts to data.

2.Address correlating prefetchers are specially designed to target pointer chasing access patterns of 

data structures.
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                To exploit instruction level parallelism branch prediction is must. Otherwise conditional  

branch instructions causes stall in the pipeline.

2.4.4 Branch scheduling:

Conditional branch instructions decide whether to take a branch or not based on run time data. This 

can be computed only in the execution stage of the pipeline. It takes atleast 10 clock cycles from the 

time a branch is fetched till it gets executed. So waiting for the result of that computation is not  

correct option in current day processors. Branch prediction can be done statistically,dynamically or 

a combination of both.

   

2.4.4.1 Static branch prediction:

Static prediction collects the most frequent outcome of each branch and uses it as a prediction.Static 

prediction is the simplest form of branch prediction as it requires only few bits(one may be enough) 

to say whether the branch should be taken or not.

   

2.4.4.2 Dynamic branch prediction: 

Dynamic prediction is based on a particular hardware that stores the  previous history of running 

application and uses it to predict every branch.A simple and quite commonly used branch predictor 

contains a table of 2^n entries of two bit each. The table is indexed with n least significant bits of  

the program counter. The corresponding entry is then used to predict whether the branch should be 

taken or not and it is updated once the branch outcome is available. In this way the most recent 

history of the branch is reflected. The two bit entry implements a finite state machine which is often 

referred to as saturating counter. The prediction of each conditiional branch is made using the past 

history of the same branch (ignoring alaising) and hence this is named as local branch predictor.

         The branches that are almost always taken will be in 11 state wheeas the branches that are 

almost always not taken will be 00 state.The branches which recently changed their bais will be in 

10 or 01 state.

          Since the table contains finite number of entries, more than one branch uses the same entry 

which sometimes gives wrong prediction.This is called alaising effect. 

The anatomy of Dynamic branch predictor is shown below.
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                                                    Figure 2.6:   A Dynamic branch predictor

2.4.4.3 Gshare predictor:

 Current microprocessors are using correlating predictor called gshare predictor to furthur reduce 

the branch misprediction penalty. Correlating predictor not only uses history of a  branch itself  but 

it makes prediction considering neighbouring branches also.

                It contains a register called global branch history register which stores the branch 

outcome of most recent branches.The PC of the branch is combined with this history through a 

hashing function to  generate an index to the table 2^n entries.Each entry is  a  2 bit  saturating 

counter. The prediction is made by this entry and is updated with the branch outcome in the same 

manner as for the local predictor discussed above.The anatomy of Gshare predictor is shown below.

                                               Fig  AGshare correlating predictor
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 There  are  so  many  other  predictors  like  the  hybrid  predictors,L-TAGE  predictor,PPM  based 

predictors which use complex circuitry to furthur reduce branch misprediction penalty.

                         Some of the above discussed methods like operand forwarding, branch scheduling, 

out of order execution, register renaming are implemented in I_Class processor and the details of 

implementation are explained in later sections. Instead of instruction prefetcher, a slightly different 

method is used, which is explained below.    

2.5 Implementation of Fetch Target Buffer in I_Class processor:

When the fetch unit requests the icache with a PC, it responds with a block of eight consecutive 

instructions which are stored in a special buffer named Fetch Target Buffer. First three amoung 

these eight instructions are send to decode unit in a way discussed in section 4.1. If the predicted 

program counter from branch predictor in the next cycle is the same as icache address of the fourth 

instruction  in  the  FTB then the  next  three  instructions  are  send to  decode unit  otherwise  new 

instruction block is fetched from icache with the predicted program counter and stored in FTB and 

the same cycle is repeated. 
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Chapter-3

RISC-V INSTRUCTION SET ARCHITECTURE

This chapter deals with the basics of RISCV ISA and a short discription of Bluespec system verilog 

in which the whole design is implemented.

3.1 RISCV ISA:

 RISCV is an insruction set  architecture that  was originally  designed to support  education and 

computer architecture but now became a standard architecture for industrial applications. RISCV 

ISA is  like  a  base  integer  ISA which  is  must  in  any  implementation  in  addition  to  optional 

extensions to base ISA. The base ISA is similar to early RISC processors except that it supports 

variable length instruction encodings.  Our goals in defining RISCV are the following:

• Its an open instruction set architecture available both for industry and academia. 

• It is suitable for native hardware implementation not just simulation and binary translation.

• It supports revised 2008 IEEE-754 floating point standard.

• Its completely virtualizable and supports hypervisor development.

• It supports user level extensions and specialized variants.

• It encourages both 32 bit and 64 bit variants for hardware implementations and operting 

system kernals.

• It allows efficient implementation but avoids over architecting for a particular design.

            The base ISA supports a  limited set of instructions sufficient to provide a reasonable  

platform for compilers, linkers, operating systems and hence provides a convinient base around 

which advanced processor ISAs can be built.The width of integer registers and corresponding user 

address spaces are different for different base ISAs. RV32I and RV64I are two base integer variants  

that provide 32 bit and 64 bit user level address spaces respectively.

                  RISCV can support extensive customization and specialization. The base ISA can be 

extended with optional instruction set extensions but the instructions in base ISA can't be redefined.

RISCV instructions are categorized into two types.

1.Standard extensions
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2.Non standard extensions

 Standard extensions should not conflict with other extensions whereas non standard extensions are 

highly specialized and may conflict with other standard or non standard extensions.

The base ISA is prefixed by RV32 or RV64  depending on register width and is called I. It supports  

integer load and store instructions, integer computational instuctions and control flow instructions.

M standard extension:  The extension M adds instructions for integer multiplication and division 

operatons.

A standard extension:  The standard atomic instruction extension A extends base  integer ISA by 

adding  instructions  that  atomically  read,  modify  and  write  memory  for  interprocessor 

synchronization. 

F standard extension:The extension F is for single precision floating point operations.It supports 

single precision load and store instructions, single precision computational instructions etc. 

D standard extention:  D is  a  double  precision  floating  point  extension  and  it  supports  double 

precion floating point load store and computational instructions.

An integer base along with these four standard extensions is named the abbrevation G and serves as 

the general purpose scalar instruction set.

3.2 Exceptions, Traps and Interrupts:

• Exception refers to an unusual condition occuring at run time.

• Trap refers to the synchronous transfer of control to a supervisor environment due to an 

exceptional condition occcuring within RISCV thread. 

• Interrupt is similar to trap but it refers to the asynchronous transfer of control toa supervisor 

environment caused by an event occuring outside the current RISCV thread.

3.3 RV32I Base Integer Instruction Set:

            There are 31 general purpose registers named x1 to x31 to hold integer values. Register x0 is 

hardwired to zero. Register x1 is assigned to hold the return address on a call. The register width is 

32 for RV32 where as it is 64 for RV64. The program counter holds the current instruction address.

3.3.1 Base Instruction Formats:  There  are  four  core  instruction  formats  in  the base  ISA. All 

instructions are of fixed  32 bit  length.  Each instruction is aligned on a four byte boundary in 
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memory. Instruction misaligned exception occurs if the pc is not four byte aligned on an instruction 

fetch.

                                                 Table 3.1:  RISCV base instruction formats

3.3.2 Immediate Encoding Variants:There are two other varieties of instruction formats lik SB 

and UJ. RISCV instruction formats based on immediate encoding variants is shown below.

                             Table 3.2: RISCV base instruction formats showing immediate variants

3.3.3 Integer computational instructions: Integer computational instructions are either encoded as 

register immediate operations or register register operations.The destination register is rd for both of 

them.

3.3.3.1 Integer register immediate instruction:All these operations are performed on a register and 

sign extended immediate number.
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ADDI adds the 12 bit sign extended immediate to register rs1.

SLTI stands for Set Less Than Immediate. SLTI places 1 in rd if rs1 is less than sign extended 

immediate,othervise it keeps 0 in it.

SLTI treats both the numbers as signed integers where as SLTIU treats them as unsigned numbers.

ANDI/ORI/XORI perform logical operatios like and,or and xor respectively on register rs1 and sign 

extended 12 bit immediate and places the result in rd.

3.3.3.2 Integer register register operations: All operations read the registers rs1 and rs2 as source 

operands and writes the result in destination register rd.

ADD and SUB perform addition and subtraction action.

The operation of SLT and SLTU is same as discussed above but here they compare registers rs1 and 

rs2 instead of immediate value.

SLL/SRL perform logical left and right shift operstions where as SRA perform arthematic right 

shift.They shift the value in register rs1 by a value equal to the lower 5 bits of register rs2.

3.3.3.3 NOP Instruction: NOP just advances the pc without changing any register values.
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3.3.4 Control transfer instructions: It supports two types of control transfer instructions. They are 

unconditional jump and conditional branches.

3.3.4.1 Unconditional jumps:  The JAL instruction stores the address of the instruction following 

the jump instruction in the register rd.The jump target address is formed by adding pc to the sign 

extended offset.It uses UJ type encoding format.

        The indirect  Jump instruction JALR uses I type encoding format. The jump target address is  

formed by adding the 12 bit signed I immediate to the value in register rs1 and then making the 

least significant bit of the result to zero. JALR stores the address of the next instruction following 

the jump instruction  in the register rd.

3.3.4.2 Conditional  branches: All  conditional  branch  intructions  use  SB  instruction  encoding 

format.  The  12 bit  immediate  encodes  signed offsets  in multiples  of two and is  added to the 

program counter to get the target address.

BEQ  and  BNE  takes  the  branch  if  the  register  values  of  rs1  and  rs2  are  equal  or  unequal 

respectively. 

BLT and BLTU takes the branch if rs1 is less than rs2 with signed and unsigned comparision.
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BGEU and BGE takes the branch if rs1 is greater than or equal to rs2 with unsigned and signed 

comparision.

3.3.5 Load and Store instructions: Load and Store instructions are used to transfer data between 

registers and memory. Loads use I type instruction encoding where as stores use S type instruction 

encoding.

Loads copy data from memory to register rd where as stores copy data from register rs2 to memory. 

The value in register rs1 is added to sign extended 12 bit offset to get effective byte address.

3.3.6 System Instructions:These are encoded using I type instruction encoding. These are used to 

access system functionality that require previliged access.

1. SCALL and SBREAK Instructions: SCALL instruction makes a request to operating system 

environment. SBREAK instruction transfers the control back to debugging environment.

3.4 RV64I Base Integer Instruction Set: RV64I supports user address space  of 64 bit. 

3.4.1 Integer Computational Instructions:  Register immediate and register operations comes in 

this category.

3.4.1.1 Integer Register Immediate Instructions: 
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ADDIW is a 64 bit instruction that adds sign extended 12 bit immediate to register rs1 and stores 

the result in destination register rd.

SLLI  stands for logical left shift and it shifts zeroes into the lower bits.

SRLI stands for logical right shift and it shifts zeroes into the upper bits.

SRAI stands for arthematic right shift and original sign bit is extended to vacated upper bits.

RV64I supports SLLIW, SRLIW, SRAIW that are analogously defined but operate on 32 bit values 

and signed 32 bit results.

3.4.2 Integer register register operations: 

ADDW and SUBW are RV64I instructions that are defined autonomously to ADD and SUB  but 

operate on 32 bit values to get 32 bit result. As discussed above SLL,SRL,SRA perform shifting 

operations on the values in register rs1 by an amount equal to lower 6 bits of register rs2.

SLLW, SRLW and SRAW are RV64I only instructions but operate on 32-bit values and produce 

signed 32 bit results.The shift is obtaines by rs2[4:0].
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3.4.3 Load and Store Instruction: 

The LW instruction loads a 32 bit data from memory and sign extends that to 64 bit and then stores 

it in register rd. 

The LD instruction loads a 64 bit value from memory into destination register rd.

                    In addition to these instructions there are some additional instructios called system 

instructions like RDCYCLE to count the number of clock cycles, RDTIME to write the clock real 

time  that has passed from an arbitrary start time in the past an RDINSTRET to write the number of 

retires instructions from an arbitrary start point in the past.

      So far we have seen the instruction varieties in base RV32I and RV64I. RV128I is also defined 

to support 128 bit user address space. In addition to these base ISA instructions standard extensions 

like M,A,F and D support additional instructions for multiplication,division,single precision,double 

precision floating point operations.

All  the Instruction Formats shown above are taken from  “ THE RISCV INSTRUCTION SET 

MANUAL   VOLUME 1: USER LEVEL ISA.”

3.5 BLUESPEC SYSTEM VERILOG: 

Bluespec system verilog abbrevated as BSV is a hardware design language used in the design of 

ASICs,  FPGAs and  systems.BSV  is  used  accross  several  applications  like  memory 

subsystems,processors, signal processing accelarators, multimedia and communication codecs and 

processors, DMAs and data movers etc.
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3.5.1 APPLICATIONS OF BLUESPEC

BSV is used in many design activities as discussed below.

• Executable specifications: For most of the current complex systems a specification written 

in  human  language  is  likely  to  be  imprecise  and  sometimes  self  contradictory  in  its 

requirements. Using precise semantics BSV addresses these concerns.

• Design  and  Implementation:  BSV enables  designing  complex  subsystems at  a  much 

higher level of abstraction and with better maintainability.

• Virtual platforms: Current day chips are dominated by the complexity of the software that 

runs on them. Waiting for chips before developing software is no longer acceptable. Virtual 

platforms enable testing and software development to begin as early as possible.  As we 

know that BSV is synthesizable, Virtual platforms written in BSV run on FPGAs at much 

higher speeds than traditional software platforms resulting in greater software development 

productivity.

• Verification environments: Verification environment is a model of the rest of the system. It 

faces several challenges like similar speed of execution issues, similar issues of reusability, 

evolvability etc.  Bluespec System Verilog is  used for coding test  benches,  synthesizable 

transactors and both system and reference models.

3.5.2 Structure of BSV:

Bluespec basically borrows its ideas from two sources for its sructural abstractions.

i)System verilog: For modules and module hierarchy, defining interfaces, syntax for literals, scalars, 

loops, blocks and expressions; syntax for user defined types like structs,enums,arrays etc.

ii)Haskell:  Its  a  modern  pure  functioning  programming  language  that  addresses  software 

complexity. It is a promising basis for attacking the parallel programming software crisis that has 

been precipitated by the advent of multi threaded and multicore processors.Bluespec borrows ideas 

from haskell for parametarization,static elaboration and more advanced types.

3.5.3 Components of Bluespec:

BSV is realized using the following components.

• BSV language  syntax:  BSV helps  a  designer  to  develop  a  high  level,hardware  design 

utilizing methods and rules which can be compiled to a verilog RTL design.
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• BSV compiler: The BSV syntax is given to the compiler to generate hardware description for 

either verilog or bluesim.

• BSV library packages: BSV contains a set of libraries to provide programming idioms and 

hardware structures.

• Primitive  Bluespec  elements:  BSV elements  like  registers  and  FIFOs  are  expressed  as 

verilog primities.

• Bluesim: A simulator for BSV designs.

• Bluetcl: A set of Tcl extensions, packages and scripts to link into a bluespec design.

• Bluespec Workstation: An integrated environment containing all Bluespec components as 

well as third party design tools, including simulators and editors.

3.5.4 Overview of Bluespec:

There are three distinct stages in designing with BSV.

• Coding a specifcation in BSV: A designer writes a BSV program, including VHDL,Verilog 

and c components as desired.

• Compiling the BSV program: Compiling a BSV program is comprized of two stages.

 a)Pre-elaboration: Type checking and parsing

 b)Post-elaboration: Code generation

• Simulation  and  Synthesis:  The  compilation  output  is  either  simulated  orprocessed  by  a 

synthesis tool.

Advantages of Bluespec over other programming languages are:

• Flexibility:  Adding extra features to the design is much simplier in Bluespec  because it 

takes  much  fewer  lines  of  code  when  compared  to  other  programming  languages  for 

implementing a design.

• Test and Debug: Bluespec generates a simulator called Bluesim as an alternative to verilog 

modules  which can be used to run design on clock cycle basis. Verification is faster in BSV 

because Bluesim is much faster than verilog/VHDL simulators.

• Design and Implementation Time: It is easier and faster to code a design in Bluespec than 

other  programming  languages  like  VHDL/Verilog  because  of  its  high  level  nature  and 

library modules.

• Modularity: Bluespec offers much higher levels of parametarization for types, modules and 

functions enabling better modular designs.
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The compilation stages of Bluespec is shown in diagram below:

                                                Fig 3.1: BSV compilation stages

                    Though Bluespec has many advantages as discussed above it has its own disadvantages 

in terms of  area, power and timing.Eventhough Bluespec says that it outputs high quality verilog 

code, In many cases it turns out that handwritten verilog/VHDL code is better in terms of area and 

timing.
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                                                                       Chapter-4

                                    Architectural Design and Implementation

This chapter explains the architectural design,Implementation details of I class processor.

4.1 Instruction Fetch unit

Instruction fetch is unit is the first  block where instructions are processed. It is responsible for 

feeding the processor with instructions to execute.  It  mainly comprizes of instuction cache and 

necessary logic to compute fetch address.

          Fetch unit sends program counter to instruction cache and gets the instructions. Fetch width 

of I class processor is 3 ie.,  three instructions must be fetched from instruction cache per clock 

period.  Hence  the  calculation  of  next  pc  should  be  done  along  with  cache  access.  Branch 

instructions introduce significant complexity as the target address is not known until the branch is 

executed. Branch predictor predicts the next pc using past history of that branch.

              Fetch unit takes the predicted PC from branch predictor unit and sends request to  

instruction  cache.  Instruction  cache  responds  with  a  cache  block  containing  eight  consecutive 

instructions.  For instance,  if  fetch unit  requests  i  cache with PC 0,  i-cache returns  a packet  of 

instructions with PC 0 to PC 8. 

                        Following  book keeping actions must be done before this block is stored in fetch 

target buffer.

• If  PC is  not a multiple of 8 ie.,  if  the last  three bits  of PC are not zero,  packet[1] and 

packet[2] are discarded.

• If  packet[0]  of  instruction  packet  is  a  branch which  is  predicted  as  taken,  then  discard 

packet[1] and packet[2].

• If  packet[1]  of  instruction  packet  is  a  branch which  is  predicted  as  taken,  then  discard 

packet[2].

  Instruction 0 is always a valid instruction.where the other instructions can be valid or 

invalid.
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           Tournament branch predictor is used which takes branching decisions based on both 

global and bimodal predictors. 

4.2 Instruction Decode Unit:

The purpose of instruction decode unit is to know the semantics of  an instruction and to define how 

this  instruction  should  be  executed  by  the  processsor.  In  decode  stage  the  processor  basically 

identifies the following aspects of an instruction.

• Type of instruction:memory,control,arthematic etc.

• Operation  to  be  performed:  ADD,SUB,OR,AND,XOR  etc.,  in  case  of  arthematic 

instructions,  BEQ,  BNE,  BLT,  BLTU,  BGE,  BGEU  etc.,  in  case  of  control  transfer 

instructions, LD, LW, SW, SH, SB etc., in case of load and store instructions.

• Resources required by the Instruction: Finds the source and destination registers.

            Typically the input to the decode unit is a stream of bytes  that contains the three instructions 

to be  decoded. The decode unit splits the byte stream into three instructions based on instruction 

boundaries and then generate a series of control signals for each valid instruction. The complexity 

of decode unit increases as we increase the number of instructions being  decoded in parallel. 

          Unconditional Jump instructions like JAL (Jump and Link) is specially processed in decode 

stage. Jump and Link instruction changes the program counter by an offset and stores PC+4 in the 

specified destination register. If a JAL instruction is encountered in the decode stage, target PC is 

calculated and stored in the program counter register.

If instr0 is a JAL, then instr1 and instr2 are made invalid in the decode packet.

If instr1 is a JAL, then instr2 is made invalid in the decode packet.

4.3 ALLOCATION Unit:

This pipeline phase performs two main activities. They are 

1. Register renaming 

2. Instruction dispatch

4.3.1 Register Renaming:

Register renaming removes false dependencies (WAR and WAW hazards) due to reuse of registers. 

Dispatch stage reserves some resources like ROB entry, Issue queue entry, Load store queue entry 
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etc. These are required by the instruction for getting executed. If any of the buffers are full the 

instruction is stalled till they become available. Current day micrprocessors are mainly using three 

kinds of renaming schemes. Thay are

4.3.1.1 Renaming through Reorder Buffer:

Data structure of the reorder buffer entry is of the following form.

                             

Valid Data   Destination Register

• Valid  : It is a boolean field that indicates whether a outcome of an instruction is calculated. It  

is made false in the raname stage and made true when the result is broadcasted by  the 

functional unit.

• Data  : It stores the result broadcasted by the functional unit until all the instructions above it 

are committed.

• Destination Register  : This field is filled during rename stage of the pipeline. It stores the 

address of the register file to which the result should be written during instruction commit 

stage.

 In this scheme of register renaming, the register values are present both in the  ROB and in the  

architectural  register  file.  The  architectural  reg  file  stores  the  latest  committed  value  for  each 

register  whereas  the  ROB holds  results  of  non committed  instructions.  When an instruction  is 

committed, corresponding entry in ROB is freed ie., it can be made available for other instructions 

in rename stage. A table called rename table indicates for every architectural register whether its 

latest value is present in ROB or regfile. The rename table contains one more field called ROB 

pointer to indicate the location of the operand in the ROB.

           There is no need of maintaining a free list since the physical registers are part of ROB entry 

assignment  which  is  basically  a  FIFO.Hence the  allocation  and release  of  physical  registers  is 

simple in case of ROB based renaming scheme.

            Since an operand can reside in two different locations in its lifetime it adds extra complexity  

to the scheme to read operands.

The anatomy of ROB renaming is shown below.
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                                             Fig 4.1: Renaming through Reorder Buffer

4.3.1.2 Renaming through a Rename Buffer:

Around one third of the executed instuctions does not produce any register result.  In the above 

discussed renaming scheme, every instruction is given a slot in the ROB which means that one third 

of the storage is not getting used.

            Renaming through rename buffer is slightly modified version of renaming through ROB. 

The idea behind this scheme is to have a separate buffer to store the result of inflight instructions.  

So, only the instructions that produce a result consumes a slot for storage. Similar to the ROB 

scheme,  results  are  first  stored  in  rename  buffer  then  copied  to  architectural  regfile  while 

committing the instructions.

4.3.1.3 Renaming through merged register file:

        As the name indicates, this renaming scheme contains a merged reister file to hold the results 

of both speculative and committed instructions. Size of this single register file is bigger than the 

number of architectural registers. Each register in this register file can either be allotted or free. Free 

registers are stored in a queue called free register queue. There is a register map table to store the 

latest physical register assignment for each architectural register. 
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Allocated register may contain any of the following values.

• A committed value which means that it is acting like an architectural register.

• A speculative  value  when  the  result  of  an  instruction  is  available  but  the  particular 

instruction is not committed yet.

• No value at all when that register is allotted but the instruction has not produced any result.

       Free queue can be implemented using a circular buffer to indicate the identifiers of free 

registers. Reneming is done using a map table whose size is equal to the number of architectural 

registers.When an instruction is renamed, the rename table is looked up to know its source operand 

mappings. If the instruction produces a register result, a register from the head of the free queue is 

removed to rename the destination operand of that instruction and the rename table is updated to 

reflect this change. The pipeline is stalled if the free queue becomes empty.

       Merged register file implementation is shown in the figure below.

   

                                                 

                                                  Figure 4.2: Merged Register file implementation

       A physical register is freed when no other instruction is going to use it anymore ie., when the  

last instruction that uses this register commits. However, it is difficult for the hardware to know the 

last usage of a register. So, the processor uses the safe and conservative way. A physical rgister is 

freed  when  the  following  instruction  that  uses  the  same  architectural  register  as  destination 

commits.

For instance, consider the following instructions.

                                      

                     R1= R2 + R3

                     R1= R6 * R7
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Renamed instructions are the following

  

                      P1= P2 + P3

                      P4= R6 * R7

P1 is freed when instruction 2 is committed.

4.3.2 Register File Read:

Reading a  register file can be done in two different ways.

1.Read before issue

2.Read after issue

  

          In Read before issue case, Register file is read before the instructions are dispatched to issue 

queue and the values are stored in the issue queue. The operands which are not available at that time 

are marked as non available and can be obtained later from the bypass networks of the ALUs. As 

register file is accessed before issue, all the operands are not provided by the regfile. Hence less 

number of read ports are enough  as only a portion of operands is provided by it. 

      

         In this method, the issue queue stores the operands similar to regfile and hence expensive in 

terms of area. Also when the same operand is present in more than one instruction, there will be 

replicated copies of same data in the issue queue which is again a waste of area.

     

        In Read after issue case, the operands are read after the instruction is issued to be executed.  

Here only the identifiers of the source operands are stored in the issue queue. The drawback of this 

method is  that it  requires more number of read ports  to the register  file since large portion of 

operands is provided by it. On the otherhand, the source operands are read only once and need not 

be copied anywhere.

Design Alternatives:

       So far we have seen three different renaming schemes and two different register read methods.  

ROB based renaming duplicates the register values in both ROB and architectural register file. 

When an instruction comes to rename stage it is allotted an entry in the ROB and when it commits 

corresponding ROB entry is freed.
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       On the other hand, merged Register file renaming uses a single regfile to store both the  

speculative and committed results. Its a complex mechanism but has the following advantages over 

other renaming schemes discussed above.

• No need of copying the results from one location to another because results are written just 

once in merged register file renaming scheme. Whereas in ROB renaming scheme results 

are copied from ROB to architectural register file while committing an instruction which 

causes extra power consumption.

• In ROB based renaming operands can come either from architectural register file or from 

ROB which increases the amount of interconnect needed. On the otherhand, operands come 

only from a single location in merged register file based renaming.

        In merged register file based renaming scheme, both the read before issue and read after issue 

can be done as there are no significant differences in their implementation but in case of ROB based 

renaming scheme, read before issue is more appropriate than read after issue.

        Since the register values are moved from one location to another, in read after issue scheme the 

issue queue stores the pointer of the source operands. If when an instructioin is renamed, the source 

operand is in the ROB, the issue queue will store its pointer. If the producer of the source operand is 

committed before it is used by the consumer instruction, the value is copied to architectural regfile 

and the pointer stored in the issue queue will not be valid anymore since that particular entry might 

have been allocated to some new instruction. In order to avoid this, we need to do an associative 

search in  the issue queue for  each committed instruction to  see if  any entry is  directing to  its 

destination register.  If  this  is  happening,  the pointer  needs to  be changed to the corresponding 

architectural regfile location. Its very difficult to implement this in hardware. Hence read before 

issue is preferred to read after issue for ROB based renaming scheme.

 

          As we have seen that the read after issue is area efficient scheme, merged register file 

renaming with read after issue scheme is used in I-class processor implementation.

4.3.3 Renaming Multiple Instructions:

In  our  I-class  processor,  three  instructions  are  renamed  every  cycle.  While  renaming  three 

instructions  in  single  cycle,  dependencies  between  them  should  be  checked.  If  all  the  three 

instructions are valid, three registers are taken from free queue and three entries are allotted in the 
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issue queue.

     Some additional actions to be performed while renaming three instructions parallelly are the 

following

• If the source operand of instruction-2 is same as that of destination operand of instruction-1 

or destination operand of instuction-0, then change its identifier and mark the ready field as 

'False'.

• If the source operand of instruction-1 is same as that of destination operand of instruction-0, 

then change its identifier and mark its ready field as 'False'.

• If  the  destination  operand  of  instruction-0  is  same  as  that  of  destination  operand  of 

instruction-2, then update the FRAM with instruction-2 only and if the  destination operand 

of  instruction 0 is  same as  that  of  destination operand of instruction-1,  then update the 

FRAM with instruction-1 only. If destination operands of all the three instructions are the 

same then update the FRAM with instruction-2.

• Interdependencies amoung the instructions should be handled when load store instructions 

are involved.

According to RISCV ISA specification, register R0 is always hardwired to zero. The map of R0 in 

RRAM and FRAM are always maintained the same (R0→T0 in PRF). If an instruction has R0 as  

destination  operand,  do  not  update  RRAM  and  FRAM  maps  in  commit  and  rename  stages 

respectively. 

4.4 The Issue Stage:

This stage is responsible for issueing the instructions to the functional units for execution. There are 

two different kinds issueing methods.

1.In order issue

2.Out of order issue

As discussed above, in order scheme issues the instructions in program order whereas out of order 

scheme issues the instructions as soon as their source operands are available. Out of order issue is 
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used in I-class processor to improve the clock speed.

      After instructions are renamed they wait in the issue queue till all the data and structural hazards  

are resolved and the corresponding functional unit becomes free. Data structure of issue queue is 

shown below:

                                                      Table 4.1: Issue queue structure

Field Work

Functional unit details and operation Holds  the  operation  to  be  performed  and  nameof  the 

functional unit to be sent for execution

Op1 Source Operand-1 pointer

Op1 ready Denote whether the operand-1 is ready or not

Op2 Source operand 2 pointer

Op2 ready Denote whether the operand-2 is available or not

Imm valid Field denoting whether the instruction has immediate field

Imm buffer index Holds the instruction position in immediate buffer

Destination architectural register To back registers to free queue

Memory queue index Load store queue pointer

Prediction To find whether the branch should be taken or not in case 

of branch instructions

Program counter Holds the instruction address and needed for branch and 

AUIPC instructions.

       Generally thirty percent of the instructions have immedate field and hence using a separate  

buffer called  immediate buffer and storing only the pointer to the buffer saves the area in the issue 

queue. The imm valid field indicates whether the instruction have immediate field or not.

        If the instruction is load store instruction, it is allotted an entry in a separate queue called load 

store queue. The pointer to the load store queue isheld in the memory queue index field.

Marking op-1 ready and op-2 ready:

           The desination tag of the producer instruction is broadcasted to the issue queue to say that  

the producer instruction hs completed execution and corresponding consumer instruction may use 

it. Then the op-1 ready and op-2 ready fields of the consumer instruction are set ie., marked ready. 
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But if the consumer instruction is in rename stage when the producer is broadcasting results,  ready 

field will not be marked correctly. To avoid this destination tag is also sent to map stage.

There are two different varieties of issue queue implementations. They are 

1.Unified issue queue

2.Distributed issue queue

4.4.1 Unified Issue Queue:

This scheme maintains a single issue queue to store all the instructions of the code.It requires a 

separate  logic  to  know  which  functional  unit  an  instruction  should  be  sent.  It  is  difficult  to 

implement in hardware as the complexity of the logic increases with size of issue queue and the 

number of functional units present in the processor.

                   Clock frequency can be increased with the size of the issue queue as more number of  

instructions can be renamed and stored in it. But, due to the complex logic unified issue is offering 

contradictioin  results  after  a  certain size  of  issue queue.  Adding delay  in  the   critical  stage of 

pipeline is the drawback of unified issue queue.

4.4.2 Distributed Issue Queue:

Separate issue queues are maintained for different functional units. Some functional units can share 

a common issue queue. In this case, the map stage figures out to which functional unit the particular 

instruction should be sent and enqueues it into corresponding issue queue. This reduces the delay in 

the most critical stage of the processor pipeline.

                     Distributed issue queue has the following drawback. When the workloads are not 

balenced one issue queue will be full and the pipeline will be stalled and all the other issue queues 

will be empty.
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The anatomy of unified and distributed issue queue is shown below:

                                              Figure 4.3: Distributed and Unified Issue Queues

  We use unified issue queue in our I-class processor in order to avoid stall in the pipeline when the 

workloads are not balenced.

Instructiion issue is again a two istage operation which are discussed below.

1.Instruction Wake-Up

2.Instruction Select Grant

4.4.3 Instruction Wake_up

Wake up is the event that notifies that one of the source operands of the consumer instruction has 

been  produced  by  the  producer  instruction.  The  destination  tag  of  the  producer  instruction  is 

broadcasted to all the instructions in the issue queue. It is then compared with the tags of the source  

operands of all the instructions. If the destination tag matches with any of the source operand tags 

then corresponding op-1 ready or op-2 ready is marked in the issue queue entry.

          Wake up logic adds more delay as the number of instructions and size of issue queue 

increases. The anatomy of issue queue wake up logic is shown below.
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                                                            Figure 4.4: Instruction wake up logic

4.4.4 Instruction Select Grant:

Select grant unit selects the ready instructions( instructions whose source operands are ready and 

corresponding  functional  unit  is  also  free)  in  the  issue  queue  and  sends  them  to  appropriate 

functional unit. There should be a provision for select logic because number of ready instructions 

are greater than number of functional units available.  Inputs to the select logic are requests for 

acccess to particular functional unit from the instructions in the issue queue. This is called request  

vector which is a vector of bits where the size of the vector is equal to the number of instructions in  

the issue queue. If an instruction in the issue queue has both its operands ready and not not yet 

selected for execution, then the corresponding bit in the rquest vector is set. The output of the select  

logic is also a vector named grant vector whose size is equal to the number of instructions in the 

issue queue. If an instruction is granted functional unit then the corresponding bit in the grant vector 

is set.

There are basically two different kinds of selection policies. They are 

1.Age based selection

2.Position based selection
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Age based selection policy:

           Older instructions in the issue queue are given more priority and granted functional unit 

earliar than latest instructions that entered the issue queue. But it needs complex hardware to hold 

the age information.

Position based selection policy:

           Instructions are given priority based on their position in the issue queue. Instructions in the 

top are given preference to instructions at the bottom of the issue queue. This policy is relatively 

simple to implement because it just needs priority encoders.

Position based selection policy with tree encoder is used in I-class processor. Tree shaped priority 

encoder implementation is shown below.

  

            

  

                                Figure 4.5: Tree shaped priority encoder implementation

Each block in the above figure is a priority encoder with four inputs and two outputs. Requests from 

top level are passed to the root of the tree. This is done by the any output of tthe priority encoder  

block which is set if any of the request vectors are set. The fuctional unit status is shown by the 

enable to the root priority encoder. Enable bit is set when the functional unit is free. Enble inputs of 

the encoders in the next higher level is given by grants from the root. Hence the grants are sent back 

to the branches.

     As the instructios enter and leave the issue queue in program order, instructions at the head of the 

queue  are  older  than  farther  instructions.  Hence  to  implement  Age based  selection,  two barrel 

shifters are needed one for roating request vector down by an amount equal to the head position, 
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and another for rotating grant vector up by the same amount. This adds extra complexity to the 

hardware and hence this method is genenrally not preferred.

4.5 Data Read

Read after issue is selected in I-calss processor for reading data in order to save area of the issue 

queue. Immediate fields are stored in separate location called immediate buffer and its pointer is 

stored in the issue queue. Immediate buffer valid bit in issue indicates whether it is an immediate 

instruction or not. 

               Instructions and data  are put into the next buffer named data read/drive buffer from where  

they sent for execution and hence the next pipeline stage is execution.

4.6 Instruction Execute

This stage is responsible for calculating the results. In this stage the source operands along with the 

type of operation to be performed are send to the computational units like ALU,load store unit etc. 

The processor operates on the source operands and the results are written to the physical regfile.  

The destination tag is broadcasted to the issue queue to produce source operands for consumer 

instructions. 

            There are several operations that the procssor performs in execute unit. Some of them are 

listed below.

• Arthematic operations like addition, multiplication, dividion etc. These are handled by ALU.

• Memory operations like loading and storing data. These operations are handled by Load 

Store unit.

• Control transfer operations to change the PC value. These are handled by Branch unit. 

Different instructions have different complexities and hence take different time in the execute stage. 

In current day processors it is generally not a  single pipeline stage but several. 

            

4.7 MEMORY DISMBIGUATION SCHEME

If  more than one instruction  operate  on same memory location then  memory data  dependency 

occurs. These dependencies can be found only in the execute stage ie., after the effective address is 

calculated.  These dependencies  are  handled by memory disambiguation scheme.  There are  two 

different  ways  in  which  memory  data  dependencies  are  solved.  They  are  speculative  memory 

disambiguation and non speculative disambiguation. 

        According to non speculative disambiguation, memory access instructions are not allowed to 
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access  memory  if  they  have   dependency  with  any  of  the  previous  memory  instructions.,  ie., 

memory access instructions are forced to execute in program order. Whereas the speculative scheme 

predicts whether a memory operation has any dependency with other inflight memory instructions.

4.7.1 Load Bypassing:

If  a  load  instruction  is  independent  of  the  previous  stores  in  the  pipeline,  then  it  is  sent  for 

execution. Hence for a load instruction to be sent for execution all the inflight stores must have been 

issued. This is because for a load to figure out  memory address match  the effective address for 

stores must have already been calculated.

4.7.2 Load Forwarding:

The result of store will be sent to load instruction if there is an address match with the earliar store 

instruction. This scheme is sometimes named store forwarding because its the store data that is 

being  forwarded.  This  requires  a  separate  buffer  to  hold  the  store  results  and  their  effective 

addresses. Before the load is being issued, the buffer is looked up for address match and if there is 

alaising, it takes the value directly from it.

4.7.3 Handling Load store instructions:

Speculative load execution is used and implementation details are discussed below. In this scheme 

load instruction is issued even if the earliar stores in the pipeline are not. It is assumed that there are  

no memory violations hence called speculative load disambiguation. If a load is not forwarded or if 

it is forwarded from a incorrect store( not the latest store) then the pipeline will be flushed from the 

mispredicted load instruction.

   Two queues namely load queue and store queues are  maintained to hold the load and store 

instruction. Load and store instructions are allotted entries in their respective queues and if they are 

full the pipeline is stalled. Data structures of load and store queues are shown below.

                                                 Table 4.2: Store Queue Structure

                Field                                  Work

Filled Tells if an entry is allotted to store instruction

Valid Tells if the store queue entry has valid data

Store address Memory address location to which data should be stored

Store data Result to be stored in memory

Store size Tells the size of memory access
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                                                Table  4.3:  Load queue structure

Field Work

Filled Indicate when an entry is alloted to load instruction

Valid Set if the data in load queue is valid

Store mask Record of all the stores on which load is dependent

Load address Memory location from which data should be loaded

Load size Size of access

Forwarded Tells whether store forwarding is happened to laod instruction

Forward acknowledge Specifies whether the alaised store instruction has committed

Aliased Shows that a memory violation has occured

Since every load store instruction should be provided an entry in the load store queue, the pipeline 

is stalled any one of these queues become full.

Load store instuctions are processed in the following steps during rename issue stages of processor 

pipeline.

• Every load store instruction is allotted an entry in the respective load or store queue and 

filled bit is made set and the valid bit is reset. For load instructions store mask bit is also 

filled.

• Mem queue index field in the issue queue is filled with the index of the load and store queue 

of that memory instruction.

• Once all the dependencies are resolved, instructions are sent for execution to load store unit 

where load and store instructions  are  treated separately.   Atmost  one instruction can be 

issued for execution in one clock cycle. 

One memory read or write is allowed to perform in one clock cycle in our I_Class processor in 

order to reduce hardware complexity. Hence a store in commit stage and a load in execute stage 

cannot happen parallellly.

The complexity in handling load store instructions lies in the instruction commit stage which is 

discussed in the furthur sections.
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Hardware implementation is shown below:

                                                          Figure 4.6: Speculative load store unit

First cycle of execution for load and store instructions is calculating the effective address. After 

calculating that, store instruction updates all the remaining fields of the store queue (except the 

filled field which is set in the rename stage and load instruction revises valid and load address fields 

of load queue.

 The next step of instruction is to search store queue for address match. Search is done only on the 

store queue entries which are present in  store mask field of the load queue. If there is an address 

match, that result is broadcasted to issue queue and ‘forwarded’ bit field in load queue is set. In 

case, if there is no address match, read request is sent to data cache. 

The core complexity of memory disambiguation scheme lies in the commit stage of the  instruction.
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Commit stage for load store instructions:

During the commit stage, store instruction sends the write request to the data cache. Also it looks if 

any non committed load matches this  address,  and updates that  in  the load queue entry of the 

corresponding instrcution.

The commit logic of load store instructions is shown in the following flowchart.

  

                                 Figure 4.7: Commit stage of Load store instructions

Alias bit in the load queue is set in the following cases:

• If the store forwarding has not happened inspite of having address match.

• If more than one store address matches with load,  the first  store instruction set  forward 

acknowledge bit during its commit. When the second alias store is committing it sees the 

forward acknowledge bit  being set  and sets  the  Alias bit  since wrong store information 

might have been forwarded. In this case, Pipeline is flushed from the wrongly speculated 

load instruction.
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4.8 Instruction Commit

This is the last pipeline stage of I-Class processor. Instruction enter the issue queue in program 

order  but  they  are  issued  out  of  order.  So  many  speculations  like  branch  predictions,  load 

forwarding are implemented in order to speed up the processor but these may result in inprecise 

exception. In order to get precise exception, commit stage is introduced in current day processors 

where the instructions are handled in program order.

Commit stage is responsible to do the following actions discussed below.

• Immediate instructions are allotted entry in the immediate buffer. In their case, Immediate 

buffer entry is freed during commit stage.

• Load store instructions are allotted entry in load and store queues. Load store entry is freed 

in  commit  stage   for  such  instructions  and  the  actions  described  in  section  4.7.3  are 

performed.

• If the instruction is found to be mispredicted branch in commit stage pipeline flush signal is 

sent and new instruction is fetched from a different location.

• If the instruction is found to be a wrongly speculated load send a signal to flush the pipeline  

and load operation is performed to get the latest stored data.

• Add back the  allotted  register  in  the  rename stage  to  the  free  register  queue  in  a  way 

discussed in section 4.3.1.3.

• Update RRAM (Retirement end RAM) index of the destination architectural register with 

the destination operand for all instructions which produce result.

Steps to be followed while doing Multiple Instruction Commit:

 I-Class processor can commit a maximum of three instructions per cycle. Following actions needs 

to be done while committing multiple instructions.

• If the first instruction is store do not commit the other two instructions if they are memory 

access  instructions.  If  the  first  instuction  is  not  memory  instruction  and  the  second 

instruction  is  a  store  instruction  do  not  commit  the  third  instruction  if  it  is  a  memory 

instruction. 

In summary do not commit two memory instructions at a time.

• If  the  second instruction is  mispredicted branch do not  commit  the third.  If  the first  is  

mispredicted branch do not commit the remaning two.

• If  the  destination architectural  registers  of  any two of  the instructions  is  the  same then 

update RRAM with the latest instruction
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4.9 Exception Handling

Exceptions are generally handled in commit stage. There are two reasons behind this. First is that 

we should be sure that the instruction causing exception is not speculative. Second is we want to  

maintain precise exception ie., the architectural state similar to the way it would have been when all 

the instructions earliar to the one causing exception has been executed in original program order.

Following book keeping actions needs to be done to get precise exception handling.

• Copy RRAM content to FRAM to provide the previous mapping.

• Clear the issue queue contents and made the head and tail to zero.

• Empty all the ISB(inter stage buffer)s in the processor pipeline.

• Clear the load and store queue contents.

• As we need to add all the architectural registers to free queue during exception, it would be 

enough if we make the head and tail of FRQ(circular buffer) to zero.

• Squash program counter of mispredicted instruction is copied to the Program counter. Hence 

it serves as new PC.
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                                                                  CHAPTER-5

                                         RESULTS AND CONCLUSIONS  

This units explains the performance of I-Class processor and conclusions.

5.1 Verification Framework

Entire  code  of  I-Class  processor  is  done  in  Bluespec  system  verilog.  Cache  is  different  for 

instructions and data named instruction cache and data cache to speed up  the processor.

The block diagram of I-Class processor with its cache interface is shown below.

                                 Fig 5.1: Interface between cache and I-Class processor

Automatic test case generator otherwise known as ATPG generates the test cases which are given as 

input instructions to be run on I-Class processor. These instructions are loaded in input.hex file 

which serves as icache to the processor. Initial memory status is generated by ATPG which is loaded 

into rtl_mem_init.txt file which serves as data cache for I-Class processor.

After commit of every instruction the content of register file and program counter are dumped into 

out.txt file. Also the contents of various buffers in the processor are also dumped in various output 

logs like store.txt, iq_status.txt etc for verification reasons. The out.txt generated by the processor is 

then compared with the output file generated by the simulator.

The simulation environment is shown in the figure below.
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                                      Figure 5.2: Simulation environment of an I-Class processor

5.2 Results

I_Class processor is designed that can process three instructions parallelly in all stages of pipeline. 

Hence the IPC should be 3, but ideally the IPC is less than 3 because of the following reasons. 

Although the tournament branch predictor works well, sometimes it fails to predict correct branch 

flow. Then the instructions in all the stages of pipeline are flushed, interstage buffers are made 

empty and new instruction is fetched. 

Similarly as we are using speculative load store unit, if the load happened from incorrect store, all 

the instructions from the load instruction are flushed and processed again.

Sometimes the pipeline delay occurs because of data dependencies among the instructions.

Sometimes the delay could be because of unavailability of functional units.

All these factors constitute decreasing the IPC of the I_Class processor.

The IPC of the designed processor is close to 2.9.
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5.3 Conclusion

In this work out of order superscalar processor with fetch width of 3 is designed, implemented and 

verified.  Issue  queue  size,  load  store  queue  size,  immediate  buffer  size,  number  of  ALUs are 

parametarizable.  IPC of the processor (processing three instructions parallelly) is calculated.  As 

whole coding is done in BSV which is good in modularity, fast development time, flexibility with a 

good ease of verification, it can also be used as a typical out of order platform to develop new 

architectures and to furthur enhance its speed.
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                                                         CHAPTER 6

  Future work

There is a wide scope of future work in this area. The following features can be added to the I_Class 

processor to furthur enhance its speed.

• Adding prefetchers (discussed in Section 2.4.3 ) to decouple the branch predictor which 

increses the throughput.

• Using multilevel caches to reduce memory access delay.

• Develop mutithreading and multicore processors out of it.

• Run the actual benchmark programs to furthur optimise it and to improve throughput.
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