
i

 32-bit Graphics Processing Unit

 A Project Report

 submitted by

 D V H PHANI TEJA

 (EE14M053)

in partial fulfilment of the requirements

for the award of the degree of

 MASTER OF TECHNOLOGY

 in

 Microelectronics & VLSI Design

 Under the guidance of

 Prof V . Kamakoti

DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY MADRAS

JUNE 2016

ii

THESIS CERTIFICATE

This is to certify that the thesis titled 32-bit Graphics Processing Unit, submitted by

D V H PHANI TEJA with roll number EE14M053, to the Indian Institute of

Technology Madras, for the award of the degree of Master Of Technology in

Microelectronics & VLSI Design, is a bonafide record of the research work done by

him under our supervision. The contents of this thesis, in full or in parts, have not

been submitted to any other Institute or University for the award of any degree or

diploma.

Prof Dr V. Kamakoti

Dept. of Computer Science
IIT-Madras, 600 036

Date: 17th June 2016 Place: Chennai

iii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my guide, Prof Dr. V.Kamakoti for his

valuable guidance, encouragement and advice. His immense motivation helped me in

making firm commitment towards my project work.

My special thanks to Mr. G.S.Madhusudan for his encouragement and motivation

throughout the project. His valuable suggestions and constructive feedback were very

helpful in moving ahead in my project work.

I would like to thank my co-guide Dr.Nitin Chandrachoodan.

I would lie to thank my faculty advisor Prof. Dr. Deleep R Nair, who had patiently

listened, evaluated, guided me throughout the program.

My special thanks to my project team members Neel Gala, Arjun Menon, Rahul, Gopi

for their help and support.

iv

ABSTRACT

 KEYWORDS: highly parallel architecture, demand of parallel computations,

 choosable over CPU

The graphics processing unit(GPU) has become an integral part of today’s

mainstream computing systems. The highly parallel architecture of GPU makes it to

feature large number of peak arithmetic operations in parallel, substantially than it’s

counterpart CPU. The rapid increase in the demand of parallel computations in specific

applications has made GPU a powerful computational engine and choosable over CPU

for such applications.

This thesis describes the background, hardware, and programming model in

designing the basic GPU architecture, summarize the state of the art in tools and

techniques that deliver order-of-magnitude performance gains over optimized CPU

applications.

v

Table Of Contents

 ACKNOWLEDGEMENTS iii

 ABSTRACT iv

 LIST OF FIGURES vii

 ABBREVIATIONS viii

1 INTRODUCTION 1

2 BACKGROUND 2

 2.1 SIMT . 2

 2.2 GPU Execution . 2

 2.3 Streaming Multiprocessor (SM) . 4

 2.3.1 Stream Programming Model .. 5

 2.3.2 Instruction Cache . 7

 2.3.3 Warp Scheduler . 7

 2.3.4 Cores . 9

 2.3.5 D-cache . 9

 2.3.6 Load/Store unit . 9

 2.3.7 Register File . 10

 2.3.8 Special Function Unit . 10

 3 IMPLEMENTATION DETAILS . 11

 3.1 Data . 11

 3.2 Instruction Details . 12

vi

 3.3 Load Instruction . 15

 3.4 Arithmetic Instructions . 16

 3.5 Store Instruction . 18

4 LIST OF SIGNALS

20

5 DESIGN FLOW & RESULTS. .. 23

 5.1 Hardware Design Flow . 23

 5.2 Implementation, Simulation 25

6 CONCLUSION & FUTURE WORK . 29

 6.1 Conclusion . 29

 6.2 Future Work . 29

vii

LIST OF FIGURES

2.1 SIMT . 2

2.2 GPU internal blocks . 3

2.3 Streaming Multiprocessor . 4

2.4 Warp Scheduler . 7

2.5 Instruction Scheduler . 8

5.1 Hardware Design Flow . 24

5.2 Simulation Result screenshot 1 . 26

5.3 Simulation Result screenshot 2 . 27

5.4 Simulation Result screenshot 3 . 28

viii

ABBREVIATIONS

IITM Indian Institute of Technology, Madras

GPU Graphics Processing Unit

SM Streaming Multiprocessor

1

CHAPTER 1

 INTRODUCTION

 There are various applications that require a 3D world to be simulated as realistically as

possible on a computer screen. These include 3D animations in games, movies and other real

world simulations. It takes a lot of computing power to represent a 3D world due to the great

amount of information and the complex mathematical operations that must be used to project

this 3D world onto a computer screen. In this situation, the processing time and bandwidth

are at a premium due to large amounts of both computation and data.

 The functional purpose of a GPU then, is to provide a separate dedicated graphics

resources, including a graphics processor and memory, to relieve some of the burden off of

the main system resources, namely the Central Processing Unit, Main Memory which would

otherwise get saturated with graphical operations and I/O requests. The abstract goal of a

GPU, however, is to enable a representation of a 3D world as realistically as possible. So

these GPUs are designed to provide additional computational power that is customized

specifically to perform these 3D tasks.

 Furthermore, GPUs have moved away from the traditional fixed-function 3D graphics

pipeline toward a flexible general-purpose computational engine. Today, GPUs can

implement many parallel algorithms directly using graphics hardware.

2

CHAPTER 2

 BACKGROUND

2.1. SIMT:

Single instruction, multiple thread (SIMT) is an execution model used in parallel

computing where single instruction, multiple data (SIMD) is combined with multi threading.

Fig. 2.1. Group of threads executing at once on a single instruction independently

This is achieved by each processor having multiple "threads" (or "work-items"), which

execute in lock-step. Access time of all the widespread RAM’s is still very low, that

inevitably comes with each memory access.

The SIMT execution model has been implemented on several GPUs and is relevant

for general-purpose computing on graphics processing units (GPGPU).

2.2. GPU Execution:

A GPU executes one or more kernel grids; a streaming multiprocessor (SM) executes one or

https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Single_instruction,_multiple_data
https://en.wikipedia.org/wiki/Thread_(computing)#Multithreading
https://en.wikipedia.org/wiki/Random-access_memory

3

more thread blocks; and cores and other execution units in the SM execute threads. The SM

executes threads in groups of 32 threads called a warp. This can greatly improve performance

by having threads in a warp execute the same code path and access memory in nearby

addresses.

A kernel executes in parallel across a set of parallel threads. The programmer or compiler

organizes these threads in thread blocks and grids of thread blocks. The GPU instantiates a

kernel program on a grid of parallel thread blocks. Each thread within a thread block executes

an instance of the kernel, and has a thread ID within its thread block, program counter,

registers, per-thread private memory, inputs, and output results.

A thread block is a set of concurrently executing threads that can cooperate among

themselves through barrier synchronization and shared memory. A thread block has a block

ID within its grid. A grid is an array of thread blocks that execute the same kernel, read inputs

from global memory, write results to global memory, and synchronize between dependent

kernel calls.

The GPU internal blocks are as shown below:

 Fig. 2.2. GPU internal blocks with different colours indicating separate units

4

It has 8 Streaming Multiprocessors (SMs) and a DRAM. Each SM is described as in next

sections.

2.3. Streaming Multiprocessor (SM):

This GPU will have 8 Streaming Multiprocessors (SMs). Each SM will have the following

1 Warp Scheduler, 1 Dispatch Unit , 1 I-Cache, 1 D-Cache, 32 ALU cores, 1 Load/Store unit,

1 Special Function Unit, 1 Register file.

 Fig. 2.3. Streaming Multiprocessor block diagram

5

Stream processors belong to a new class of architectures that are compute intensive, and

achieve high performance by reducing dynamic control, and providing a large number of
programmable functional units. Stream processors are specifically designed for the stream
execution model, in which applications have large amounts of explicit parallel computation,
structured and predictable control, and memory accesses that can be performed at a coarse
granularity. Hence, their architecture also takes into account the concurrency and
communication levels defined by the stream programming model in order to maintain high
locality and parallelism levels. Specifically, their memory hierarchy is partitioned into three
distinct levels of storage. Each of the memory levels provides an order of magnitude more
bandwidth as it gets closer to the functional units. This maintains temporary data close to the
functional units while only true global data are stored in the external memory. Because of the
efficient bandwidth use, most of the work of a stream processor is done on-chip with only 1%
of global data references requiring external memory access. The three levels of memory
hierarchy are given below:

Local Register File (LRF): Used for local data communication and fast access of temporary

data by the functional units.

 Stream Register File (SRF): Used to store streams and transfer data between the LRFs of

major components.

 Off-Chip Memory: Stores global data and is used only when necessary.

As with the memory hierarchy the functional units of a stream processor are distributed in
ALU Clusters. All clusters consist of the same type and amount of functional units. The ALU
clusters execute kernel instructions that they receive from the μController in SIMD fashion.
Each of the clusters operates on an element of the input stream, thus, providing data
parallelism. The SIMD organization helps provide the necessary data bandwidth to feed all
ALU clusters.

2.3.1. Stream Programming Model :

The stream programming model arranges applications into a set of computation kernels that

operate on data streams. Expressing an application in terms of the stream programming
model exposes the inherent locality and parallelism of that application, which can be
efficiently handled by appropriate hardware to speed-up parallel applications. By using the
stream programming model to expose parallelism, producer-consumer localities are revealed
between kernels, as well as true data localities in applications. These localities can be
exploited by keeping data movement locally between kernels that communicate which are
more efficient rather than using global communication paths.

6

 Streams: A collection of data records of the same type, ranging from single numbers
to complex elements.

 Kernels: Operations that are applied on the input stream elements. Kernels can
perform simple to complex computations and can have one or more input and output
streams.



The advantage of expressing the application in the form of a stream program is that it

exposes two types of localities. The first is kernel locality. During a kernel execution, all

references are to variables local to the kernel, except the values read from the input stream or

written to the output stream. The second is producer-consumer locality, which involves

streams moving between kernels. One kernel produces a stream which another kernel in the

immediately consumes. By efficiently sequencing such kernels, the stream values are kept

local and are consumed soon after they are produced. The stream model ensures that kernel

programs will never access the main memory directly. The stream programming model

defines communication and concurrency between streams and kernels at three distinct

different levels. In this way take the locality and parallelism of the application are exposed.

These restrictions in communication help in the most efficient use of bandwidth.

Communication:

 Local: Used for temporary results produced by scalar operations within a kernel.

 Stream: For data movement between kernels. All data are expressed in the form of
streams.

 Concurrency:

 Instruction Level Parallelism (ILP): Parallelism exploited between the scalar

operations within the kernel.

 Data Parallelism: Applying the same computation pattern on different stream
elements in parallel.

 Task Parallelism: As long as no dependencies are present, multiple computation and
communication tasks can be executed in parallel.

7

2.3.2. Instruction Cache:

 The instruction cache contains the instruction words. The address in the I-cache where

the kernel starts, is given by the micro-processor to the GPU as an input. Basing on this

address, GPU will start the process of fetching kernel’s first instruction word from the I-

cache.

2.3.3. Warp Scheduler:

 The processor knows the information about number of elements it needs to be

operated on, in total and block size. So basing on this it calculates the number of warps per

block. Suppose, the number of data elements are 50 and the number of core units in SM is 32,

then it has 2 warps with each warp as size of the number of core units i.e. 32.

 Fig. 2.4. Warp scheduler

8

The warps for instruction are issued as per priority or due to the processing of background

work for previous warps. So, in order to hide latency, the SM will switch the warp if current

warp got stalled due to any background task (such as data fetching from memory). In this

case, the warp which got stalled has it’s own memory such that it can run in background once

it is initialized. So, the functioning units which are doing no-operation due to stall can be

utilised by throwing another warp onto them. This way hardware will be utilized always to

their peak performance.

 Fig. 2.5. Instructions getting scheduled to different blocks independently

Warp scheduler sends the warps which are ready to their respective functional units. For this

to happen, the corresponding warps should have both data and functional units to be

available.

9

2.3.4. Cores :

There are 32 ALU clusters in each Streaming Multiprocessor (SM) and each is comprised

of arithmetic logic. The clusters operate in a 32 wide SIMD manner. That is, the same
instruction is executed on all 32 clusters on different elements i.e., when an instruction is
fetched and passed on, to do some arithmetic logic, the clusters will do the same arithmetic
logic on the corresponding registers of all the respective clusters which were loaded with data
in their registers.

Each SM has 32 cores. There are 8 SMs. So in total there are 256 cores on the chip with

each core having it’s own register file (per warp).

2.3.5. D-Cache :

 The Data cache contains the data words. The first element address of the data in the D-cache

is given in the Load instruction word and this word is decoded to get the address which is

then sent to the load/store unit(L/S). L/S unit fetches the data from the D-cache. All the data

elements are stored in the consecutive memory locations in the cache.

2.3.6. Load/Store Units:

There is 1 load/store unit per Streaming Multiprocessor (SM). This unit will get the

address by decoding the incoming Load or Store instructions from the I-cache. This decoded

input is then used to produce the addresses of the next data elements to be fetched for the

cores in while on load instruction, or to produce the addresses of the next locations to store

the data results of the cores in the consecutive locations of the D-cache while on store

instruction. All the data elements are placed in consecutive memory locations. So the L/S unit

needs a starting address for the fetching or storing the data.

 Load/Store units will generate the addresses required for fetching or storing data from

the memory. Once it gets the starting address it will increase the address value by one unit for

every clock cycle and send it to the memory address lines for fetching/storing data.

10

2.3.7. Register File:

 There are 32 cores in each Streaming Multiprocessor (SM). The block size for each SM is

256. So there can be eight warps per block per SM. When a warp is executed, it involves

execution of 32 data pairs on their respective 32 cores at an instant. So for each core per

thread, there should be one set of 32 registers. Likewise in a warp execution there is a need

for 32 sets of register files each with 32 registers in number.

 So as per above analysis, per warp there are 1024 registers which are required for the

execution of a warp. Likewise there can be eight warps per block i.e., each core needs eight

sets of 32 set registers. So there should be 8192 registers per SM. Now there are 8 SMs. So in

total 65536 register with each register as 32-bit size are required for execution of SMs.

 The register file in a GPU is usually very large in size when compared to a CPU. This is

because of the extreme data parallelism and execution in the GPU with a relatively large

number of core in a GPU than in the CPU. This extreme data parallelism also requires more

data elements to flow in at any instant which serves the purpose of having relatively large

register file.

2.3.8. Special Function Units :

 There is one special function unit in each of the SMs. This special function unit does

different operation than the regular core units. These take multiple clock cycles to complete

the special operation relative to an arithmetic operation.

 The special function may include square root finder or cosine or sine function etc kind of

operations. This unit is separated from the core unit block such that these operations can be

done in parallel to the operations which will be happening in core unit such that both

arithmetic and special operations are done in parallel on different data elements.

11

CHAPTER 3

 IMPLEMENTATION DETAILS

3.1. Data:

Block: A group of data elements which are corresponding to a single Streaming

Multiprocessor (SM).

 Each block will have a block ID.

Warp: The Streaming Multiprocessor (SM) executes threads in groups of 32 threads called a

warp.

 Each warp will have a warp ID.

 The processor gives the information about address of the first instruction in the kernel(in

I-Cache) and the number of data elements to be processed in total. This information is passed

into the graphics processor as input word.

 This word which graphics processor received is decoded into address of the first kernel

instruction and information about number of data elements (say ‘n’) to be processed. The

number ‘n’ is then used to find the number of blocks of data and warps of data in each block.

Each block is then launched onto each streaming multiprocessor.

 Each element will also be having a thread ID. These number’s block ID, warp ID and

thread ID are used to locate any data element uniquely.

 After receiving the word from the processor, it is decoded into 2 parts.

 Lower 16 bits gives the address of the instruction in the I-cache.

 Upper 16 bits give the information about the total number of data elements (n).

 So upper 16 bits are processed to extract the block, warp and thread IDs.

12

 Lower 16 bits are then passed into the I-Cache block. When the clock event happens, the

instruction word is fetched from the I-cache block and passed back to the main module SM.

 The instruction word length is 20 bits in size. The instructions are as shown below:

3.2. Instruction Details:

ADD 

X DEST. REG SOURCE REG 2 SOURCE REG 1 OPCODE

OPCODE BITS  0
th

 -3
rd

 bits

SOURCE REG 1 is 5 bit data  4
th

 -8
th

 bits

SOURCE REG 2 is 5 bit data  9
th

 -13
th

 bits

DESTINATION REG 1 is 5 bit data  14
th

 -18
th

 bits

19
th

 bit is a don’t care bit.

SUB 

X DEST. REG SOURCE REG 2 SOURCE REG 1 OPCODE

OPCODE BITS  0
th

 -3
rd

 bits

SOURCE REG 1 is 5 bit data  4
th

 -8
th

 bits

SOURCE REG 2 is 5 bit data  9
th

 -13
th

 bits

DESTINATION REG 1 is 5 bit data  14
th

 -18
th

 bits

19
th

 bit is a don’t care bit.

13

BITWISE AND 

X DEST. REG SOURCE REG 2 SOURCE REG 1 OPCODE

OPCODE BITS  0
th

 -3
rd

 bits

SOURCE REG 1 is 5 bit data  4
th

 -8
th

 bits

SOURCE REG 2 is 5 bit data  9
th

 -13
th

 bits

DESTINATION REG 1 is 5 bit data  14
th

 -18
th

 bits

19
th

 bit is a don’t care bit.

BITWISE OR 

X DEST. REG SOURCE REG 2 SOURCE REG 1 OPCODE

OPCODE BITS  0
th

 -3
rd

 bits

SOURCE REG 1 is 5 bit data  4
th

 -8
th

 bits

SOURCE REG 2 is 5 bit data  9
th

 -13
th

 bits

DESTINATION REG 1 is 5 bit data  14
th

 -18
th

 bits

19
th

 bit is a don’t care bit.

REGISTER INCREMENT 

X REG XXXX OPCODE

14

OPCODE BITS  0
th

 -3
rd

 bits

4
th

 -13
th

 bits are don’t care

REGISTER is 5 bit data  14
th

 -18
th

 bits

19
th

 bit is a don’t care

LOAD 

X DEST. REG SOURCE ADDRESS OPCODE

OPCODE BITS  0
th

 -3
rd

 bits

SOURCE ADDRESS is 10 bit data  4
th

 -13
th

 bits

DESTINATION REG is 5 bit data  14
th

 -18
th

 bits

19
th

 bit is a don’t care

STORE 

X SOURCE REG DESTINATION ADDRESS OPCODE

OPCODE BITS  0
th

 -3
rd

 bits

DESTINATION ADDRESS is 10 bit data  4
th

 -13
th

 bits

SOURCE REG is 5 bit data  14
th

 -18
th

 bits

19
th

 bit is a don’t care

15

Now the fetched instructions are passed into the SM’s main module where they are decoded

to do the corresponding operation.

3.3. Load Instruction:

The opcode for the load instruction will be checked and the load operation process will start.

The instruction word is then passed into the loadunit.v module where the instruction word is

decoded. The instruction word syntax is as below:

X DEST. REG SOURCE ADDRESS OPCODE

OPCODE BITS  0
th

 -3
rd

 bits

SOURCE ADDRESS is 10 bit data  4
th

 -13
th

 bits

DESTINATION REG is 5 bit data  14
th

 -18
th

 bits

19
th

 bit is a don’t care

 In the loadstoreunit.v module, the source address is extracted from the instruction

word and passed to load_address signal. This load_address value is copied into dM_address

signal for first time when the instruction is called.

 There is a count register which counts the number of clock pulses This

loadstoreunit.v module will generate 32 different addresses one per every clock cycle and

pass them onto dataMemory.v module . All these addresses are generated from the initial

incoming address and the count register used to count clock pulses. So, for every clock pulse,

a different address is generated and passed on. This dM_address signal is output of

loadstoreunit.v module. This signal is taken as input by dataMemory.v module.

 When the instruction is fetched into the main module, it is also passed into the

controlLogic.v module. This module generates all the control signals required for the load

operation to get completed. Memtoreg and regwrite are two important control signals which

16

allow enable signals for memory to register transfer if data andwriting the data into the

specified register respectively. The PCwrite control signal is activated only when L/S unit

finishes loading all the 32 elements data into their registers.

 The dataMemory.v module will capture the incoming address on its lines. The

DM_Read signal is active which makes the dataMemory.v retrieve the data from the given

address on it’s input lines of DM_Address signal. Data will be placed onto temp_dM_read

line. This is read by dM_Read signal and placed in the data incoming signal of the register

file and the data is written into the register specified in the instruction word. So, at the end of

load instruction, from the given syntax, the data will be read and placed in the destination

register specified.

 For the time being the caches and other memories are implemented using register

arrays only. So, the cache modules are implemented using register arrays of size which are

sufficient enough to hold the 256 array A elements, 256 array B elements and 256 result array

elements. So around 1024 elements can fit into the caches. So, the address field required is

only around 10 bits.

3.4. Arithmetic Instructions:

The general syntax for arithmetic instructions is as shown below:

X DEST. REG SOURCE REG 2 SOURCE REG 1 OPCODE

OPCODE BITS  0
th

 -3
rd

 bits

SOURCE REG 1 is 5 bit data  4
th

 -8
th

 bits

SOURCE REG 2 is 5 bit data  9
th

 -13
th

 bits

DESTINATION REG 1 is 5 bit data  14
th

 -18
th

 bits

19
th

 bit is a don’t care bit.

 Instruction fetched from the I-cache is passed into the topmodule.v where the

17

instruction word is decoded. The opcode for the arithmetic instruction will be checked and

the operation process will start.

 The registers information is retrieved from the respective places of the instruction

word. The registers which are supposed to be added(say add is the arithmetic operation to be

done for instance) and the contents are to be placed into the destination register for all the

cores, this process is done in a single clock cycle.

 The controlsignals which are needed for the arithmetic operations to carry out will

be generated from the controlLogic.v module.

 The function which needs to be done in the arithmeticLogic.v module is passed

into it. Basing on the switch-case statement, corresponding operation is done and the results

are placed in the result signal which is output of the arithmeticLogic.v module. This result is

connected to the input data signal of the register files. So when the operation is completed,

the results will get stored into the corresponding registers whose destination value is already

fetched from the instruction word.

 Register file and core units are generated using genvar statement. This will help

duplicating the modules multiple times instead of writing the module instances again. In this

process the corresponding signal lines between register files and core, load-store signals are

also linked internally.

 The CPU takes multiple clock cycles for loading the data and then adding them

into the third register. But GPU will takes multiple clock cycles for loading the data but once

the data is loaded, all the cores will do the arithmetic operation at the same time saving a lot

of clock cycles time.

 The selection of data between the result from loading the instruction and core

operation results is done by signal memtoreg. This ensures the data which needs to be written

into register files.

 Similar to load instruction, the Store instruction does the work of storing the

results from core units registers into address in the memory.

18

3.5. Store Instruction:

The opcode for the store instruction will be checked and the store operation process will start.

The instruction word is then passed into the loadstoreunit.v module where the instruction

word is decoded. The instruction word syntax is as below:

X SOURCE REG DESTINATION ADDRESS OPCODE

OPCODE BITS  0
th

 -3
rd

 bits

DESTINATION ADDRESS is 10 bit data  4
th

 -13
th

 bits

SOURCE REG is 5 bit data  14
th

 -18
th

 bits

19
th

 bit is a don’t care

 In the loadstoreunit.v module, the source address is extracted from the instruction word

and passed to load_address signal. This load_address value is copied into dM_address signal

for first time when the instruction is called.

 There is a count register which counts the number of clock pulses This loadstoreunit.v

module will generate 32 different addresses one per every clock cycle and pass them onto

dataMemory.v module . All these addresses are generated from the initial incoming address

and the count register used to count clock pulses. So, for every clock pulse, a different

address is generated and passed on. This dM_address signal is output of loadstoreunit.v

module. This signal is taken as input by dataMemory.v module.

 The dataMemory.v module will capture the incoming address on its lines. The

DM_MW i.e., signal which corresponds to writing of data into the memory is active which

makes the dataMemory.v to read the data present in it’s input lines of DM_write signal and

write it into the address specified by the input address lines of dM_address signal. The

content of resister which needs to be stored in memory is loaded into DM_Write signal and

then write process happens.

 So, at the end of store instruction, from the given syntax, the data will be written

19

into the destination address specified in the instruction word for all the particular registers

from the register files.

The operation flow for other instructions also will be in the same manner as described above.

20

CHAPTER 4

 LIST OF SIGNALS

data_IN: This signal is 32 bits in length. Upper 16 bits gives the number of elements which

are to be processed. Lower 16 bits gives the address location of the first instruction of the

kernel in the I-cache.

i_address: This stores the decoded address data i.e., lower 16 bits of data_IN signal.

elements_num: This signal stores the number elements to be processed i.e., upper 16 bits of

the data_IN signal.

blocks_num: It stores the value of number of blocks of data.

warps_num: It stores the value of number of warps of data on each streaming multiprocessor.

Clk: It is the clock for the processor.

instruction_mem: It is wire type signal which has instruction word data and is the output of I-

Cache module.

Instruction: It acts as register in the code which stores the fetched instruction.

Selr1, Selr2: Each register file has two read ports. These selr1, selr2 registers content gives

the information about the registers which are to be read from the register file..

Selrin: The data in it gives the information about the selection of register whose content

should get updated by the data in the input of register file.

r1, r2: These are two dimensional registers. Each of them are an array of registers in which

each array has registers of 32 bit in length. r1, r2 array size is equal to warps_num data. So,

all the r1 array’s registers point to same register in all the different streaming processor’s

register files. Similarly r2.

rin: This is a two dimensional register. It is an array of registers which are 32 bit in length

21

each. This holds the data which needed to be written into the register file. The selection of

register is done by selrin, and the data needs to be written is in the rin register.

result_1: This holds the information of the result of arithmetic operation done by the core.v

module and passed onto the topmodule.v

func: This gives information about the type of operation that needs to be carried out on the

data elements.

PCWrite: This says the program counter when it has to be incremented to load the address of

the next instruction from the cache.

Jump: It says if the jump operation is required or not for that instruction to get executed.

MemtoReg: It says if there is a need for memory to register transfer of data. This signal can

be used as an enable signal and selection signal to select between dM_read and result_1

signals.

MemWrite: This says if there is a need for memory writing operation in that instruction’s

execution.

ALUControl: This give the information about the type of arithmetic operation need to be

performed by the cores on the registers selected by selr1, selr2.

RegWrite: This says if the register write operation needs to be carried out in the process.

Done: This signal halts the processor after the execution of a kernel.

 Some of these control signals can be used as enable signals for performing some

operations in the processor’s code.

dM_address: This is local signal to the topmodule.v which holds the address information of

the memory location from which reading or to which writing needs to take place.

dM_write: This is local signal to the topmodule.v which holds the data that needs to be

written into the memory location specified by dM_address signal

MemWrite: This signal gives the information if the data needs to be written or to be read

from the memory. It is write enable signal.

22

temp_dM_read: This is local signal to topmodule.v which holds the read data from the

memory, temporarily, before placing into one of the input lines of the register files data lines.

dM_read: It is two dimensional register which stores the value that we have got from the data

memory by load operation and needed to be written into register file into the register

specified by the selrin.

cnt: This signal holds the information of the number of clock pulses. Depending on this cnt

signal, temp_dM_read data is placed into one of the dM_read array’s registers that will later

be written into register file’s registers.

enable: It is the signal that enables the loadstore unit module to function.

core_ID: This genvar variable that is used to generate the hardware modules for core and

register files.

Control: It has information about the read/write signals of the register file.

23

CHAPTER 5

 DESIGN FLOW

5.1. Hardware Design Flow:

 The hardware or the VLSI design flow as depicted in figure 5.1 gives the major

steps taking the design towards physical realization.

The design of any product starts with an idea. The idea is born out of a client

requirement. This idea is put down as a higher level behavioural model of the final product

using the high level languages like Verilog. The behavioural model is then compiled into a

RTL using a suitable compiler. RTL are generally the description of the circuit at the module

level where input output interfaces, clock and other signals are visible. Any design can be

described in RTL using the Huffman’s model.

Once the RTL is arrived at, the next step in the design flow is the logic synthesis.

Using commercial EDA tools, the designer converts the RTL into a netlist which is nothing

but a list of gates and wires whose input output are specified. The EDA tools gives a lot of

options like types of gates to be used, constraints for the design with respect to the power,

area and timing, thus a highly optimized netlist is achieved after logic synthesis.

On getting the netlist, more EDA tools are used to do place and route of gates and

wires or floor planning as it is popularly called. The result of place and route is the mask that

could be handed over to the foundry for carrying out the fabrication of the chip. Two most

important part of the design flow are the testing and verification. Testing is done to ensure

final chip does not suffer from manufacturing defects and verification is done at each stage of

24

the flow to ensure the design meets the requirements as were originally projected.

 Fig 5.1. Hardware Design Flow

25

In our case however, we limit the scope to design, implementation of the design in verilog,

logic synthesis and post-synthesis simulations to verify performance.

5.2. Implementation, Simulation :

 Since the design process has been dealt with in earlier chapters adequately. We

look at implementation in the verilog. Like previously mentioned we have adopted the top

down approach for coding the design.

 On completion of the verilog coding, the project is simulated with in-built

modelsim simulator. Once the simulation is done and all the errors are rectified, further the

design is needs to complete the logic synthesis as discussed in the design flow diagram. We

not only receive an optimized netlist after logic synthesis but also reports for power, area and

timing which are required for analysis.

The synthesis tool accepts the verilog files of the design and runs the synthesis

algorithm for logic minimization. The synthesis culminates with generation of synthesized

design schematic and detailed synthesis report with hardware units used in the final design.

The generated netlist is further used for post-synthesis simulations for arriving at

power utilization by the design.

 The 32-bit graphics processor architecture is simulated. Attached are the screen

shots of simulation results.

32 bit registers addition done by 32 core units at the same time and result is

printed. The addition registers are r1, r2 with values as 1, 2 in all of them. The addition result

is stored in register r3 whose value will be 3 due to (1+2=3 i.e., r3 = r1+r2) addition.

26

 Fig 5.2: Simulation result screenshot 1

27

 Fig 5.3: Simulation result screenshot 2

28

 Fig 5.4: Simulation result screenshot 3

29

CHAPTER 6

 CONCLUSION AND FUTURE WORK

6.1. Conclusion:

The 32-bit graphics processor architecture is simulated for a set of streaming

multiprocessors and other components. The parallelism can be further increased by adding

more number of streaming multiprocessors, or by adding cores to the existing SMs.

It was verified by passing a series of load, add(arithmetic) and store instructions. The

register files and corresponding memory locations are checked for correctness of actual

results.

6.2. Future Work:

The graphics processor architecture is successfully implemented in verilog. More

arithmetic operations or more other operations can also be included in the code while

changing the case statement in the code and giving it a new opcode other than ones already in

use.

Register arrays have been used in place of actual caches. So, the implementation of

register arrays with actual caches can also be done.

Code can be further optimized to reduce power, area, timing by using other methods

of design, than the ones used, which may optimize the above said parameters. Also the

30

interface of GPU with a CPU can be done and check for the GPGPU operation.

31

Bibliography:

[1] https://en.wikipedia.org/wiki/Graphics_processing_unit

[2] https://en.wikipedia.org/wiki/General_purpose_computing_on_graphics_processing_units

[3] https://en.wikipedia.org/wiki/Nvidia

[4]http://www.nvidia.in/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Archite

cture_Whitepaper.pdf

[5] http://www.asic-world.com/

