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ABSTRACT 
 

 

    KEYWORDS:      highly parallel architecture, demand of parallel computations,       

 choosable over CPU   

 
 

The  graphics processing unit(GPU) has become an integral part of today’s 

mainstream  computing systems. The highly parallel architecture of GPU makes it to 

feature large number of peak arithmetic operations in parallel, substantially than it’s 

counterpart CPU. The rapid increase in the demand of parallel computations in specific 

applications has made GPU a powerful computational engine and choosable over CPU 

for such applications.  

 

This thesis describes the background, hardware, and programming model in 

designing the basic GPU architecture, summarize the state of the art in tools and 

techniques that deliver order-of-magnitude performance gains over optimized CPU 

applications.                               
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CHAPTER  1 

 

    INTRODUCTION 

 

 

          There are various applications that require a 3D world to be simulated as realistically as 

possible on a computer screen. These include 3D animations in games, movies and other real 

world simulations. It takes a lot of computing power to represent a 3D world due to the great 

amount of information and the complex mathematical operations that must be used to project 

this 3D world onto a computer screen. In this situation, the processing time and bandwidth 

are at a premium due to large amounts of both computation and data.   

 

          The functional purpose of a GPU then, is to provide a separate dedicated graphics 

resources, including a graphics processor and memory, to relieve some of the burden off of 

the main system resources, namely the Central Processing Unit, Main Memory which would 

otherwise get saturated with graphical operations and I/O requests. The abstract goal of a 

GPU, however, is to enable a representation of a 3D world as realistically as possible. So 

these GPUs are designed to provide additional computational power that is customized 

specifically to perform these 3D tasks.  

    
          Furthermore, GPUs have moved away from the traditional fixed-function 3D graphics 

pipeline toward a flexible general-purpose computational engine. Today, GPUs can 

implement many parallel algorithms directly using graphics hardware. 
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CHAPTER  2 

 

    BACKGROUND           

 

2.1. SIMT: 

 

Single instruction, multiple thread (SIMT) is an execution model used in parallel 

computing where single instruction, multiple data (SIMD) is combined with multi threading. 

 

 

Fig. 2.1. Group of threads executing at once on a single instruction independently 

 

This is achieved by each processor having multiple "threads" (or "work-items"), which 

execute in lock-step. Access time of all the widespread RAM’s is still very low, that 

inevitably comes with each memory access. 

The SIMT execution model has been implemented on several GPUs and is relevant 

for general-purpose computing on graphics processing units (GPGPU). 

 

 

2.2. GPU Execution: 

 

A GPU executes one or more kernel grids; a streaming multiprocessor (SM) executes one or  

https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Single_instruction,_multiple_data
https://en.wikipedia.org/wiki/Thread_(computing)#Multithreading
https://en.wikipedia.org/wiki/Random-access_memory
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more thread blocks; and cores and other execution units in the SM execute threads. The SM 

executes threads in groups of 32 threads called a warp. This can greatly improve performance 

by having threads in a warp execute the same code path and access memory in nearby 

addresses.  

 

A kernel executes in parallel across a set of parallel threads. The programmer or compiler 

organizes these threads in thread blocks and grids of thread blocks. The GPU instantiates a 

kernel program on a grid of parallel thread blocks. Each thread within a thread block executes 

an instance of the kernel, and has a thread ID within its thread block, program counter, 

registers, per-thread private memory, inputs, and output results. 

A thread block is a set of concurrently executing threads that can cooperate among 

themselves through barrier synchronization and shared memory. A thread block has a block 

ID within its grid. A grid is an array of thread blocks that execute the same kernel, read inputs 

from global memory, write results to global memory, and synchronize between dependent 

kernel calls. 

The GPU internal blocks are as shown below: 

 

 

 Fig. 2.2. GPU internal blocks with different colours indicating separate units 

 



4 
 

 

 

It has 8 Streaming Multiprocessors (SMs) and a DRAM. Each SM is described as in next 

sections. 

 

2.3. Streaming Multiprocessor (SM): 

 

This GPU will have 8 Streaming Multiprocessors (SMs). Each SM will have the following 

1 Warp Scheduler, 1 Dispatch Unit , 1 I-Cache, 1 D-Cache, 32 ALU cores, 1 Load/Store unit, 

1 Special Function Unit, 1 Register file. 

 

 

 

                       Fig. 2.3. Streaming Multiprocessor block diagram 
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Stream processors belong to a new class of architectures that are compute intensive, and  

achieve high performance by reducing dynamic control, and providing a large number of 
programmable functional units. Stream processors are specifically designed for the stream 
execution model, in which applications have large amounts of explicit parallel computation, 
structured and predictable control, and memory accesses that can be performed at a coarse 
granularity. Hence, their architecture also takes into account the concurrency and 
communication levels defined by the stream programming model in order to maintain high 
locality and parallelism levels. Specifically, their memory hierarchy is partitioned into three 
distinct levels of storage. Each of the memory levels provides an order of magnitude more 
bandwidth as it gets closer to the functional units. This maintains temporary data close to the 
functional units while only true global data are stored in the external memory. Because of the 
efficient bandwidth use, most of the work of a stream processor is done on-chip with only 1% 
of global data references requiring external memory access. The three levels of memory 
hierarchy are given below: 

 
Local Register File (LRF): Used for local data communication and fast access of temporary 

data by the functional units. 
 

   Stream Register File (SRF): Used to store streams and transfer data between the LRFs of 

major components. 

   
   Off-Chip Memory: Stores global data and is used only when necessary.  
 
 

As with the memory hierarchy the functional units of a stream processor are distributed in 
ALU Clusters. All clusters consist of the same type and amount of functional units. The ALU 
clusters execute kernel instructions that they receive from the μController in SIMD fashion. 
Each of the clusters operates on an element of the input stream, thus, providing data 
parallelism. The SIMD organization helps provide the necessary data bandwidth to feed all 
ALU clusters. 

 
 

 
2.3.1. Stream Programming Model : 

 
The stream programming model arranges applications into a set of computation kernels that 

operate on data streams. Expressing an application in terms of the stream programming 
model exposes the inherent locality and parallelism of that application, which can be 
efficiently handled by appropriate hardware to speed-up parallel applications. By using the 
stream programming model to expose parallelism, producer-consumer localities are revealed 
between kernels, as well as true data localities in applications. These localities can be 
exploited by keeping data movement locally between kernels that communicate which are 
more efficient rather than using global communication paths.  
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 Streams: A collection of data records of the same type, ranging from single numbers 
to complex elements. 

 

 

 

 Kernels: Operations that are applied on the input stream elements. Kernels can 
perform simple to complex computations and can have one or more input and output 
streams. 

 



The advantage of expressing the application in the form of a stream program is that it 

exposes two types of localities. The first is kernel locality. During a kernel execution, all 

references are to variables local to the kernel, except the values read from the input stream or 

written to the output stream. The second is producer-consumer locality, which involves 

streams moving between kernels. One kernel produces a stream which another kernel in the 

immediately consumes. By efficiently sequencing such kernels, the stream values are kept 

local and are consumed soon after they are produced. The stream model ensures that kernel 

programs will never access the main memory directly. The stream programming model 

defines communication and concurrency between streams and kernels at three distinct 

different levels. In this way take the locality and parallelism of the application are exposed. 

These restrictions in communication help in the most efficient use of bandwidth. 

 
Communication: 
 

 Local: Used for temporary results produced by scalar operations within a kernel. 
 

 

 Stream: For data movement between kernels. All data are expressed in the form of 
streams. 

 

 
   Concurrency: 

 
 Instruction Level Parallelism (ILP): Parallelism exploited between the scalar 

operations within the kernel. 
 

 

 Data Parallelism: Applying the same computation pattern on different stream 
elements in parallel. 

 

 

 Task Parallelism: As long as no dependencies are present, multiple computation and 
communication tasks can be executed in parallel. 
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2.3.2. Instruction Cache: 

 The instruction cache contains the instruction words. The address in the I-cache where 

the kernel starts, is given by the micro-processor to the GPU as an input. Basing on this 

address, GPU will start the process of fetching kernel’s first instruction word from the I-

cache. 

 

2.3.3. Warp Scheduler:   

 The processor knows the information about number of elements it needs to be 

operated on, in total and block size. So basing on this it calculates the number of warps per 

block. Suppose, the number of data elements are 50 and the number of core units in SM is 32, 

then it has 2 warps with each warp as size of the number of core units i.e. 32.  

 

     Fig. 2.4. Warp scheduler 
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The warps for instruction are issued as per priority or due to the processing of background 

work for previous warps. So, in order to hide latency, the SM will switch the warp if current 

warp got stalled due to any background task (such as data fetching from memory). In this 

case, the warp which got stalled has it’s own memory such that it can run in background once 

it is initialized. So, the functioning units which are doing no-operation due to stall can be 

utilised by throwing another warp onto them. This way hardware will be utilized always to 

their peak performance.    

 

 

 Fig.  2.5. Instructions getting scheduled to different blocks independently 

Warp scheduler sends the warps which are ready to their respective functional units. For this 

to happen, the corresponding warps should have both data and functional units to be 

available.  
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2.3.4. Cores : 

 
There are 32 ALU clusters in each Streaming Multiprocessor (SM) and each is comprised 

of arithmetic logic. The clusters operate in a 32 wide SIMD manner. That is, the same 
instruction is executed on all 32 clusters on different elements i.e., when an instruction is 
fetched and passed on, to do some arithmetic logic, the clusters will do the same arithmetic 
logic on the corresponding registers of all the respective clusters which were loaded with data 
in their registers. 

 
Each SM has 32 cores. There are 8 SMs. So in total there are 256 cores on the chip with 

each core having it’s own register file (per warp). 

 

2.3.5. D-Cache :    

 

  The Data cache contains the data words. The first element address of the data in the D-cache 

is given in the Load instruction word and this word is decoded to get the address which is 

then sent to the load/store unit(L/S). L/S unit fetches the data from the D-cache. All the data 

elements are stored in the consecutive memory locations in the cache. 

 

2.3.6. Load/Store Units: 

 

There is 1 load/store unit per Streaming Multiprocessor (SM). This unit will get the 

address by decoding the incoming Load or Store instructions from the I-cache. This decoded 

input is then used to produce the addresses of the next data elements to be fetched for the 

cores in while on load instruction, or to produce the addresses of the next locations to store 

the data results of the cores in the consecutive locations of the D-cache while on store 

instruction. All the data elements are placed in consecutive memory locations. So the L/S unit 

needs a starting address for the fetching or storing the data. 

 Load/Store units will generate the addresses required for fetching or storing data from 

the memory. Once it gets the starting address it will increase the address value by one unit for 

every clock cycle and send it to the memory address lines for fetching/storing data. 
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2.3.7. Register File: 

 

   There are 32 cores in each Streaming Multiprocessor (SM). The block size for each SM is 

256. So there can be eight warps per block per SM. When a warp is executed, it involves 

execution of 32 data pairs on their respective 32 cores at an instant. So for each core per 

thread, there should be one set of 32 registers. Likewise in a warp execution there is a need 

for 32 sets of register files each with 32 registers  in number.  

    So as per above analysis, per warp there are 1024 registers which are required for  the 

execution of a warp. Likewise there can be eight warps per block i.e., each core needs eight 

sets of 32 set registers. So there should be 8192 registers per SM. Now there are 8 SMs. So in 

total 65536 register with each register as 32-bit size are required for execution of SMs. 

    The register file in a GPU is usually very large in size when compared to a CPU. This is 

because of the extreme data parallelism and execution in the GPU with a relatively large 

number of  core in a GPU than in the CPU. This extreme data parallelism also requires more 

data elements to flow in at any instant which serves the purpose of having relatively large 

register file. 

    

2.3.8. Special Function Units : 

 

     There is one special function unit in each of the SMs. This special function unit does 

different operation than the regular core units. These take multiple clock cycles to complete 

the special operation relative to an arithmetic operation.  

     The special function may include square root finder or cosine or sine function etc kind of 

operations. This unit is separated from the core unit block such that these operations can be 

done in parallel to the operations which will be happening in core unit such that both 

arithmetic and special operations are done in parallel on different data elements. 

 

 

 

 



11 
 

 

CHAPTER  3 

 

                          IMPLEMENTATION DETAILS 

                     

3.1. Data: 

 

Block: A group of data elements which are corresponding to a single Streaming 

Multiprocessor (SM).  

        Each block will have a block ID. 

Warp: The Streaming Multiprocessor (SM) executes threads in groups of 32 threads called a 

warp. 

        Each warp will have a warp ID. 

        The processor gives the information about address of the first instruction in the kernel(in 

I-Cache) and the number of data elements to be processed in total. This information is passed 

into the graphics processor as input word. 

         This word which graphics processor received is decoded into address of the first kernel 

instruction and information about number of data elements (say ‘n’) to be processed. The 

number ‘n’ is then used to find the number of blocks of data and warps of data in each block. 

Each block is then launched onto each streaming multiprocessor.  

         Each element will also be having a thread ID. These number’s block ID, warp ID and 

thread ID are used to locate any data element uniquely.  

        After receiving the word from the processor, it is decoded into 2 parts.  

 Lower 16 bits gives the address of the instruction in the I-cache.  

 

 Upper 16 bits give the information about the total number of data elements (n). 

 

        So upper 16 bits are processed to extract the block, warp and thread IDs. 
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       Lower 16 bits are then passed into the I-Cache block. When the clock event happens, the 

instruction word is fetched from the I-cache block and passed back to the main module SM. 

       The instruction word length is 20 bits in size. The instructions are as shown below: 

 

3.2. Instruction Details: 

 

ADD   

X DEST. REG SOURCE REG 2 SOURCE REG 1 OPCODE 

 

OPCODE BITS  0
th

 -3
rd

 bits 

SOURCE REG 1 is 5 bit data  4
th

 -8
th

 bits 

SOURCE REG 2 is 5 bit data  9
th

 -13
th

 bits 

DESTINATION REG 1 is 5 bit data  14
th

 -18
th

 bits 

19
th

 bit is a don’t care bit. 

 

 

SUB   

X DEST. REG SOURCE REG 2 SOURCE REG 1 OPCODE 

 

OPCODE BITS  0
th

 -3
rd

 bits 

SOURCE REG 1 is 5 bit data  4
th

 -8
th

 bits 

SOURCE REG 2 is 5 bit data  9
th

 -13
th

 bits 

DESTINATION REG 1 is 5 bit data  14
th

 -18
th

 bits 

19
th

 bit is a don’t care bit. 
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BITWISE AND   

X DEST. REG SOURCE REG 2 SOURCE REG 1 OPCODE 

 

OPCODE BITS  0
th

 -3
rd

 bits 

SOURCE REG 1 is 5 bit data  4
th

 -8
th

 bits 

SOURCE REG 2 is 5 bit data  9
th

 -13
th

 bits 

DESTINATION REG 1 is 5 bit data  14
th

 -18
th

 bits 

19
th

 bit is a don’t care bit. 

 

 

BITWISE OR   

X DEST. REG SOURCE REG 2 SOURCE REG 1 OPCODE 

 

OPCODE BITS  0
th

 -3
rd

 bits 

SOURCE REG 1 is 5 bit data  4
th

 -8
th

 bits 

SOURCE REG 2 is 5 bit data  9
th

 -13
th

 bits 

DESTINATION REG 1 is 5 bit data  14
th

 -18
th

 bits 

19
th

 bit is a don’t care bit. 

 

 

REGISTER INCREMENT   

X REG XXXX OPCODE 
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OPCODE BITS  0
th

 -3
rd

 bits 

4
th

 -13
th

 bits are don’t care 

REGISTER is 5 bit data  14
th

 -18
th

 bits 

19
th

 bit is a don’t care 

 

 

LOAD   

X DEST. REG SOURCE ADDRESS OPCODE 

 

OPCODE BITS  0
th

 -3
rd

 bits 

SOURCE ADDRESS is 10 bit data  4
th

 -13
th

 bits 

DESTINATION REG is 5 bit data  14
th

 -18
th

 bits 

19
th

 bit is a don’t care 

 

 

STORE   

X SOURCE REG DESTINATION ADDRESS OPCODE 

 

OPCODE BITS  0
th

 -3
rd

 bits 

DESTINATION ADDRESS is 10 bit data  4
th

 -13
th

 bits 

SOURCE REG is 5 bit data  14
th

 -18
th

 bits 

19
th

 bit is a don’t care 
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Now the fetched instructions are passed into the SM’s main module where they are decoded 

to do the corresponding operation.  

 

3.3. Load Instruction: 

 

The opcode for the load instruction will be checked and the load operation process will start. 

The instruction word is then passed into the loadunit.v module where the instruction word is 

decoded. The instruction word syntax is as below: 

 

X DEST. REG SOURCE ADDRESS OPCODE 

 

OPCODE BITS  0
th

 -3
rd

 bits 

SOURCE ADDRESS is 10 bit data  4
th

 -13
th

 bits 

DESTINATION REG is 5 bit data  14
th

 -18
th

 bits 

19
th

 bit is a don’t care 

 

                In the loadstoreunit.v module, the source address is extracted from the instruction 

word and passed to load_address signal. This load_address value is copied into dM_address 

signal for first time when the instruction is called.  

               There is a count register which counts the number of clock pulses  This 

loadstoreunit.v module will generate 32 different addresses one per every clock cycle and 

pass them onto dataMemory.v module . All these addresses are generated from the initial 

incoming address and the count register used to count clock pulses. So, for every clock pulse, 

a different address is generated and passed on. This dM_address signal is output of 

loadstoreunit.v module. This signal is taken as input by dataMemory.v module. 

               When the instruction is fetched into the main module, it is also passed into the 

controlLogic.v module. This module generates all the control signals required for the load 

operation to get completed. Memtoreg and regwrite are two important control signals which  
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allow enable signals for memory to register transfer if data andwriting the data into the 

specified register respectively. The PCwrite control signal is activated only when L/S unit 

finishes loading all the 32 elements data into their registers.    

               The dataMemory.v module will capture the incoming address on its lines. The 

DM_Read signal is active which makes the dataMemory.v retrieve the data from the given 

address on it’s input lines of DM_Address signal. Data will be placed onto temp_dM_read 

line. This is read by dM_Read  signal and placed in the data incoming signal of the register 

file and the data is written into the register specified in the instruction word. So, at the end of 

load instruction, from the given syntax, the data will be read and placed in the destination 

register specified.  

                For the time being the caches and other memories are implemented using register 

arrays only. So, the cache modules are implemented using register arrays of size which are 

sufficient enough to hold the 256 array A elements, 256 array B elements and 256 result array 

elements. So around 1024 elements can fit into the caches. So, the address field  required is 

only around 10 bits.  

 

3.4. Arithmetic Instructions: 

 

The general syntax for arithmetic instructions is as shown below: 

X DEST. REG SOURCE REG 2 SOURCE REG 1 OPCODE 

 

OPCODE BITS  0
th

 -3
rd

 bits 

SOURCE REG 1 is 5 bit data  4
th

 -8
th

 bits 

SOURCE REG 2 is 5 bit data  9
th

 -13
th

 bits 

DESTINATION REG 1 is 5 bit data  14
th

 -18
th

 bits 

19
th

 bit is a don’t care bit. 

 

                   Instruction fetched from the I-cache is passed into the topmodule.v where the  
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instruction word is decoded. The opcode for the arithmetic instruction will be checked and 

the operation process will start. 

                  The registers information is retrieved from the respective places of the instruction 

word. The registers which are supposed to be added(say add is the arithmetic operation to be 

done for instance) and  the contents are to be placed into the destination register for all the 

cores, this process is done in a single clock cycle.  

                  The controlsignals which are needed for the arithmetic operations to carry out will 

be generated from the controlLogic.v module.  

                  The function which needs to be done in the arithmeticLogic.v module is passed 

into it. Basing on the switch-case statement, corresponding operation is done and the results 

are placed in the result signal which is output of the arithmeticLogic.v module. This result is 

connected to the input data signal of the register files. So when the operation is completed, 

the results will get stored into the corresponding registers whose destination value is already 

fetched from the instruction word.  

                 Register file and core units are generated using genvar statement. This will help 

duplicating the modules multiple times instead of writing the module instances again. In this 

process the corresponding signal lines between register files and core, load-store signals are 

also linked internally. 

                 The CPU takes multiple clock cycles for loading the data and then adding them 

into the third register. But GPU will takes multiple clock cycles for loading the data but once 

the data is loaded, all the cores will do the arithmetic operation at the same time saving a lot 

of clock cycles time.  

                 The selection of data between the result from loading the instruction and core 

operation results is done by signal memtoreg. This ensures the data which needs to be written 

into register files. 

                 Similar to load instruction, the Store instruction does the work of storing the 

results from core units registers into address in the memory. 
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3.5. Store Instruction: 

The opcode for the store instruction will be checked and the store operation process will start. 

The instruction word is then passed into the loadstoreunit.v module where the instruction 

word is decoded. The instruction word syntax is as below: 

 

X SOURCE REG DESTINATION ADDRESS OPCODE 

 

OPCODE BITS  0
th

 -3
rd

 bits 

DESTINATION ADDRESS is 10 bit data  4
th

 -13
th

 bits 

SOURCE REG is 5 bit data  14
th

 -18
th

 bits 

19
th

 bit is a don’t care 

 

         In the loadstoreunit.v module, the source address is extracted from the instruction word 

and passed to load_address signal. This load_address value is copied into dM_address signal 

for first time when the instruction is called.  

         There is a count register which counts the number of clock pulses  This loadstoreunit.v 

module will generate 32 different addresses one per every clock cycle and pass them onto 

dataMemory.v module . All these addresses are generated from the initial incoming address 

and the count register used to count clock pulses. So, for every clock pulse, a different 

address is generated and passed on. This dM_address signal is output of loadstoreunit.v 

module. This signal is taken as input by dataMemory.v module. 

                   The dataMemory.v module will capture the incoming address on its lines. The 

DM_MW i.e., signal which corresponds to writing of data into the memory is active which 

makes the dataMemory.v to read the data present in it’s input lines of DM_write signal and 

write it into the address specified by the input address lines of dM_address signal. The 

content of resister which needs to be stored in memory is loaded into DM_Write signal and 

then write process happens. 

                     So, at the end of store instruction, from the given syntax, the data will be written  
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into the  destination address specified in the instruction word for all the particular registers 

from the register files. 

The operation flow for other instructions also will be in the same manner as described above. 
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CHAPTER  4 

 

                                   LIST OF SIGNALS 

                     

data_IN: This signal is 32 bits in length. Upper 16 bits gives the number of elements which 

are to be processed. Lower 16 bits gives the address location of the first instruction of the 

kernel in the I-cache. 

i_address: This stores the decoded address data i.e., lower 16 bits of data_IN signal. 

elements_num: This signal stores the number elements to be processed i.e., upper 16 bits of 

the data_IN signal. 

blocks_num: It stores the value of number of blocks of data.  

warps_num: It stores the value of number of warps of data on each streaming multiprocessor.  

Clk: It is the clock for the processor. 

instruction_mem: It is wire type signal which has instruction word data and is the output of I-

Cache module. 

Instruction: It acts as register in the code which stores the fetched instruction. 

Selr1, Selr2: Each register file has two read ports. These selr1, selr2 registers content gives 

the information about the registers which are to be read from the register file..  

Selrin: The data in it gives the information about the selection of register whose content 

should get updated by the data in the input of register file. 

r1, r2: These are two dimensional registers. Each of them are an array of registers in which 

each array has registers of 32 bit in length. r1, r2 array size is equal to warps_num data. So, 

all the r1 array’s registers point to same register in all the different streaming processor’s 

register files. Similarly r2. 

rin: This is a two dimensional register. It is an array of registers which are 32 bit in length  
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each. This holds the data which needed to be written into the register file. The selection of 

register is done by selrin, and the data needs to be written is in the rin register. 

result_1: This holds the information of the result of arithmetic operation done by the core.v 

module and passed onto the topmodule.v 

func: This gives information about the type of operation that needs to be carried out on the 

data elements. 

PCWrite: This says the program counter when it has to be incremented to load the address of 

the next instruction from the cache. 

Jump: It says if the jump operation is required or not for that instruction to get executed. 

MemtoReg: It says if there is a need for memory to register transfer of data. This signal can 

be used as an enable signal and selection signal to select between dM_read and result_1 

signals. 

MemWrite: This says if there is a need for memory writing operation in that instruction’s 

execution. 

ALUControl: This give the information about the type of arithmetic operation need to be 

performed by the cores on the registers selected by selr1, selr2. 

RegWrite: This says if the register write operation needs to be carried out in the process.  

Done: This signal halts the processor after the execution of a kernel. 

                Some of these control signals can be used as enable signals for performing some 

operations in the processor’s code. 

 

dM_address: This is local signal to the topmodule.v which holds the address information of 

the memory location from which reading or to which writing needs to take place.  

dM_write: This is local signal to the topmodule.v which holds the data that needs to be 

written into the memory location specified by dM_address signal 

MemWrite: This signal gives the information if the data needs to be written or to be read 

from the memory. It is write enable signal. 
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temp_dM_read: This is local signal to topmodule.v which holds the read data from the 

memory, temporarily, before placing into one of the input lines of the register files data lines. 

dM_read: It is two dimensional register which stores the value that we have got from the data 

memory by load operation and needed to be written into register file into the register  

specified by the selrin. 

cnt: This signal holds the information of the number of clock pulses. Depending on this cnt 

signal, temp_dM_read data is placed into one of the dM_read array’s registers that will later 

be written into register file’s registers. 

enable: It is the signal that enables the loadstore unit module to function. 

core_ID: This genvar variable that is used to generate the hardware modules for core and 

register files. 

Control: It has information about the read/write signals of the register file. 
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CHAPTER  5 

 

           DESIGN FLOW 

                     

 
 

5.1.  Hardware Design Flow: 
 

 

      The hardware or the VLSI design flow as depicted in figure 5.1 gives the major 

steps taking the design towards physical realization. 

 
The design of any product starts with an idea. The idea is born out of a client 

requirement. This idea is put down as a higher level behavioural model of the final product 

using the high level languages like Verilog. The behavioural model is then compiled into a 

RTL using a suitable compiler. RTL are generally the description of the circuit at the module 

level where input output interfaces, clock and other signals are visible. Any design can be 

described in RTL using the Huffman’s model. 

 
Once the RTL is arrived at, the next step in the design flow is the logic synthesis. 

Using commercial EDA tools, the designer converts the RTL into a netlist which is nothing 

but a list of gates and wires whose input output are specified. The EDA tools gives a lot of 

options like types of gates to be used, constraints for the design with respect to the power, 

area and timing, thus a highly optimized netlist is achieved after logic synthesis. 

 
On getting the netlist, more EDA tools are used to do place and route of gates and 

wires or floor planning as it is popularly called. The result of place and route is the mask that 

could be handed over to the foundry for carrying out the fabrication of the chip. Two most 

important part of the design flow are the testing and verification. Testing is done to ensure 

final chip does not suffer from manufacturing defects and verification is done at each stage of 
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the flow to ensure the design meets the requirements as were originally projected. 

 

 

 

                                                Fig 5.1. Hardware Design Flow 
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In our case however, we limit the scope to design, implementation of the design in verilog, 

logic synthesis and post-synthesis simulations to verify performance. 

 

5.2. Implementation, Simulation :  
 

 

       Since the design process has been dealt with in earlier chapters adequately. We 

look at implementation in the verilog. Like previously mentioned we have adopted the top 

down approach for coding the design.  

 
      On completion of the verilog coding, the project is simulated with in-built 

modelsim simulator. Once the simulation is done and all the errors are rectified, further the 

design is needs to complete the logic synthesis as discussed in the design flow diagram. We 

not only receive an optimized netlist after logic synthesis but also reports for power, area and 

timing which are required for analysis. 

The synthesis tool accepts the verilog files of the design and runs the synthesis 

algorithm for logic minimization. The synthesis culminates with generation of synthesized 

design schematic and detailed synthesis report with hardware units used in the final design.  

 
The generated netlist is further used for post-synthesis simulations for arriving at 

power utilization by the design. 

                  The 32-bit graphics processor architecture is simulated. Attached are the screen 

shots of simulation results. 

 

32 bit registers addition done by 32 core units at the same time and result is 

printed. The addition registers are r1, r2 with values as 1, 2 in all of them. The addition result 

is stored in register r3 whose value will be 3 due to (1+2=3 i.e., r3 = r1+r2) addition. 
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      Fig 5.2: Simulation result screenshot 1 
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      Fig 5.3: Simulation result screenshot 2 
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      Fig 5.4: Simulation result screenshot 3 
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CHAPTER  6 

 

  CONCLUSION AND FUTURE WORK 

 

 

6.1. Conclusion:     

 

The 32-bit graphics processor architecture is simulated for a set of streaming 

multiprocessors and other components. The parallelism can be further increased by adding 

more number of streaming multiprocessors, or by adding cores to the existing SMs. 

It was verified by passing a series of load, add(arithmetic) and store instructions. The 

register files and corresponding memory locations are checked for correctness of actual 

results. 

 

 

 

6.2. Future Work: 

 

 

The graphics processor architecture is successfully  implemented in verilog. More 

arithmetic operations or more other operations can also be included in the code while 

changing the case statement in the code and giving it a new opcode other than ones already in 

use. 

 

Register arrays have been used in place of actual caches. So, the implementation of 

register arrays with actual caches can also be done. 

 

Code can be further optimized to reduce power, area, timing by using other methods 

of design, than the ones used, which may optimize the above said parameters. Also the 
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interface of GPU with a CPU can be done and check for the GPGPU operation. 
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