
1

ADVANCED DEBUG INTERFACE Implementation in

Bluespec

 A Project Report

Submitted In partial fulfillment of the

requirements for the award of the degree of

MASTER OF TECHNOLOGY

In

 Microelectronics and VLSI Design

(Electrical Engineering)

 by

 BHARATI MOHAN DATTAPRASAD

 (EE14M050)

Under the guidance of

Dr. V. Kamakoti

DEPARTMENT OF ELECTRICAL ENGINEERING INDIAN

INSTITUTE OF TECHNOLOGY MADRAS.

 JUNE 2016

2

THESIS CERTIFICATE

This is to certify that the thesis titled ADVANCED DEBUG INTERFACE

implementation in bluespec, submitted by Bharati Mohan Dattaprasad,

(EE14M050) to the Indian Institute of Technology Madras, for the award of

the degree of Master of Technology in microelectronics and VLSI design, is

a bona fide record of the research work done by him under our supervision.

The contents of this thesis, in full or in parts, have not been submitted to

any other Institute or University for the award of any degree or diploma.

Dr. V. Kamakoti
(Project guide)

Place: Chennai
Dept. of Computer Science
IIT-Madras, Date:
Chennai 600 036

3

 ACKNOWLEDGEMENTS

 I would like to express my sincere gratitude to my guide, Dr. V.Kamakoti for

his valuable guidance, encouragement and advice. His immense motivation

helped me in making firm commitment towards my project work.

 My special thanks to Mr. G.S. Madhusudan for his encouragement and

motivation throughout the project. His valuable suggestions and constructive

feedback were very helpful in moving ahead with my project work.

I would like to thank my co-guide Dr.Nitin Chandrachoodan and faculty advisor

Dr.Deleep R Nair who have patiently listened, evaluated, and guided us

throughout the program.

 My special thanks to my project team members Neel Gala, Arjun Menon, Rahul,

Arnab for their help and support.

4

ABSTRACT

Key Words: JTAG Test Access Port (TAP), system AXI4 bus, OR1200 CPU SPR bus,
System on Chip (SoC)

 As VLSI engineer designs some circuits it needed to be verified. This
verification can be pre and post fabrication. In verification we need to check
weather SoC is working properly or not or if is there any error coming. Now when
your processor is ready on SoC we need to check whether it is working or not. For
that we use Software debugger which check whether our design under test (DUT)
is working properly or not. But there should be some hardware which ‘translate’
debugger’s request to our DUT.
 Main objective of this project is to design this hardware which will help
debugger to read from or write to SoC. Main purpose is accessing burst data.
 ADF hardware contains JTAG TAP which is connected to SoC, OR1200 CPU
SPR bus will connect to debug interface and ADI also uses AXI4 bus.

5

Table of Contents

INTRODUCTION .. 6

ARCHITECTURE ... 8

2.1 TOP MODULE……… 11
2.2 AXI4 MODULE……. 12
2.3 OR1ON CPU MODULE………………………………………………………………………………………………. 14

API ... 15

3.1 TOP-LEVEL COMMANDS 15
3.1.1 Module Select command .. 15

3.2 AXI4 COMMANDS 16

3.2.1 Burst Setup .. 16

3.2.2 Burst Write .. 17

3.2.3 Burst Read ... 18

3.2.4 Register Select .. 19

3.2.5 Register Read ... 20

3.2.6 Register Write .. 20

3.2.7 NOP .. 21

3.3 CPU COMMANDS 22
3.3.1 Burst Setup .. 22

3.3.2 Burst Write .. 23

3.3.3 Burst Read ... 24

3.3.4 Register Select .. 25

3.3.5 Register Read ... 25

3.3.6 Register Write .. 26

3.3.7 NOP .. 26

3.4 AXI4 MODULE REGISTERS 28

3.4.1 Error Register ... 28

3.5 CPU MODULE REGISTERS 29
3.5.1 Status Register ... 29

IO PORTS ... 31

4.1 TAP PORTS 31
4.2 CPU PORTS 31
4.3 AXI4 PORTS 32

MODULE CONFIGURATION .. 33

CRC MODULE .. 34

6

1. INTRODUCTOIN

 The Advanced Debug Interface (ADI) is a hardware module which creates an

interface between a JTAG Test Access Port (TAP) and the system bus and CPU debug

interface(s) of a System on Chip (SoC). It is part of the system which allows software

running on a SoC to be controlled and debugged by a software debugger such as GDB,

running on a separate host PC. This debugging system allows the SoC to be debugged via

direct hardware connection, and does not require the “GDB stub” software running on

the SoC. A block diagram of this system is shown in figure 1.

The interface has initially been developed for OpenRISC based processors, but it is

universal and can also be used with other cores. In the PULP project it is used for both

OpenRISC and RISC-V based cores.

Changes compared to the initial version:

 Replaced WishBone memory interface with AXI

• Support for 32 and 64 bit wide memory interfaces

• Support for up to 16 cores

• Intelligent handling of multi core debugging

 The external interface to the Advanced Debug Interface is based on IEEE Std.

1149.1, Standard Test Access Port and Boundary Scan Architecture. A JTAG TAP is

required to link the ADI to an external JTAG cable. The ADI appears as a data register

within the TAP.

 Internally, the ADI has connections to both a AXI4 bus and CPU debug interface.

The AXI4 interface does not use any of the burst features of the bus; it should therefore

be compatible with any version of the bus. The CPU interface is designed to connect to

an OR1ON processor, or any other CPU which uses the same debug ports. Note that

there are two versions of the OR1ON debug interface; the ADI is designed to use the

newer version, which includes the strobe and acknowledge (dbg_stb and dbg_ack)

signals

7

 Fig. 1: Block diagram of the complete debug system hardware

8

2. ARCHITECTURE

 The Advanced Debug Interface is built with a modular
architecture, for flexibility and expandability. It consists of a top-level module, and

several sub-modules designed to interface with individual SoC subsystems. The sub-
modules currently include the AXI4 module and the OR1ON module.

The top-level module contains the sub-modules, and a register to set the active
sub-module. In order to send a command to a sub-module, it must first be made active
by setting this top level register; only one sub-module may be active at a time. Zero or
more instances of any type of sub-module are valid. The default is one AXI4 sub-module
and one OR1ON CPU sub-module. The top-level module also contains the input shift
register, which holds incoming serial data from the TAP. The value in the input shift
register is available to all sub-modules. Note that as per the JTAG specification, all serial
transfers are LSB-first.

Sub-modules generally consist of two parts:

1) Internal module registers:
 Contain information about the status of the module such as the error
register in the AXI4 module, or they may control external I/O lines such as
the reset and stall lines from the OR1ON module.
Each sub-module using one or more registers contains an index register,
which enables one internal register at a time for reading or writing. Internal
registers are selected, read, and written by sending commands to a sub-
module through the TAP.

2) Bus interface:
 The bus interface of most sub-modules is designed to allow the TAP
to read or write data from or to a bus as quickly as possible.

 The bus interface of the OR1ON module connects to the processor's SPR bus.

 All bus transactions are 'burst' transactions from the external / TAP side: a setup

command is first sent to a sub-module, and then the entire block of data is streamed
into or out of the sub-module without further control action. Different sub-modules
may provide burst transactions using various word lengths. Burst data is CRC-protected.

A block diagram of the general module structure is shown in figure 2.

In order to support JTAG scan chains with more than one device, commands are usually
executed by the sub-modules when the TAP moves through the UPDATE_DR state. This
allows a software driver to add the necessary bits to the end of a serial bitstream to
position the command at the correct place in the scan chain.

9

 The exception to this is burst data, due to its unknown (and potentially very large)
size.

Figure 2: General Module structure

Burst transaction:

1) To do a burst transaction, a burst command is first sent to a module, and
executed by moving the TAP through the UPDATE_DR state

2) The next time the TAP goes into the SHIFT_DR state, 'burst mode' is active. In
burst mode, bus data is immediately clocked into or out of the module, and the
next bus transaction is determined by internal counters. In order to support
multi-device chains, a “start bit” feature was added to burst mode.

3) During burst writes, the module will not start its counters or collect write data
until after the first '1' (a “start bit”) is encountered in the bitstream. Since TAP
devices in BYPASS mode will initially shift out a '0', this means that these extra
bits from other devices will be ignored by the ADI module.
 Once the module sees the start bit, it begins to capture write data and the
start bit is discarded.

4) Burst reads require no such added feature, as a software cable driver may simply
discard the appropriate number of bits before beginning to capture read data.
 However, the first status bit of a burst read may be used as a start bit
during burst reads, see the API sections on burst reads for details

 There are two more things to consider when using the ADI in a scan chain with
multiple devices:

10

 First, all other devices should be in BYPASS mode when using the ADI – otherwise, a
false start bit could get sent to the ADI during a burst write, corrupting the data.
 Second, the ADI data register is not a through shift register – that is, the serial TDI
input of the ADI is not directly connected to the TDO output. This means that data
shifted into the ADI will never appear at the output. As such, the ADI should never be
active when other devices on the chain are in use.

 Three modules are currently implemented. Next sections will elaborate them

11

2.1 Top Module

The top-level module is the simplest of the modules. It does not have a bus interface,
and has only a single register. This register is called the “module select register”, and is
used to select the active sub-module.

 The top module does not use command opcodes the way the sub-modules do.
Instead, a single bit in the input shift register (the MSB) indicates whether the command
is a write to the select register, or a command to a sub-module. The value in the select
register cannot be read back.
 The top-level module provides enable signals to all sub-modules, based on the value
in the module select register. The value of the input shift register is also provided to all
modules. Finally, the serial TDO output of the ADI is selected from the sub-module TDO
outputs, based on the module select register. A block diagram of the top-level module is
shown in Figure 3.

Figure 3: Block diagram of top- level module

12

2.3 AXI4 Module

 The purpose of the AXI4 module is to provide a software debugger access to the
SoC's memory system, allowing it to load code, examine and change program data, and
set software breakpoints. The AXI4 module has a bus interface which follows the AXI4
standard.
 Because the JTAG interface is relatively slow, burst accesses on the AXI4 bus
interface are not used, therefore the interface should be compatible with all versions of
the AXI4 standard.
 The AXI4 module allows 8-, 16-, 32-bit and 64-bit reads and writes over the AXI4
bus interface. The AXI4 Module uses a 32-bit address and a 64-bit data bus, and allows
burst transfers of up to 65535 words (524 KB).
The ADI may be synthesized in one of two modes: Which mode is used affects how
overflow conditions are detected.

1) Legacy mode:

In legacy mode, an overflow condition during a burst write can be detected
by reading back a status bit after writing each word.
 If the status bit is true, then the transaction has succeeded (the AXI4 bus

was ready to accept the word) and the burst should continue. If the status bit
is false, then an overflow has occurred, and the software driver should retry
part of the burst, starting with last word written.

2) Hi-speed mode:
 There is no status bit between data bytes, and overflows cannot be
detected until after the burst transaction is finished. In hi-speed mode, an
overflow is detected and treated in the same way as a AXI4 bus error, and is
captured by the module's “error register”.

 In legacy mode, underflow conditions during burst reads are avoided by use of a
“ready” bit. As soon as a data word is read from the AXI4 bus, the module shifts out a
one, indicating that data is ready. Bus data follows immediately after a true ready bit is
sent.
 Hi-speed mode eliminates all ready bits in a burst read except the first one – driver
software must only wait for a single valid ready bit at the start of a read transaction
before transferring all of the data.
 Which mode you select (legacy or hi-speed) depends on the relative clock speeds of
your system's AXI4 bus and JTAG interface. Systems with AXI4 clock slower than the
JTAG clock may require legacy mode. Most systems should select hi-speed mode,
especially if a USB-based JTAG cable is used. A system in hi-speed mode using a USB
JTAG cable is generally able to transfer AXI4 data an order of magnitude faster than a
system with a legacy-mode ADI. I used hi speed mode since we use USB-based JTAG
interface.

13

 Error register: A 33-bit internal register, which is used to detect errors on the bus
interface.
 During a burst read or write, the AXI4 error (wb_err) bit is sampled at the end of each
bus transaction. If the error bit is ever true, then the error bit (bit 0) in the error register
is set, and the address of the failed transaction is captured into the other 32 bits of the
error register. When the error bit is set, the error register contains the address of the
first bus error encountered since the bit was last reset.
 The error register should be reset before each bus transaction (or after each time the
error bit is found set), then checked after each burst transaction.

 The AXI4 sub-module includes a CRC calculation, which is used to protect burst data.
During burst transactions, an internal word counter determines when all of the data for
a burst has been transferred.
 If a burst read has just completed, the module then begins to shift out a 32-bit CRC,
which the host may compare to a locally-generated CRC and if is a burst write, the
module accepts a 32-bit CRC from the host, then shifts out a single bit indicating
whether or not the CRC received matched its internal CRC computation.
Note that the CRC is done only on the burst data; the preceding burst command, and all
start and ready bits, are ignored. The LSB-first calculation was used to reduce hardware
and routing requirements in the CRC module.

14

 2.3 OR1ON CPU Module

 The OR1ON CPU sub-module is designed to allow a software debugger to access the

internal registers of a CPU, to stall the processor, and to take control when a breakpoint occurs

in software.

 The OR1ON sub-module is based on the AXI4 module, and is therefore similar. The bus

interface connects to the debug interface of the OR1ON, which allows access to the processor's

SPR bus. Accesses to this bus are performed by ADI burst transactions. Reads, writes, clock

synchronization, ready bits, status bits, overflow, underflow, and CRC computations are all

handled exactly as they are in the AXI4 module.

 The OR1ON debug interface bus does not have an error indicator bit. Thus, the OR1ON

module does not have an internal “bus error” register.

Since error register is not present, in hi-speed mode, overflows and underflows during burst

transactions cannot be detected. So, we use legendary mode.

 The OR1ON module allows the user to set and clear the CPU reset bit, to stall the CPU, and

to capture breakpoints in the CPU. This is done through a module internal register, called the

“CPU status register.” Bit 1 of this register is the reset bit. When this bit is true, the cpu_rst_o

output bit is set true, and vice-versa.

 Bit 0 of the CPU status register is the stall bit. When set, the cpu_stall_o output of the ADI

is also set, and vice versa. This bit may be set and cleared via internal register access to the ADI.

This bit may also be set by the CPU: when the cpu_bp_i input from the CPU goes high

(indicating a breakpoint), the stall bit in the register is set, and the stall output set high. This

effectively transfers control of the CPU to the ADI, which may perform various debugging

operation before clearing the stall bit via internal register access, allowing the CPU to continue

normal execution.

15

 3 API

 This section gives information on the commands, opcodes, and data formats of the

Advanced Debug Interface. There are four major sections: the top-level ADI, the AXI4 module,

and the CPU modules. All commands and registers are shown with the least-significant bit to

the right, and all commands are shifted out LSB-first. Data is also shifted in to and out of the ADI

LSB-first. All commands are interpreted when the TAP passes through state UPDATE_DR.

The ADI must be reset before any commands will be accepted or executed

3.1.1 Top module:

3.1.1 Module Select command

 This command is used to select which one of the sub-modules is active. Only the active sub-

module will process commands sent to the ADI. This command should be sent before any other

command is sent to any sub-module.

 Figure 4: Module Select Command format

1 module
 2 0

Bit# Access Description

5 W Top Level Select
Set to ‘1’ to select the top module

4:0 W Module
Number of the module to select. The following modules are valid:
0X0 = AXI4 module
0X1 = CPU module

 Table 1: Module Select command format

16

3.2 AXI4 Commands:

 A standardized command format in which, Each command must have a zero as the MSBit, to

differentiate it from a module select command. In the next four most-significant bit positions is

a 4-bit opcode, which indicates the operation to be performed. Following the opcode are zero

or more data values, whose length and meaning are command-specific. Table 2 summarize it.

OPCODE Operation

0X0 NOP

0X1 Burst Setup Write, 8-bit words

0X2 Burst Setup Write, 16-bit words

0X3 Burst Setup Write, 32-bit words

0X4 Burst Setup Write, 64-bit words

0X5 Burst Setup Read, 8-bit words

0X6 Burst Setup Read, 16-bit words

0X7 Burst Setup Read, 32-bit words

0X8 Burst Setup Read, 64-bit words

0X9 Internal register write

0XD Internal register select
Table 2: AXI module command opcode summary

3.2.1 Burst Setup

 A burst setup command prepares the AXI4 module to do either a read or write burst, in

order to move data to or from a consecutive sequence of addresses on the AXI4 bus. The word

size of the burst is decoded from the opcode. the address counter in the ADI is incremented by

1, 2, 4 or 8, for 8-, 16-, 32- and 64-bit words respectively.

 After a burst setup command has been executed (in the UPDATE_DR state), the AXI4

module will enter 'burst read' or 'burst write' mode, the next time the TAP enters SHIFT_DR

mode.

Figure 5: Burst Setup command

0 Opcode Address Count
 52 48 16 0

17

Bit# Access Description

52 W Top-Level Select
Set to ‘0’ for all sub-module commands

48:51 W Opcode
Operation to perform. The following are valid burst setup
operations:
0X1 = Burst Write, 8-bit words
0X2 = Burst Write, 16-bit words
0X3 = Burst Write, 32-bit words
0X4 = Burst Write, 64-bit words
0X5 = Burst Read, 8-bit words
0X6 = Burst Read, 16-bit words
0X7 = Burst Read, 32-bit words
0X8 = Burst Read, 64-bit words

47:16 W Address
The first AXI4 address which will be read from or written to

0:15 W Count
Total no of words to be transferred

Table 3: AXI4 module Burst Setup commands formats

3.2.2 Burst Write

 In this mode, commands and data are not interpreted or executed on transition through

UPDATE_DR. Instead, counters are used to determine position in the bitstream, and a word is

written to the AXI4 as soon as it has been transferred in via JTAG. For a word size of n and a

transfer of m words in hi-speed mode, the total length will be (n * m) + 34.

 The first bit transferred in a burst write is a '1' start bit. This tells the AXI4 module to begin

counting bits, and is required due to the possibility of multiple devices on the JTAG chain. After

the start bit, one word of data is transferred into the ADI. The status bit tells the user whether

the AXI4 was ready to accept the word just transferred; when true, the bus was ready. When

false, the word was not written to the AXI4, and the software driver should retry the transfer,

starting from the failed word.

 Each data word is immediately followed by another data word, until all words have been

transferred. Immediately following the last data word, a 32-bit CRC code is transferred into the

AXI4 module. This CRC is compared with a CRC computed internally to the AXI4 module. After

the CRC is transferred in, a single bit is transferred out of the ADI, indicating whether or not the

18

CRC written matched the CRC calculated. A burst write transaction may be aborted at any time

by moving the TAP through the UPDATE_DR state.

 AXI4 bus errors are captured during a burst, but the information is not transferred during the

burst transaction. After a burst, the user should check the AXI4 module error register to see if a

bus error occurred during the burst, and if so, at what address.

Figure 6: Burst Write format

Match CRC Data(word length n) 1
 (m*n) +33 (m*n) +1 (sent n times) 0

Bits Access Description

1 bit R Match

'1' if CRC sent matches internal CRC computation, '0' if not

32 bits W CRC

32-bit CRC computed on all of the data bits of the burst

n bits W Data

Data word. Length specified by the opcode in the burst setup
command. Sent m times.

1 bit W Start Bit

Set to '1' to indicate the start of a burst write.

Table4: AXI4 module burst write format

3.2.3 Burst Read

 In this mode, counters are used to determine position in the bitstream, and a word

is read from the AXI4 while the previous data word is transferred out via JTAG. For a word size of

n and a transfer of m words, the total length will be (n * m) + 33.

The first bit (or bits) transferred during a burst read, whether legacy or hi-speed mode,

is a status bit. This bit indicates whether or not data from the AXI4 is ready to be transferred

out via JTAG. The AXI4 module will send '0' bits until a word is ready, then send a single '1' bit.

One data word will follow a '1' status bit.

Immediately following the last data word, a 32-bit CRC code is sent from the AXI4

module to the driver software. The driver software should compare the CRC received with one

computed internally, to determine whether or not the complete transaction must be retried.

19

The CRC protects only the data bits in a burst transaction; commands and status bits are not

included in the CRC computation. The CRC resets before each burst transaction.

Same treatment for error bit as in burst write.

Figure 7: Burst Read format

CRC Data(word length n) Status
 (m*n)+1 Sent m times 0

Bits Access Description

32 bits R CRC

32-bit CRC computed on all of the data bits of the burst

n bits R Data

Data word. Length specified by the opcode in the burst setup
command. Sent m times.

1 bit R Status

Read '0' until a word is ready to be sent, then a single '1' bit is
sent before the data word. In hi-speed mode, this is only sent
before the first data word. In legacy mode, this is sent before
each data word.

Table5: AXI4 module burst read format

3.2.4 Register Select

 A register select command will make the module-internal register with the given index

active in the currently selected sub-module. While any register in the current module can be

written with a single command, only the active register can be read.

 When the TAP enters CAPTURE_DR mode, the AXI4 module captures the value of the active

register into the output shift register, allowing the value to be read when the TAP is in

SHIFT_DR mode. If command is of burst type then only one time command needed to give.

The register select command uses the same top-level select bit and opcode format as the other

AXI4 module commands. The opcode is followed by a 1-bit value, which is the index of the

register which should be made active.

20

Figure 8: Register Select commands formats

0 Opcode Index
 5 1 0

Bit# Access Description

5 W Top-Level Select

Set to '0' for all sub-module commands

4:1 W Opcode

Operation to perform.

0xD = Internal Register Select

0 W Index

Index of the register to make active. The AXI4 module
uses a 1-bit index.

Table 6: AXI4 module Register Select command format

3.2.5 Register Read

 No specific command to read a module internal register.

 In order to read a particular register, make that register active using the register select

command, then read out the value of the register while sending a NOP command. The register

data will be LSB-aligned; that is, the LSB of the register data will be the first bit shifted out of

the ADI. This allows the minimum number of JTAG bits to be transferred.

 Only register data will be transferred out, no command, index, opcodes, start, or status bits

will be sent with it. You can abort register read with command like NOP in shift register.

3.2.6 Register Write

 A register write command contains both a register index, and data to be written to the

register at that index. The register with the given index will become the active register after this

command is executed. The value of the previously active register will be shifted out as this

command is shifted in.

21

Figure 8: Register Select commands formats

0 Opcode Index Data
 N+5 n+1 n 0

Bit# Access Description

5+ n W Top-Level Select

Set to '0' for all sub-module commands

(4:1)+ n W Opcode

Operation to perform.

0x9 = Internal Register Write

n W Index

Index of the register to make active. The AXI4 module uses a
1-bit index.

(n-1):0 W Data

n bits of data to write to the register specified by Index. n
depends on the register being written.

Table 7: AXI4 module Register Write command format

3.2.7 NOP

A NOP command will perform no operation. It is included as a “safe” command to shift into the

AXI4 module while shifting out internal register data. A NOP command consists of five or more

zeros, making it easy to send for any length of data read.

Figure 10: NOP command format

0 Opcode 0 or more ‘0’
 N+4 n 0

Bit # Access Description

4 + n W Top-Level Select

Set to '0' for all sub-module commands

(3:0)+ n W Opcode

Operation to perform.

0x0 = NOP

n:0 W Zero

Zero or more '0' bits

Table 8: AXI4 module NOP command format

22

3.3 CPU Commands

 The CPU sub-module uses the same standardized command format as the AXI4 module.

Each command must have a zero as the MSBit, to differentiate it from a module select

command. In the next four MSB positions is a 4-bit opcode, which indicates the operation to be

performed. Following the opcode are zero or more data values, whose length and meaning are

command-specific.

OPCODE Operation

0x0 NOP

0x3 Burst Setup Write, 32-bit words

0x7 Burst Setup Read, 32-bit words

0x9 Internal register write

0xD Internal register select

Table 9: CPU module command opcode summary

3.3.1 Burst Setup

 A burst setup commands are used for CPU module to either read or write. . Since all SPRs are

32-bit registers, all burst transfers in the CPU module use 32-bit words. After each individual

word transfer during a burst, the address counter in the CPU module is incremented by 1. Note

that while the OR1000 architecture defines an SPR address as 16 bits, the OR1ON

implementation uses a 32-bit address in its external debug interface. The ADI is designed to use

the 32-bit OR1ON implementation.

 After a burst setup command has been executed (in the UPDATE_DR state), the CPU module

will enter 'burst read' or 'burst write' mode, the next time the TAP enters SHIFT_DR mode.

Figure 11: Burst Setup command

0 Opcode CPU Sel. Address Count
 56 52 48 16 0

23

Bits # Access Description

56 W Top-Level Select

Set to '0' for all sub-module commands

52:55 W Opcode

Operation to perform. The following opcodes are valid burst setup
operations for the CPU module:

0x3 = Burst Write, 32-bit words

0x7 = Burst Read, 32-bit words

48:51 W CPU Select

Select the CPU to write to

47:16 W Address

The first OR10N SPR address which will be read or written

0:15 W Count

Total number of 32-bit words to be transferred.

Table 10: CPU module Burst Setup command format

3.3.2 Burst Write

 In this mode, counters are used to determine position in the bitstream, and a word is

written to the CPU SPR bus as soon as it has been transferred in via JTAG. For a transfer of m

words, the total length will be (32 * m) + 38.

 In legacy mode, the first bit transferred in a burst write is a '1' start bit. This tells the AXI4

module to begin counting bits, and is required due to the possibility of multiple devices on the

JTAG chain. After the start bit, one word of data is transferred into the ADI. The status bit tells

the user whether the CPU was ready to accept the word just transferred; when true, the bus

was ready. When false, the word was not written to the SPR, and the software driver should

retry the transfer, starting from the failed word.

 In legacy mode, data transmission continues to alternate data word and status bit until all

words have been transferred. In hi-speed mode, a data word is followed immediately by

another data word, until all words are transferred.

 A burst write transaction may be aborted at any time by moving the TAP through the

UPDATE_DR state. Since no error bit, SPR bus does not provide any error indications beyond

Start or Ready.

24

Figure 12: Burst Write format

Match CRC Data(32 bits) 1
 (m*32) + 33 (m*32) +1 sent m times 0

Bits Access Description

1 bit R Match

'1' if CRC sent matches internal CRC computation, '0' if not

32 bits W CRC

32-bit CRC computed on all of the data bits of the burst

n bits W Data

32-bit data word. Sent m times.

1 bit W Start Bit

Set to '1' to indicate the start of a burst write.

Table 11: CPU module burst write format

3.3.3 Burst Read

 In this mode, counters are used to determine position in the bitstream, and a word is read

from the CPU SPR bus while the previous data word is transferred out via JTAG. For a word size of

n and a transfer of m words, the total length will be (n * m) + 33.

 The first bit (or bits) transferred during a burst read, whether legacy or hi-speed

mode, is a status bit. This bit indicates whether or not data from the SPR bus is ready to be

transferred out via JTAG. The CPU module will send '0' bits until a word is ready, and then send

a single '1' bit. One data word will follow a '1' status bit.

Immediately following the last data word, a 32-bit CRC code is sent from the CPU

module to the driver software. The driver software should compare the CRC received with one

computed internally, to determine whether or not the complete transaction must be retried.

 The CRC protects only the data bits in a burst transaction; commands and status bits are not

included in the CRC computation. The CRC resets before each burst transaction.

Figure 13: Burst Read format

CRC Data(32 bits) status
 (m*32)+1 sent m times 0

25

bits Access Description

32 bits R CRC

32-bit CRC computed on all of the data bits of the burst

n bits R Data

Data word. Length specified by the opcode in the burst setup
command. Sent m times.

1 bit R Status

Read '0' until a word is ready to be sent, then a single '1' bit is
sent before the data word. In hi-speed mode, this is only sent
before the first data word.

Table 12: CPU module burst read format

3.3.4 Register Select

 This is same as AXI4 module Register select except The CPU module uses a 3-bit index.

Figure 14: Register Select command format

0 Opcode Index
 7 3 0

Bit # Access Description

7 W Top-Level Select

Set to '0' for all sub-module commands

6:3 W Opcode

Operation to perform.

0xD = Internal Register Select

2:0 W Index

Index of the register to make active. The CPU module uses a 3-bit
index.

Table 13: CPU module Register Select command format

3.3.5 Register Read

 This is same as AXI4 module Register read.

26

3.3.6 Register Write

 This is same as AXI4 module Register select except The CPU module uses a 3-bit index.

Figure 15: Register Write command format

0 Opcode Index Data
 N+7 n+3 n 0

Bit # Access Description

7+ n W Top-Level Select

Set to '0' for all sub-module commands

(6:3)+ n W Opcode

Operation to perform.

0x9 = Internal Register Write

(2:0)+n W Index

Index of the register to make active. The CPU module uses a
3-bit index.

(n-1):0 W Data

n bits of data to write to the register specified by Index. n
depends on the register being written.

Table 14: CPU module Register Write command format

3.3.7 NOP

 A NOP command will perform no operation. It is included as a “safe” command to shift into

the CPU module while shifting out internal register data. A NOP command consists of five or

more zeros, making it easy to send for any length of data read

Figure 16: NOP command format

0 Opcode 0 or more ‘0’
 N+4 n 0

27

Bit # Access Description

4 + n W Top-Level Select

Set to '0' for all sub-module commands

(3:0)+ n W Opcode

Operation to perform.

0x0 = NOP

n:0 W Zero

Zero or more '0' bits

Table 15: CPU module NOP command format

28

3.4 AXI4 Module Registers

 The data format of a register may be different depending on whether it is read or
written; this saves the user from having to shift in extra bits to fill read-only values when
writing.

Index Register name

0x0 Error register

Table 16: AXI4 module register summary

3.4.1 Error Register

 The error register captures AXI4 bus errors during burst transactions. Each time a bus access
is completed, the AXI4 error indicator bit (wb_err) is tested. If an error is present, then the error
bit in the error register is set to '1', and the address of the failed access is stored in the rest of
the error register. Once the error bit is set, the error register will retain its value and further
AXI4 errors will be ignored until the error bit is reset. The error bit may only be reset by writing
a '1' to the error bit via an internal register write

 Error in read, if an error has occurred, then an error handling routine in the driver software
can read the error register again to get the 32-bit error address – the value will not change until
the error bit is reset.

When written, the error register consists of a single bit, the error bit. This should be written as
'1' in order to clear the error bit and re-enable error detection

Figure 17: AXI4 module Error Register as read

Address Err

 33 1 0

Figure 18: AXI4 module Error Register, as written

Err

1 0

29

Bit # Access Description

33:1 R Address

When error bit = '1', contains the address of the failed transaction

0 R Err (when read)

Error bit. Set to '1' when a AXI4 error has occurred since the last
time the error bit was reset.

0 W Err (when written)

Write as '1' to reset the error bit to '0' and re-enable error
detection

Table 16: AXI4 module Error Register format

3.5 CPU Module Register
 Table 18 shows all of the registers present within the CPU sub-module

Index Register name

0x0 Status register

0x1 Group1 OR mask

0x2 Group1 AND mask

0x3 Group2 OR mask

0x4 Group2 AND mask

Table 17: CPU module register summary

3.5.1 Status Register
 The status register is NB_CORES bit long and each bit of the status register detects
breakpoint condition for a particular core, and controls the stall line to the same CPU. When
written '1' via internal register write, the stall line to the CPU is made active, and the CPU stops
executing instructions. When written '0', the stall line is negated, and the CPU resumes
execution.

 The stall bit will also be set when the breakpoint output of the CPU goes active. The
breakpoint output will be registered, the stall bit will be set, and the CPU will be held in the stall
state by the ADI. This condition must be detected by polling in the software driver – once stalled
due to a breakpoint, the CPU cannot resume execution until the stall bit is reset to '0' by an
internal register access via JTAG.

30

Figure 19: CPU module status register

Stall CPU N-1 …. Stall CPU1 Stall CPU0

 n-1 1 0

Bits# Access Description

15:0 R/W Stall CPUn

Set to '1' to suspend execution in the CPUn. Set to '0' to resume. Will be
set to '1' automatically when a breakpoint indicator arrives from the CPU.

Table 18: CPU module Status Register format

31

4 IO Ports

4.1 TAP Ports

 The Advanced Debug Interface connects to the TAP controller with the signals shown in Table

20.

Port Width Direction Description

tck_i 1 input Test clock input

tdi_i 1 input Test data input

tdo_o 1 output Test data output

shift_dr_i 1 input TAP controller state “Shift DR”

pause_dr_i 1 input TAP controller state “Pause DR”

update_dr_i 1 input TAP controller state “Update DR”

capture_dr_i 1 Input TAP controller state “Capture DR”

rst_i 1 input Reset signal.

debug_select_i 1 input Instruction DEBUG is activated

Table 20: TAP Ports

4.2 CPU Ports

 For each CPU module included, one set of I/O lines for that module will be present.

Port Width Direction
Description

cpun_clk_i 1 input CPU clock signal.

cpun_addr_o 32 output CPU address

cpun_data_i 32 input CPU data input (data from CPU)

cpun_data_o 32 output CPU data output (data to CPU)

cpun_bp_i 1 input CPU breakpoint

cpun_stall_o 1 output CPU stall (selected CPU is stalled)

cpun_stb_o 1 output CPU strobe

cpun_we_o 1 output
CPU write enable signal indicates a write cycle
when asserted high (read cycle when low).

cpun_ack_i 1 input CPU acknowledge (signals end of cycle)

cpun_rst_o 1 output CPU reset output (resets CPU)

Table 21: CPU Ports

32

4.3 AXI4 Ports

The AXI4 module will add a set of AXI4 initiator interface signals to the top-level IO

Port Width Direction Description

wb_clk_i 1 input AXI4 clock

wb_rst_i 1 Input AXI4 reset signal

wb_ack_i 1 input
AXI4 acknowledge indicates a normal cycle
termination

wb_adr_o 32 output AXI4 address output

wb_cyc_o 1 output AXI4 cycle encapsulates a valid transfer cycle.

wb_dat_i 32 input AXI4 data input (data from AXI4)

wb_dat_o 32 output AXI4 data output (data to AXI4)

wb_err_i 1 input
AXI4 error acknowledge indicates an abnormal
cycle termination

wb_sel_o 4 output
AXI4 select indicates which bytes are valid on
the data bus.

wb_stb_o 1 output AXI4 strobe indicates a valid transfer.

wb_we_o 1 output
AXI4 write enable indicates a write cycle when
asserted high (read cycle when low).

wb_cab_o 1 output
AXI4 consecutive address burst indicates a burst
cycle. (always false)

wb_cti_o 3 output
AXI4 cycle type identifier indicates type of cycle
(single, burst, end of burst) (always single)

wb_bte_o 2 output AXI4 burst type extension (always 0)

Table 22: AXI4 Ports

33

5. Module Configuration

The Advanced Debug Interface supports three options, which allow us to configure which sub-

modules will be included when the design is synthesized

1) Option: DBG_AXI4_SUPPORTED:

 Used to include AXI4 module in the ADI.

2) Option: DBG_CPU_SUPPORTED:

 Used to include one or more OR1ON CPU debug modules.

3) Option: DBG_CPU_NUM:

 Used to define the number of OR1ON CPU debug module to be instantiated.

Default is 4.

4) Option: ADBG_USE_HISPEED:

 Used to define this option to synthesize the AXI4 and OR1ON modules in hi-

speed mode.

34

6. CRC Module

 A CRC calculation module is contained within each AXI4 and CPU sub-module. The CRC

module is active only during burst read and write transactions. It calculates a 32-bit CRC on only

the data bits of the transaction, starting with the LSB of the first word transferred, and ending

with the MSB of the last word transferred.

