
1 
 

ADVANCED DEBUG INTERFACE Implementation in 

Bluespec  

 
 

                                            A Project Report 

 

 

Submitted In partial fulfillment of the 

requirements for the award of the degree of 
 

MASTER OF TECHNOLOGY 
 

In 

  Microelectronics and VLSI Design 

(Electrical Engineering) 
                                                

                                                      by 
 

                 BHARATI MOHAN DATTAPRASAD 

                                 (EE14M050) 
 

 

 

Under the guidance of 

Dr. V. Kamakoti 
 

                             
 

 

DEPARTMENT OF ELECTRICAL ENGINEERING INDIAN   

INSTITUTE OF TECHNOLOGY MADRAS. 
 

   JUNE 2016 



2 
 

 
 
 

 

THESIS CERTIFICATE 
 
 
 
 
 
 

 

This is to certify that the thesis titled ADVANCED DEBUG INTERFACE 

implementation in bluespec, submitted by Bharati Mohan Dattaprasad, 

(EE14M050) to the Indian Institute of Technology Madras, for the award of 

the degree of Master of Technology in microelectronics and VLSI design, is 

a bona fide record of the research work done by him under our supervision. 

The contents of this thesis, in full or in parts, have not been submitted to 

any other Institute or University for the award of any degree or diploma. 

 
 
 
 
 
 
 
 
 
 

   
Dr. V. Kamakoti 
(Project guide) 

Place: Chennai 
Dept. of Computer Science  
IIT-Madras,                                                               Date: 
Chennai 600 036                                                        
 
 

 
 
 
 
 
 
 
 
 
 
 



3 
 

 
 
 
 
 
 
 
 
 
 
 

 

                       ACKNOWLEDGEMENTS 
 
 

 
        I would like to express my sincere gratitude to my guide, Dr. V.Kamakoti for 

his valuable guidance, encouragement and advice. His immense motivation 

helped me in making firm commitment towards my project work. 

  

           My special thanks to Mr. G.S. Madhusudan for his encouragement and 

motivation throughout the project. His valuable suggestions and constructive 

feedback were very helpful in moving ahead with my project work. 

 

I would like to thank my co-guide Dr.Nitin Chandrachoodan and faculty advisor 

Dr.Deleep R Nair who have patiently listened, evaluated, and guided us 

throughout the program. 

 

   My special thanks to my project team members Neel Gala, Arjun Menon, Rahul, 

Arnab for their help and support. 

 

 

  



4 
 

ABSTRACT 

 
Key Words: JTAG Test Access Port (TAP), system AXI4 bus, OR1200 CPU SPR bus, 
System on Chip (SoC) 

 
        As VLSI engineer designs some circuits it needed to be verified. This 
verification can be pre and post fabrication. In verification we need to check 
weather SoC is working properly or not or if is there any error coming. Now when 
your processor is ready on SoC we need to check whether it is working or not. For 
that we use Software debugger which check whether our design under test (DUT) 
is working properly or not. But there should be some hardware which ‘translate’ 
debugger’s request to our DUT. 
         Main objective of this project is to design this hardware which will help 
debugger to read from or write to SoC. Main purpose is accessing burst data. 
        ADF hardware contains JTAG TAP which is connected to SoC, OR1200 CPU 
SPR bus will connect to debug interface and ADI also uses AXI4 bus. 
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1.  INTRODUCTOIN 

           The Advanced Debug Interface (ADI) is a hardware module which creates an 

interface between a JTAG Test Access Port (TAP) and the system bus and CPU debug 

interface(s) of a System on Chip (SoC). It is part of the system which allows software 

running on a SoC to be controlled and debugged by a software debugger such as GDB, 

running on a separate host PC. This debugging system allows the SoC to be debugged via 

direct hardware connection, and does not require the “GDB stub” software running on 

the SoC. A block diagram of this system is shown in figure 1.  

The interface has initially been developed for OpenRISC based processors, but it is 

universal and can also be used with other cores. In the PULP project it is used for both 

OpenRISC and RISC-V based cores. 

Changes compared to the initial version: 

 Replaced WishBone memory interface with AXI 

• Support for 32 and 64 bit wide memory interfaces 

• Support for up to 16 cores 

• Intelligent handling of multi core debugging 

           The external interface to the Advanced Debug Interface is based on IEEE Std. 

1149.1, Standard Test Access Port and Boundary Scan Architecture. A JTAG TAP is 

required to link the ADI to an external JTAG cable. The ADI appears as a data register 

within the TAP. 

          Internally, the ADI has connections to both a AXI4 bus and CPU debug interface. 

The AXI4 interface does not use any of the burst features of the bus; it should therefore 

be compatible with any version of the bus. The CPU interface is designed to connect to 

an OR1ON processor, or any other CPU which uses the same debug ports. Note that 

there are two versions of the OR1ON debug interface; the ADI is designed to use the 

newer version, which includes the strobe and acknowledge (dbg_stb and dbg_ack) 

signals            
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       Fig. 1: Block diagram of the complete debug system hardware 
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2. ARCHITECTURE  

 

                              The Advanced Debug Interface is built with a modular 
architecture, for flexibility and expandability. It consists of a top-level module, and 

several sub-modules designed to interface with individual SoC subsystems. The sub-
modules currently include the AXI4 module and the OR1ON module. 
  

The top-level module contains the sub-modules, and a register to set the active 
sub-module. In order to send a command to a sub-module, it must first be made active 
by setting this top level register; only one sub-module may be active at a time. Zero or 
more instances of any type of sub-module are valid. The default is one AXI4 sub-module 
and one OR1ON CPU sub-module. The top-level module also contains the input shift 
register, which holds incoming serial data from the TAP. The value in the input shift 
register is available to all sub-modules. Note that as per the JTAG specification, all serial 
transfers are LSB-first. 

 
Sub-modules generally consist of two parts: 

1) Internal module registers: 
             Contain information about the status of the module such as the error 
register in the AXI4 module, or they may control external I/O lines such as 
the reset and stall lines from the OR1ON module.  
Each sub-module using one or more registers contains an index register, 
which enables one internal register at a time for reading or writing. Internal 
registers are selected, read, and written by sending commands to a sub-
module through the TAP. 

2) Bus interface: 
                 The bus interface of most sub-modules is designed to allow the TAP 
to read or write data from or to a bus as quickly as possible.  

                 The bus interface of the OR1ON module connects to the processor's SPR bus. 
 
        All bus transactions are 'burst' transactions from the external / TAP side: a setup 

command is first sent to a sub-module, and then the entire block of data is streamed 
into or out of the sub-module without further control action. Different sub-modules 
may provide burst transactions using various word lengths. Burst data is CRC-protected. 

A block diagram of the general module structure is shown in figure 2. 

 

 

 

In order to support JTAG scan chains with more than one device, commands are usually 
executed by the sub-modules when the TAP moves through the UPDATE_DR state. This 
allows a software driver to add the necessary bits to the end of a serial bitstream to 
position the command at the correct place in the scan chain. 
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   The exception to this is burst data, due to its unknown (and potentially very large) 
size.  

 
Figure 2: General Module structure 

 
Burst transaction: 

1) To do a burst transaction, a burst command is first sent to a module, and 
executed by moving the TAP through the UPDATE_DR state 

2) The next time the TAP goes into the SHIFT_DR state, 'burst mode' is active. In 
burst mode, bus data is immediately clocked into or out of the module, and the 
next bus transaction is determined by internal counters. In order to support 
multi-device chains, a “start bit” feature was added to burst mode. 

3) During burst writes, the module will not start its counters or collect write data 
until after the first '1' (a “start bit”) is encountered in the bitstream. Since TAP 
devices in BYPASS mode will initially shift out a '0', this means that these extra 
bits from other devices will be ignored by the ADI module. 
           Once the module sees the start bit, it begins to capture write data and the 
start bit is discarded. 

4) Burst reads require no such added feature, as a software cable driver may simply   
discard the appropriate number of bits before beginning to capture read data. 
            However, the first status bit of a burst read may be used as a start bit  
during burst reads, see the API sections on burst reads for details 

 
    There are two more things to consider when using the ADI in a scan chain with 
multiple devices: 
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        First, all other devices should be in BYPASS mode when using the ADI – otherwise, a 
false start bit could get sent to the ADI during a burst write, corrupting the data.  
       Second, the ADI data register is not a through shift register – that is, the serial TDI 
input of the ADI is not directly connected to the TDO output. This means that data 
shifted into the ADI will never appear at the output. As such, the ADI should never be 
active when other devices on the chain are in use. 

 

      Three modules are currently implemented. Next sections will elaborate them 
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2.1 Top Module 
 
 

The top-level module is the simplest of the modules. It does not have a bus interface, 
and has only a single register. This register is called the “module select register”, and is 
used to select the active sub-module. 

      The top module does not use command opcodes the way the sub-modules do. 
Instead, a single bit in the input shift register (the MSB) indicates whether the command 
is a write to the select register, or a command to a sub-module. The value in the select 
register cannot be read back. 
     The top-level module provides enable signals to all sub-modules, based on the value 
in the module select register. The value of the input shift register is also provided to all 
modules. Finally, the serial TDO output of the ADI is selected from the sub-module TDO 
outputs, based on the module select register. A block diagram of the top-level module is 
shown in Figure 3. 

 
Figure 3: Block diagram of top- level module 
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2.3 AXI4 Module 
   
 
         The purpose of the AXI4 module is to provide a software debugger access to the 
SoC's memory system, allowing it to load code, examine and change program data, and 
set software breakpoints. The AXI4 module has a bus interface which follows the AXI4 
standard. 
        Because the JTAG interface is relatively slow, burst accesses on the AXI4 bus 
interface are not used, therefore the interface should be compatible with all versions of 
the AXI4 standard. 
         The AXI4 module allows 8-, 16-, 32-bit and 64-bit reads and writes over the AXI4 
bus interface. The AXI4 Module uses a 32-bit address and a 64-bit data bus, and allows 
burst transfers of up to 65535 words (524 KB). 
The ADI may be synthesized in one of two modes: Which mode is used affects how 
overflow conditions are detected. 

1) Legacy mode: 

In legacy mode, an overflow condition during a burst write can be detected 
by reading back a status bit after writing each word.  
   If the status bit is true, then the transaction has succeeded (the AXI4 bus 

was ready to accept the word) and the burst should continue. If the status bit 
is false, then an overflow has occurred, and the software driver should retry 
part of the burst, starting with last word written. 

2) Hi-speed mode: 
            There is no status bit between data bytes, and overflows cannot be 
detected until after the burst transaction is finished. In hi-speed mode, an 
overflow is detected and treated in the same way as a AXI4 bus error, and is 
captured by the module's “error register”. 
 

         In legacy mode, underflow conditions during burst reads are avoided by use of a 
“ready” bit. As soon as a data word is read from the AXI4 bus, the module shifts out a 
one, indicating that data is ready. Bus data follows immediately after a true ready bit is 
sent. 
        Hi-speed mode eliminates all ready bits in a burst read except the first one – driver 
software must only wait for a single valid ready bit at the start of a read transaction 
before transferring all of the data. 
   Which mode you select (legacy or hi-speed) depends on the relative clock speeds of 
your system's AXI4 bus and JTAG interface. Systems with AXI4 clock slower than the 
JTAG clock may require legacy mode. Most systems should select hi-speed mode, 
especially if a USB-based JTAG cable is used. A system in hi-speed mode using a USB 
JTAG cable is generally able to transfer AXI4 data an order of magnitude faster than a 
system with a legacy-mode ADI. I used hi speed mode since we use USB-based JTAG 
interface. 
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     Error register: A 33-bit internal register, which is used to detect errors on the bus 
interface. 
     During a burst read or write, the AXI4 error (wb_err) bit is sampled at the end of each 
bus transaction. If the error bit is ever true, then the error bit (bit 0) in the error register 
is set, and the address of the failed transaction is captured into the other 32 bits of the 
error register.  When the error bit is set, the error register contains the address of the 
first bus error encountered since the bit was last reset. 
    The error register should be reset before each bus transaction (or after each time the 
error bit is found set), then checked after each burst transaction. 
 
       The AXI4 sub-module includes a CRC calculation, which is used to protect burst data. 
During burst transactions, an internal word counter determines when all of the data for 
a burst has been transferred. 
      If a burst read has just completed, the module then begins to shift out a 32-bit CRC, 
which the host may compare to a locally-generated CRC and if is a burst write, the 
module accepts a 32-bit CRC from the host, then shifts out a single bit indicating 
whether or not the CRC received matched its internal CRC computation. 
Note that the CRC is done only on the burst data; the preceding burst command, and all 
start and ready bits, are ignored. The LSB-first calculation was used to reduce hardware 
and routing requirements in the CRC module. 
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   2.3 OR1ON CPU Module 
   
                     
         The OR1ON CPU sub-module is designed to allow a software debugger to access the 

internal registers of a CPU, to stall the processor, and to take control when a breakpoint occurs 

in software. 

      The OR1ON sub-module is based on the AXI4 module, and is therefore similar. The bus 

interface connects to the debug interface of the OR1ON, which allows access to the processor's 

SPR bus. Accesses to this bus are performed by ADI burst transactions. Reads, writes, clock 

synchronization, ready bits, status bits, overflow, underflow, and CRC computations are all 

handled exactly as they are in the AXI4 module.  

       The OR1ON debug interface bus does not have an error indicator bit. Thus, the OR1ON 

module does not have an internal “bus error” register. 

Since error register is not present, in hi-speed mode, overflows and underflows during burst 

transactions cannot be detected. So, we use legendary mode. 

        The OR1ON module allows the user to set and clear the CPU reset bit, to stall the CPU, and 

to capture breakpoints in the CPU. This is done through a module internal register, called the 

“CPU status register.” Bit 1 of this register is the reset bit. When this bit is true, the cpu_rst_o 

output bit is set true, and vice-versa. 

        Bit 0 of the CPU status register is the stall bit. When set, the cpu_stall_o output of the ADI 

is also set, and vice versa. This bit may be set and cleared via internal register access to the ADI. 

This bit may also be set by the CPU: when the cpu_bp_i input from the CPU goes high 

(indicating a breakpoint), the stall bit in the register is set, and the stall output set high. This 

effectively transfers control of the CPU to the ADI, which may perform various debugging 

operation before clearing the stall bit via internal register access, allowing the CPU to continue 

normal execution. 
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        3 API 

     

     This section gives information on the commands, opcodes, and data formats of the 

Advanced Debug Interface. There are four major sections: the top-level ADI, the AXI4 module, 

and the CPU modules. All commands and registers are shown with the least-significant bit to 

the right, and all commands are shifted out LSB-first. Data is also shifted in to and out of the ADI 

LSB-first. All commands are interpreted when the TAP passes through state UPDATE_DR. 

The ADI must be reset before any commands will be accepted or executed 

                                      

3.1.1 Top module: 

3.1.1 Module Select command 

      This command is used to select which one of the sub-modules is active. Only the active sub-

module will process commands sent to the ADI. This command should be sent before any other 

command is sent to any sub-module. 

                                                      Figure 4: Module Select Command format 

1 module 
                                                                            2                                 0 

Bit# Access Description 

5 W Top Level Select 
Set to ‘1’ to select the top module 

4:0 W Module 
Number of the module to select. The following modules are valid: 
0X0 = AXI4 module 
0X1 = CPU module 

                              Table 1: Module Select command format 
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3.2 AXI4 Commands: 

    A standardized command format in which, Each command must have a zero as the MSBit, to 

differentiate it from a module select command. In the next four most-significant bit positions is 

a 4-bit opcode, which indicates the operation to be performed. Following the opcode are zero 

or more data values, whose length and meaning are command-specific. Table 2 summarize it. 

OPCODE Operation 

0X0 NOP 

0X1 Burst Setup Write, 8-bit words 

0X2 Burst Setup Write, 16-bit words 

0X3 Burst Setup Write, 32-bit words 

0X4 Burst Setup Write, 64-bit words 

0X5 Burst Setup Read, 8-bit words 

0X6 Burst Setup Read, 16-bit words 

0X7 Burst Setup Read, 32-bit words 

0X8 Burst Setup Read, 64-bit words 

0X9 Internal register write 

0XD Internal register select 
Table 2: AXI module command opcode summary 

                         

 

3.2.1 Burst Setup 

        A burst setup command prepares the AXI4 module to do either a read or write burst, in 

order to move data to or from a consecutive sequence of addresses on the AXI4 bus. The word 

size of the burst is decoded from the opcode. the address counter in the ADI is incremented by 

1, 2, 4 or 8, for 8-, 16-, 32- and 64-bit words respectively. 

       After a burst setup command has been executed (in the UPDATE_DR state), the AXI4 

module will enter 'burst read' or 'burst write' mode, the next time the TAP enters SHIFT_DR 

mode. 

Figure 5: Burst Setup command 

0 Opcode Address Count 
                               52                    48                                                                             16                                      0 
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Bit# Access Description 

52 W Top-Level Select 
Set to ‘0’ for all sub-module commands 

48:51 W Opcode 
Operation to perform. The following are valid burst setup 
operations: 
0X1 = Burst Write, 8-bit words 
0X2 = Burst Write, 16-bit words 
0X3 = Burst Write, 32-bit words 
0X4 = Burst Write, 64-bit words 
0X5 = Burst Read, 8-bit words 
0X6 = Burst Read, 16-bit words 
0X7 = Burst Read, 32-bit words 
0X8 = Burst Read, 64-bit words 

47:16 W Address 
The first AXI4 address which will be read from or written to 

0:15 W Count 
Total no of words to be transferred  

Table 3: AXI4 module Burst Setup commands formats 

 

3.2.2 Burst Write 

          In this mode, commands and data are not interpreted or executed on transition through 

UPDATE_DR. Instead, counters are used to determine position in the bitstream, and a word is 

written to the AXI4 as soon as it has been transferred in via JTAG. For a word size of n and a 

transfer of m words in hi-speed mode, the total length will be (n * m) + 34. 

         The first bit transferred in a burst write is a '1' start bit. This tells the AXI4 module to begin 

counting bits, and is required due to the possibility of multiple devices on the JTAG chain. After 

the start bit, one word of data is transferred into the ADI.  The status bit tells the user whether 

the AXI4 was ready to accept the word just transferred; when true, the bus was ready. When 

false, the word was not written to the AXI4, and the software driver should retry the transfer, 

starting from the failed word.  

       Each data word is immediately followed by another data word, until all words have been 

transferred. Immediately following the last data word, a 32-bit CRC code is transferred into the 

AXI4 module. This CRC is compared with a CRC computed internally to the AXI4 module. After 

the CRC is transferred in, a single bit is transferred out of the ADI, indicating whether or not the 
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CRC written matched the CRC calculated. A burst write transaction may be aborted at any time 

by moving the TAP through the UPDATE_DR state. 

     AXI4 bus errors are captured during a burst, but the information is not transferred during the 

burst transaction. After a burst, the user should check the AXI4 module error register to see if a 

bus error occurred during the burst, and if so, at what address. 

Figure 6: Burst Write format 

Match CRC Data(word length n) 1 
                         (m*n) +33                                           (m*n) +1                (sent n times)                                             0 

                                            

Bits Access Description 

1 bit R Match 

'1' if CRC sent matches internal CRC computation, '0' if not 

32 bits W CRC 

32-bit CRC computed on all of the data bits of the burst 

n bits W Data 

Data word.  Length specified by the opcode in the burst setup 
command.  Sent m times. 

1 bit W Start Bit 

Set to '1' to indicate the start of a burst write. 

Table4: AXI4 module burst write format 

 

3.2.3 Burst Read 

       In this mode, counters are used to determine position in the bitstream, and a word 

is read from the AXI4 while the previous data word is transferred out via JTAG. For a word size of 

n and a transfer of m words, the total length will be (n * m) + 33. 

The first bit (or bits) transferred during a burst read, whether legacy or hi-speed mode, 

is a status bit. This bit indicates whether or not data from the AXI4 is ready to be transferred 

out via JTAG. The AXI4 module will send '0' bits until a word is ready, then send a single '1' bit. 

One data word will follow a '1' status bit. 

Immediately following the last data word, a 32-bit CRC code is sent from the AXI4 

module to the driver software. The driver software should compare the CRC received with one 

computed internally, to determine whether or not the complete transaction must be retried. 
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The CRC protects only the data bits in a burst transaction; commands and status bits are not 

included in the CRC computation. The CRC resets before each burst transaction. 

Same treatment for error bit as in burst write. 

Figure 7: Burst Read format 

CRC Data(word length n) Status 
                                                              (m*n)+1               Sent m times                                                    0 

               

Bits Access Description 

32 bits R CRC 

32-bit CRC computed on all of the data bits of the burst 

n bits R Data 

Data word.  Length specified by the opcode in the burst setup 
command.  Sent m times. 

1 bit R Status 

Read '0' until a word is ready to be sent, then a single '1' bit is 
sent before the data word.  In hi-speed mode, this is only sent 
before the first data word.  In legacy mode, this is sent before 
each data word. 

Table5: AXI4 module burst read format 

                             

       

3.2.4 Register Select 

         A register select command will make the module-internal register with the given index 

active in the currently selected sub-module. While any register in the current module can be 

written with a single command, only the active register can be read. 

       When the TAP enters CAPTURE_DR mode, the AXI4 module captures the value of the active 

register into the output shift register, allowing the value to be read when the TAP is in 

SHIFT_DR mode. If command is of burst type then only one time command needed to give. 

The register select command uses the same top-level select bit and opcode format as the other 

AXI4 module commands. The opcode is followed by a 1-bit value, which is the index of the 

register which should be made active. 
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Figure 8: Register Select commands formats 

0 Opcode Index 
                                                                   5                                                             1                 0 

 

Bit# Access Description  

5 W Top-Level Select 

Set to '0' for all sub-module commands 

4:1 W Opcode 

Operation to perform. 

0xD = Internal Register Select 

0 W Index 

Index of the register to make active.  The AXI4 module 
uses a 1-bit index. 

Table 6: AXI4 module Register Select command format 

                

3.2.5 Register Read 

   No specific command to read a module internal register. 

     In order to read a particular register, make that register active using the register select 

command, then read out the value of the register while sending a NOP command. The register 

data will be LSB-aligned; that is, the LSB of the register data will be the first bit shifted out of 

the ADI. This allows the minimum number of JTAG bits to be transferred.   

       Only register data will be transferred out, no command, index, opcodes, start, or status bits 

will be sent with it. You can abort register read with command like NOP in shift register. 

 

3.2.6 Register Write 

        A register write command contains both a register index, and data to be written to the 

register at that index. The register with the given index will become the active register after this 

command is executed. The value of the previously active register will be shifted out as this 

command is shifted in. 
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Figure 8: Register Select commands formats 

0 Opcode Index Data 
                                      N+5                                              n+1                 n                                            0 

Bit# Access Description 

5+ n W Top-Level Select 

Set to '0' for all sub-module commands 

(4:1)+ n W Opcode 

Operation to perform. 

0x9 = Internal Register Write 

n W Index 

Index of the register to make active.  The AXI4 module uses a 
1-bit index. 

(n-1):0 W Data 

n bits of data to write to the register specified by Index.  n 
depends on the register being written. 

Table 7: AXI4 module Register Write command format 

3.2.7 NOP 

A NOP command will perform no operation. It is included as a “safe” command to shift into the 

AXI4 module while shifting out internal register data. A NOP command consists of five or more 

zeros, making it easy to send for any length of data read. 

Figure 10: NOP command format 

0 Opcode 0 or more ‘0’ 
                                                  N+4                             n                                                                 0   

Bit # Access Description  

4 + n W Top-Level Select 

Set to '0' for all sub-module commands 

(3:0)+ n W Opcode 

Operation to perform. 

0x0 = NOP 

n:0 W Zero 

Zero or more '0' bits 

Table 8: AXI4 module NOP command format 
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3.3 CPU Commands 

      The CPU sub-module uses the same standardized command format as the AXI4 module. 

Each command must have a zero as the MSBit, to differentiate it from a module select 

command. In the next four MSB positions is a 4-bit opcode, which indicates the operation to be 

performed. Following the opcode are zero or more data values, whose length and meaning are 

command-specific. 

OPCODE Operation 

0x0 NOP 

0x3 Burst Setup Write, 32-bit words 

0x7 Burst Setup Read, 32-bit words 

0x9 Internal register write 

0xD Internal register select 

Table 9: CPU module command opcode summary 

 

3.3.1 Burst Setup 

     A burst setup commands are used for CPU module to either read or write. . Since all SPRs are 

32-bit registers, all burst transfers in the CPU module use 32-bit words. After each individual 

word transfer during a burst, the address counter in the CPU module is incremented by 1. Note 

that while the OR1000 architecture defines an SPR address as 16 bits, the OR1ON 

implementation uses a 32-bit address in its external debug interface. The ADI is designed to use 

the 32-bit OR1ON implementation. 

    After a burst setup command has been executed (in the UPDATE_DR state), the CPU module 

will enter 'burst read' or 'burst write' mode, the next time the TAP enters SHIFT_DR mode. 

Figure 11: Burst Setup command 

0 Opcode CPU Sel. Address Count 
                    56                  52                            48                                                                   16                                      0 
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Bits # Access Description  

56 W Top-Level Select 

Set to '0' for all sub-module commands 

52:55 W Opcode 

Operation to perform.  The following opcodes are valid burst setup 
operations for the CPU module: 

0x3 = Burst Write, 32-bit words 

0x7 = Burst Read, 32-bit words 

48:51 W CPU Select 

Select the CPU to write to 

47:16 W Address 

The first OR10N SPR  address which will be read or written 

0:15 W Count 

Total number of 32-bit words to be transferred. 

Table 10: CPU module Burst Setup command format 

  

3.3.2 Burst Write 

      In this mode, counters are used to determine position in the bitstream, and a word is 

written to the CPU SPR bus as soon as it has been transferred in via JTAG. For a transfer of m 

words, the total length will be (32 * m) + 38. 

     In legacy mode, the first bit transferred in a burst write is a '1' start bit. This tells the AXI4 

module to begin counting bits, and is required due to the possibility of multiple devices on the 

JTAG chain. After the start bit, one word of data is transferred into the ADI.  The status bit tells 

the user whether the CPU was ready to accept the word just transferred; when true, the bus 

was ready. When false, the word was not written to the SPR, and the software driver should 

retry the transfer, starting from the failed word. 

   In legacy mode, data transmission continues to alternate data word and status bit until all 

words have been transferred. In hi-speed mode, a data word is followed immediately by 

another data word, until all words are transferred. 

      A burst write transaction may be aborted at any time by moving the TAP through the 

UPDATE_DR state. Since no error bit, SPR bus does not provide any error indications beyond 

Start or Ready. 
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Figure 12: Burst Write format 

Match CRC Data(32 bits) 1 
                         (m*32) + 33                      (m*32) +1                           sent m times                                                0        

Bits Access Description 

1 bit R Match 

'1' if CRC sent matches internal CRC computation, '0' if not 

32 bits W CRC 

32-bit CRC computed on all of the data bits of the burst 

n bits W Data 

32-bit data word.  Sent m times. 

1 bit W Start Bit 

Set to '1' to indicate the start of a burst write. 

Table 11: CPU module burst write format 

 

3.3.3 Burst Read 

          In this mode, counters are used to determine position in the bitstream, and a word is read 

from the CPU SPR bus while the previous data word is transferred out via JTAG. For a word size of 

n and a transfer of m words, the total length will be (n * m) + 33. 

          The first bit (or bits) transferred during a burst read, whether legacy or hi-speed 

mode, is a status bit. This bit indicates whether or not data from the SPR bus is ready to be 

transferred out via JTAG. The CPU module will send '0' bits until a word is ready, and then send 

a single '1' bit. One data word will follow a '1' status bit. 

Immediately following the last data word, a 32-bit CRC code is sent from the CPU 

module to the driver software. The driver software should compare the CRC received with one 

computed internally, to determine whether or not the complete transaction must be retried. 

       The CRC protects only the data bits in a burst transaction; commands and status bits are not 

included in the CRC computation. The CRC resets before each burst transaction. 

Figure 13: Burst Read format 

CRC Data(32 bits) status 
                                                            (m*32)+1            sent m times                                                        0 
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bits Access Description 

32 bits R CRC 

32-bit CRC computed on all of the data bits of the burst 

n bits R Data 

Data word.  Length specified by the opcode in the burst setup 
command.  Sent m times. 

1 bit R Status 

Read '0' until a word is ready to be sent, then a single '1' bit is 
sent before the data word.  In hi-speed mode, this is only sent 
before the first data word. 

Table 12: CPU module burst read format 

 

3.3.4 Register Select 

     This is same as AXI4 module Register select except The CPU module uses a 3-bit index. 

Figure 14: Register Select command format 

0 Opcode Index 
                                                            7                                                   3                 0 

Bit # Access Description 

7 W Top-Level Select 

Set to '0' for all sub-module commands 

6:3 W Opcode 

Operation to perform. 

0xD = Internal Register Select 

2:0 W Index 

Index of the register to make active.  The CPU module uses a 3-bit 
index. 

Table 13: CPU module Register Select command format 

3.3.5   Register Read 

                   This is same as AXI4 module Register read. 
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3.3.6   Register Write 

  This is same as AXI4 module Register select except The CPU module uses a 3-bit index. 

Figure 15: Register Write command format 

0 Opcode Index Data 
                                        N+7                                n+3                            n                                               0 

Bit # Access Description 

7+ n W Top-Level Select 

Set to '0' for all sub-module commands 

(6:3)+ n W Opcode 

Operation to perform. 

0x9 = Internal Register Write 

(2:0)+n W Index 

Index of the register to make active.  The CPU module uses a 
3-bit index. 

(n-1):0 W Data 

n bits of data to write to the register specified by Index.  n 
depends on the register being written. 

Table 14: CPU module Register Write command format 

3.3.7  NOP 

       A NOP command will perform no operation. It is included as a “safe” command to shift into 

the CPU module while shifting out internal register data. A NOP command consists of five or 

more zeros, making it easy to send for any length of data read 

Figure 16: NOP command format 

0 Opcode 0 or more ‘0’ 
                                                   N+4                            n                                                                 0   
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Bit # Access Description  

4 + n W Top-Level Select 

Set to '0' for all sub-module commands 

(3:0)+ n W Opcode 

Operation to perform. 

0x0 = NOP 

n:0 W Zero 

Zero or more '0' bits 

Table 15: CPU module NOP command format 
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3.4  AXI4 Module Registers 

              The data format of a register may be different depending on whether it is read or 
written; this saves the user from having to shift in extra bits to fill read-only values when 
writing. 

Index Register name 

0x0 Error register 

Table 16: AXI4 module register summary 

 

3.4.1 Error Register 

 
    The error register captures AXI4 bus errors during burst transactions. Each time a bus access 
is completed, the AXI4 error indicator bit (wb_err) is tested. If an error is present, then the error 
bit in the error register is set to '1', and the address of the failed access is stored in the rest of 
the error register. Once the error bit is set, the error register will retain its value and further 
AXI4 errors will be ignored until the error bit is reset. The error bit may only be reset by writing 
a '1' to the error bit via an internal register write 

     Error in read, if an error has occurred, then an error handling routine in the driver software 
can read the error register again to get the 32-bit error address – the value will not change until 
the error bit is reset. 

When written, the error register consists of a single bit, the error bit. This should be written as 
'1' in order to clear the error bit and re-enable error detection 

 

 

Figure 17: AXI4 module Error Register as read 

               

Address Err 

                                                             33                                               1                 0 

Figure 18: AXI4 module Error Register, as written 

Err 

1 0 
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Bit # Access Description 

33:1 R Address 

When error bit = '1', contains the address of the failed transaction 

0 R Err (when read) 

Error bit.  Set to '1' when a AXI4 error has occurred since the last 
time the error bit was reset. 

0 W Err (when written) 

Write as '1' to reset the error bit to '0' and re-enable error 
detection 

Table 16: AXI4 module Error Register format 

 

 

3.5 CPU Module Register 
       Table 18 shows all of the registers present within the CPU sub-module 

Index Register name 

0x0 Status register 

0x1 Group1 OR mask 

0x2 Group1 AND mask 

0x3 Group2 OR mask 

0x4 Group2 AND mask 

Table 17: CPU module register summary 

 

3.5.1 Status Register 
      The status register is NB_CORES bit long and each bit of the status register detects 
breakpoint condition for a particular core, and controls the stall line to the same CPU. When 
written '1' via internal register write, the stall line to the CPU is made active, and the CPU stops 
executing instructions. When written '0', the stall line is negated, and the CPU resumes 
execution. 

   The stall bit will also be set when the breakpoint output of the CPU goes active. The 
breakpoint output will be registered, the stall bit will be set, and the CPU will be held in the stall 
state by the ADI. This condition must be detected by polling in the software driver – once stalled 
due to a breakpoint, the CPU cannot resume execution until the stall bit is reset to '0' by an 
internal register access via JTAG. 
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Figure 19: CPU module status register 

   

Stall CPU N-1 …. Stall CPU1 Stall CPU0 

                                               n-1                                                                                   1                                           0 

 

Bits# Access Description  

15:0 R/W Stall CPUn 

Set to '1' to suspend execution in the CPUn. Set to '0' to resume. Will be 
set to '1' automatically when a breakpoint indicator arrives from the CPU. 

Table 18: CPU module Status Register format 
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4 IO Ports 

4.1 TAP Ports 

    The Advanced Debug Interface connects to the TAP controller with the signals shown in Table 

20. 

Port Width Direction Description 

tck_i 1 input Test clock input 

tdi_i 1 input Test data input 

tdo_o 1 output Test data output 

shift_dr_i 1 input TAP controller state “Shift DR” 

pause_dr_i 1 input TAP controller state “Pause DR” 

update_dr_i 1 input TAP controller state “Update DR” 

capture_dr_i 1 Input TAP controller state “Capture DR” 

rst_i 1 input Reset signal. 

debug_select_i 1 input Instruction DEBUG is activated 

Table 20: TAP Ports 

4.2 CPU Ports 

     For each CPU module included, one set of I/O lines for that module will be present. 

Port Width Direction 
Description 

cpun_clk_i 1 input CPU clock signal. 

cpun_addr_o 32 output CPU address 

cpun_data_i 32 input CPU data input (data from CPU) 

cpun_data_o 32 output CPU data output (data to CPU) 

cpun_bp_i 1 input CPU breakpoint 

cpun_stall_o 1 output CPU stall (selected CPU is stalled) 

cpun_stb_o 1 output CPU strobe 

cpun_we_o 1 output 
CPU write enable signal indicates a write cycle 
when asserted high (read cycle when low). 

cpun_ack_i 1 input CPU acknowledge (signals end of cycle) 

cpun_rst_o 1 output CPU reset output (resets CPU) 

Table 21: CPU Ports 
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4.3 AXI4 Ports 

The AXI4 module will add a set of AXI4 initiator interface signals to the top-level IO 

Port Width Direction Description 

wb_clk_i 1 input AXI4 clock 

wb_rst_i 1 Input AXI4 reset signal 

wb_ack_i 1 input 
AXI4 acknowledge indicates a normal cycle 
termination 

wb_adr_o 32 output AXI4 address output 

wb_cyc_o 1 output AXI4 cycle encapsulates a valid transfer cycle. 

wb_dat_i 32 input AXI4 data input (data from AXI4) 

wb_dat_o 32 output AXI4 data output (data to AXI4) 

wb_err_i 1 input 
AXI4 error acknowledge indicates an abnormal 
cycle termination 

wb_sel_o 4 output 
AXI4 select indicates which bytes are valid on 
the data bus. 

wb_stb_o 1 output AXI4 strobe indicates a valid transfer. 

wb_we_o 1 output 
AXI4 write enable indicates a write cycle when 
asserted high (read cycle when low). 

wb_cab_o 1 output 
AXI4 consecutive address burst indicates a burst 
cycle. (always false) 

wb_cti_o 3 output 
AXI4 cycle type identifier indicates type of cycle 
(single, burst, end of burst) (always single) 

wb_bte_o 2 output AXI4 burst type extension (always 0) 

Table 22: AXI4 Ports 
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5. Module Configuration 

The Advanced Debug Interface supports three options, which allow us to configure which sub-

modules will be included when the design is synthesized 

1) Option: DBG_AXI4_SUPPORTED: 

        Used to include AXI4 module in the ADI. 

2) Option: DBG_CPU_SUPPORTED: 

        Used to include one or more OR1ON CPU debug modules. 

3) Option: DBG_CPU_NUM: 

 Used to define the number of OR1ON CPU debug module to be instantiated. 

Default is 4. 

4) Option: ADBG_USE_HISPEED: 

 Used to define this option to synthesize the AXI4 and OR1ON modules in hi- 

speed mode. 
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6. CRC Module 

         A CRC calculation module is contained within each AXI4 and CPU sub-module. The CRC 

module is active only during burst read and write transactions. It calculates a 32-bit CRC on only 

the data bits of the transaction, starting with the LSB of the first word transferred, and ending 

with the MSB of the last word transferred. 

 

 

 

 

 


