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ABSTRACT

KEYWORDS: Mm-Wave, MIMO, MS, LoS, ML .

Millimeter-wave (mm-wave) communication systems operating between 30GHz and

300GHz are emerging as a promising technology for meeting the large available band-

width.The large amounts of bandwidth available in the millimeter (mm) wave band

which enables the multiGigabit wireless networks with indoor and outdoor applica-

tions.The carrier wavelengths in this band are an order of magnitude smaller than the

existing cellular and WiFi systems and that is resulting in a different propagation geom-

etry.Omnidirectional transmission is infeasable because the propagation loss at smaller

wavelengths is more.So the highly directive transmission and reception with electroni-

cally steerable beams can be achieved using compact antenna arrays.

In contrast to the rich scattering environment at lower frequencies, a smaller number

of paths are dominant for directional mm-wave communication links. In this project

work we study, the developed model (8) for sparse mm-wave MIMO channels and

proposed approach to exploit the second order channel characteristics as a function of

the mobile station (MS) position. Unlike the most existing methods, line-of-sight (LoS)

propagation is not mandatory and the proposed approach takes care of the information

provided by non-line-of sight (NLoS) paths. Beamspace channel sparsity is exploited

for developing a low-dimensional maximum likelihood (ML) classifier that delivers

near optimal performance with reduced complexity compared to other conventional

designs.Simulation results illustrate the impact of physical environment,grid resolution,

and MIMO dimensions on localization performance.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The rapid increase in the demand of consumer wireless devices is lead-

ing to exponential increase in data rates and so creating a problem of

spectrum crisis at the current operating wireless frequecies.At the exist-

ing frequencies small cell technology is being explored for meeting the

challenges by increasing the spatial re-use of the limited spectrum.And

MIMO techonologies are important in for interference management and

increasing the spectral efficiency.To increase the current data rates to the

thousand fold we employ Mm-wave phenomenon with MIMO channel

communication.we predict in the next decades data rates will be on the

order of GiGaBytes,due to large available bandwidths as well as the high-

dimensional MIMO operation.

Mm-wave systems offers unique opportunities for enabling high data

rate wireless communication.First, it opens up the large portions of un-

used spectrum that can support orders of magnitude large bandwidths

(10s of GHz) compared to existing systems.Second, exploiting the spatial

dimension is particulary promising.Due to the highly directional nature

of propagation, line-of-sight (LoS) propagation plays an important role at

mm-wave communication.Basically mm-wave communication is domi-

nated by the LoS paths and a very few dominant single-bounce NLoS

paths.So it results in sparse channel characteristics.

1.2 Objective of The Project Work

In mm-wave communication exploiting the spatial dimension is partic-

ularly promising. For a given antenna size A the small wavelength, λ,



leads to a dramatic increase in the dimension of the spatial signal space,

n = 4A
λ2 .In addition to creating narrow, high gain beams,the high dimen-

sional spatial signal space can be exploited by multiple-input multiple-

output (MIMO). Due to the directive nature of communication LoS prop-

agation is dominated, and few single bounce NLoS propagation paths

provides the channel information in mm-wave.So the channel is having

a sparse beamspace masks.

We study the developed model (8) for sparse MIMO channels, appro-

priate for mm-wave frequencies, and the proposed approach for mobile

station (MS) localization based on the changes in the secon-order statis-

tics and sparsity patterns of the beamspace MIMO channel matrix as a

function of MS position. Most existing techniques focus on the infor-

mation provided by the LoS path, including angle of arrival (AoA), time

difference of arrival (TDoA) or the received signal strength (RSS).

The directional LoS path and few single bounce NLoS paths provides

sparse channel MIMO matrix. So this channel sparse masks exploits the

low rank MIMO channel matrix. The sparsity of the channel matrix is

exploited to develop a low-complexity ML classifier that delivers near

optimal performance with dramatically reduced complexity.
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1.3 Organization of Thesis

Chapter 2 Presents detailed description of modeling and analysis of mil-

limeter wave systems. This chapter also describes the MIMO architec-

ture used in mmwave communication systems. And channel modeling of

Mm-wave beamspace communication is discussed in detail.

Chapter 3 Introduces how the channel sparse information is varying

among the channels. And we preented a noisy measurement channel

and empirical channel statistics. Given the description about how user

localization can be done by ML classifier, and low dimensional classifier

exploits the channel sparse information. In the section titled’ simulation

and results’ we discuss the results obtained via monte-carlo simulations

using matlab.

Chapter 4 summarizes the project work.
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CHAPTER 2

BEAMSPACE MIMO SYSTEM MODEL

2.1 Sampeld MIMO System Representation

Consider a linear antenna of length L. If the aperture is sampled with

critical spacing, d = λ
2 where λ is the critical wavelength. The critical

spaced sampling results in there is no loss of information. The sampled

points on the aperture are equivalent to a N-dimensional Uniform lin-

ear array (ULA) of antennas, where N = 2L
λ is the maximum number of

spatial modes supported by the Uniform linear array ULA.

Figure 2.1: Illustration of LoS channel.

The beamforming gain or antenna gain is proportional to number of

spatial modes that is, lets say G is the gain of the beamforming antenna

then antenna gain G = 2πN
λ . Conventional MIMO system with Uniform

linear antennas (ULAs) at the transmitter and the receiver can be modeled

as

r = Hx + w (2.1)



where H is the NR × NT aperture domain channel matrix represen-

tation coupling between the transmitter and receiver Uniform linear an-

tenna (ULA) elements, x is the NT × 1 dimensional transmitted signal

vector, r is the NR × 1 dimensional received signal vector, and w ∼ CN

(O,I) is the NR × 1 dimensional vector of unit variance additive white

gaussian noise.

2.2 Beamspace MIMO System Representation

The conventional Multiple input Multiple output system (MIMO) oper-

ates in MHz frequency range, so it can’t be used to transmit the mm-wave

frequencies directly. So beamforming is the new mm-wave technique

which is going to be applied at the both transmitter and receiver. Mod-

ulation of data onto orthogonal basis waveforms is a fundamental con-

cept in communication theory, and these orthogonal spatial beams form

an optimal basis for the spatial dimension (1). The Beamspace MIMO
(B-MIMO) system representation is obtained from (2.1) via fixed beam-

forming at the transmitter and receiver. The beamforming can be done at

the transmitter and receiver by using beamspacing matrices as shown in

the fig. 2.2.

Figure 2.2: Beamspace MIMO system representation.

Each column of the beamspacing matrices, UNT
and UNR

, is an array
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steering / response vector at a specified angle (1). For a critically spaced

Uniform linear array ULA, a plane wave is propagating in the direction

of angle φ see fig. 2.1 corresponds to a spatial frequency, θ = 0.5 sin(φ),

and the corresponding array steering / response (column) vector is given

by (2).

un(θ) = [e−j2πθi]iεI(n) (2.2)

where I(n) = {j : j=1,2,......,n} is a set of indices for a given dimension

n. The columns of Un correspond to n fixed spatial frequencies/angles

with uniform spacing ∆θo =
1

n
.

Un =
1√
n

[un(∆θoi)]iεI(n) (2.3)

which represent n orthogonal beams, with beamwidth ∆θo, that cover

the entire horizon (
−π
2
≤ φ≤ π

2
) and form a basis for the n-dimensional

spatial signal (2). In fact Un is a unitary discrete Forier transform (DFT)

matrix. The overall beamspace representation is obtained from Eq 2.1 as

rb = Hbxb + wb,Hb = UT
b,RHUb,T (2.4)

where xb = Ub,T ∗ x = [xb(1), xb(2), ..........xb(NT )]T is the transmit-

ted beam space signal vector, rb = UT
b,R ∗ r = [rb(1), rb(2), ..........rb(NR)]T

is the received beam space signal vector, Hb is the NR ∗NT beamspace

channel matrix that represents the coupling between the spatial beams

at the transmitter and receiver as shown fig. 2.2. Ub,T is the NT ∗NT
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transmit beamforming matrix, Ub,R is the NR ∗NR the receive beam-

forming matrix, and wb = UT
b,Rw is the NR ∗ 1 beamspace noise vector.

Since Ub,T and Ub,R are unitary DFT matrices, Hb is a 2D DFT of H

and thus a completely eqivalent representation of H (1).

2.3 Beamspace MIMO Channel Modeling

From electromagnetic wave theory, we know that signals experience larger

attenuation at higher frequencies. As millimeter wave frequencies are

too high, in order of 100GHz, large number of antenna elements are

deployed at Tx and Rx to ensure highly directive signal transmission

and overcome the attenuation. However, due to small size and closely

packed antenna elements, we observe high correlation between the re-

sponses of the antenna elements employed within the array. Consider a

frequency non-selective MIMO system equipped with one-dimensional

uniform uniform linear array (ULA) of NT number of antennas and NR

number of antennas at the Mobile station (MS) and Base station (BS)

respectively.

In general the channel is posessed with many scatters in the environ-

ment. So the coupling channel between each Mobile station (MS) and

Base station (BS) is decided by scattering phenomenon like the scattering

path attenuation and phase.Due to the quasi optical nature of propogation,

mm-wave communication is dominated by LoS paths and few dominant

single-bounce NLos paths, that results in a sparse channel characteris-

tics (3).Since mmWave channels are expected to have limited scattering,

we adopt a geometric channel model with Np scatterers. Each scatterer

7



is further assumed to contribute single propagation path between the BS

and MS. Under this model, the MIMO channel can be accurately mod-

eled as

H =

√
NTNR

ρ

Np∑
l=

βle
jφlar(θr,l)a

H
t (θt,l) (2.5)

where Np denotes the number of propogation paths, θr,l and θt,l are

the angles seen by the Base Station(BS) and Mobile Station(MS), re-

spectively, and βl and φl represent the amplitude and phase for the l -th

path. The LoS path corresponds to l=0. The response vector ar(θr,l) and

steering vector at(θt,l) are given by

ar(θr,l) =
1√
NR

[ar,1(θr,l)], ....., ar,NR
(θr,l)] (2.6)

at(θt,l) =
1√
NT

[at,1(θt,l)], ....., at,NT
(θt,l)] (2.7)

The elements of response/steering vector and normalized spatial an-

gles θr,l and θt,l are given by

ar,i(θr,l) =e−j2πθr,l(i−1)

at,i(θt,l) =e−j2πθt,l(i−1)
(2.8)

with θr,l =
dr sin(αr,l)

λ
, θt,l =

dt sin(αt,l)

λ
and where λ is the wavelength,

αr,l and αt,l) are the physical angles and drand dt the antenna spacing at

the Base station (BS) and Modile station (MS), respectively. And we for

the no loss of information at the Transmitter and Receiver, we assume

dr = dt =
λ

2
.

According to the physical model (2.5), there are four parameters for
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each path: | β |, φl , θr,l , θt,l . These parameters vary depend on the Mo-

bile station (MS) location relative to the scatterers position. In this thesis

work we consider the LoS path and single-bounce NLoS scattering paths

since higher-order bounces suffer too much attenuation at mm-wave fre-

quencies (4).

Figure 2.3: Geometric relation between BS and MS.

The geometrical relation between the BS and MS relative to the prop-

agation paths is shown in fig. 2.3. We fix the BS position as the origin,

and the broadside direction as positive x-axis. The MS is always assumed

facing the BS. The Scattering objects are located between the BS and the

MS in the area: { (xs, ys) : 50m ≤ x ≤ 150m,−50m ≤ y ≤ 50m }.

9



Figure 2.4: Cell numbering.

As shown in fig. 2.4 , we define the moving area for MS as { (xt, yt) :

200m ≤ x ≤ 300m,−50m ≤ y ≤ 50m} and split the whole area into

16 disjoint cells (25mX25m) for the default case.

2.3.1 Angle of Departure (AoD) and Angle of Arrival (AoA):

Since the MS is always facing the BS, for the LoS path (l = 0 ), the AoD

at the MS is always zero (αt,los = 0), and the AoA at the BS (αt,los)

is defined relative to the x-axis. For a particular NLoS scattering path

(l = 1 , .....,Np), we define the AoD (αt,l) as the angle between the

outgoing wave direction (from the MS) and LoS path direction, and the

AoA (αr,l) at the BS as the angle between scattered wave direction and

the positive x-axis. The AoDs and AoAs, {(αt,l , αr,l) }, can be computing

by using the geometrical by using the geometrical relationship between

the MS and scatterer locations relative to the BS; fig. 2.3 The normalized

AoAs and AoDs are computed via (2.8).
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2.3.2 Path Amplitude and Phase:

For a given MS position, (xt, yt), the phase for the LoS path (l = 0 ) is

given by

φl(xt, yt) = φlos(xt, yt) =
2πRlos

λ
=

2π
√
x2
t + y2

t

λ
(2.9)

Similarly, for the same MS position, and for a given scatterer position,

(xs, ys), the phase for the corresponding NLoS path (l = 1 , 2 .....,Np)

can be computed as

φl(xt, yt;xs,l , ys,l) =
2π(RBS,l +RMS,l)

λ
(2.10)

Where RBS,l =
√
x2
s,l + y2

s,l is the distance from the BS to the scatterer

and RMS,l =
√

(xt − xs,l)2 + (yt − ys,l)2 is the distance from the BS to

the scatterer to the MS; see fig. 2.3.

The path loss for the LoS path (l = 0 ) is given by: | βo |2= GtGr(
λ

4πRlos
)2,

and the path for single-bounce NLoS paths (l ≥ 1 ) can be calculated as

(5)

| βl |2=
Pr,l
Pt,l

=
GtGrσ

(4π)3
(

λ

4πRBS,lRMS,l
)2 (2.11)

where Pr,l and Pt,l are the power of received and transmitted signals,Gr

and Gt are the antenna gains of BS and MS arrays, respectively, and

σ represents the radar cross section which depends on the properties of

scatterer and scattering angles. In simulations, we simply set σ = 1 for

NLoS paths. Furthermore, prompted by recent measurements (6), we

scale the LoS vs NLoS gains so that the NLoS path gains are 5-10dB

weaker than the LoS path gain.
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CHAPTER 3

SPARSE BEAMSPACE CHANNEL STATISTICS AND

USER LOCALIZATION

3.1 Introduction

Mm-wave beam communication is operating in the GHz frequency range

to acquire the maximum data rates, so that it can meet today’s Bandwidth

requirement. Since the wavelength is too small path attenuation is high.

So the beamspace communication is employed to transmit it to the far

distance. With this beamspace modulation the directivety of spatial beam

is high, so the LoS path is more dominant and few NLoS single bounce

paths will present. Now The Beamspace MIMO channel is having a few

channel sparsity masks. By exploiting those channel sparsity masks we

can reduce the complexity of Transceiver, and the number of communi-

cation modes are now less than that of the number of propagation modes.

In this chapter we firstly present channe statistics and and channel

sparsity masks for each mobile station. We assume that we measured

the channel with noisy measurements. And aslo we study the empiri-

cal channel covariance statistics. Also we analyse the Maximum likeli-

hood classifier performance with full dimension of channel matrix and

we present a low-dimensional classifer by exploiting the channel sparse

information.

We present the encouragive MATLAB simulation results at the end of

the chapter. Since the measured channel distribute as gaussian probabilty



function using the Maximum likelihood classifier we estimate the user

position. We Considering the various factors like Environment,MIMO

dimensions, and cell sizes. The simulation results compare the perfor-

mance of ML classifier and Low dimensional classifier with reduced di-

mension.

3.2 SPARSE BEAMSPACE CHANNEL STATISTICS

3.2.1 Channel Statistics and Sparsity Masks

We construct a NrNt ∗ 1 column channel vector hb = vec(Hb). From the

column channel vector we deduce the beamspace channel covariance ma-

trix is Σb = E[hbh
H
b ]. Hb is sparse due to the mm-wave propagation char-

acteristics and so the channel power is concentrated in a low-dimensional

sub-matrix. Let Σb,k denote the channel covariance matrix for the kth cell

and the total channel power is σ2
k = trace(Σb,k). For each cell, define the

following sets of indices as the channel sparsity masks, Mk , that capture

most of the channel power:

Mk = {i : Σb,k(i , i) ≥ γk arg max
i

Σb,k(i , i)}, (3.1)

M =
⋃

k=1 ,......K

Mk (3.2)

Where threshold γk is chosen so that Mk captures a specified (large)

fraction ηk ∈ [0,1] of the channel power

∑
i∈Mk

Σb,k(i , i) ≥ ηkσ
2
k . (3.3)

13



Mk and M represent the channel sparsity masks or signatures for the

kth cell and entire area. For the k-th cell, the lowdimensional channel

covariance matrix is defined as

Σ̃b,k = [Σb,k(i , j )]i ,j∈Mk
(3.4)

3.2.2 Measurement Model and Empirical Channel Statistics

In practice, channel statistics are estimated from noisy measurements.

Generally using the received power of mobile station by assuming the

log-loss path model as the channel modeling we estimate the Angles of

Arrival, Angles of Departure and attenuation of scatteres by stastical es-

timation approach. But, In this thesis we assume that we measure the

channel model with the noisy measurements. We consider the following

model for the beamspace channel measurements:

hbn =
√
εhb + wb (3.5)

where hbnis the noisy measurement vector, w ∼ CN (0 , I ) denotes the

noise vector, and ε represents the signal-to-noise ratio (SNR). In (3.5), hb

hb represents a normalized channel vector so that σ2 = E[‖hb‖2] = 1.

We are doing this because we want to eliminate the influence of channel

power on classification performance. Our focus is mainly on the influ-

ence of channel power over the sparsity masks. Thus, for the k-th cell we

have:

Σbn,k = E[hbnh
H
bn] =

ε

σ2
Σb,k + I (3.6)

14



To estimate the user location we use the empirical channel stastics

of that particular k-th cell by taking Nsp sample postions,{(xr,i, yr,i) :

i = 1, ......Nsp}, uniformly placed in the k-th cell and use the empirical

covariance matrix:

Σ̂b,k =
1

Nsp

Nsp∑
i=1

hb(xr,i, yr,i)h
H
b (xr,i, yr,i) (3.7)

Where the channel vectors for different positions are generated using the

physical model (2.5). Note that E[Σ̂b,k] = Σb,k.

3.3 USER LOCALIZATION ALGORITHM

We now formulate the user localization problem, characterize the ML

classifier, and low-dimensional classifier based on channel sparsity masks.

3.3.1 Maximum Likelihood Classifier

Suppose that the Mobile Station is located in one of the K disjoint cells

with equal probability The localization problem can be seen as a K-ary

hypothesis testing problem

Hk : hbn ∼ CN(0,Σbn,k) (3.8)

where hbn is a noisy channel measurement (3.5) and Σbn,k is the covari-

ance matrix for the kth cell as in (3.6). The optimal ML classifier chooses

the cell as (7):

C(hbn) = arg max
k=1,.....,K

pk(hbn) (3.9)

15



where pk(hbn) is the probability density function under Hk:

pk(hbn) =
1

πNrNt det(Σbn,k)
e−h

H
bnΣ−1

bn,khbn (3.10)

Using log-likelihood, the classifier can be simplified as

C(hbn) = arg min
k

[log(det(Σbn,k)) + hHbn(Σbn,k)
−1hbn] (3.11)

3.3.2 Low-dimensional Classifier

As the channel is having few sparsity masks, it can be exploited to anal-

yse the low-dimensional classifier performance. The low-dimensional

classifier exploits the sparsity patterns and operates on the low-dimensional

channel vector defined by M : h̃bn = [hbn(i)]i∈M . For the k th cell the

empirical channel covariance matrix with respect to the Signal to noise

ratio is,

Σ̃bn,k = [Σbn,k(i, j)]i,j∈Mk
(3.12)

Using the log-likelihood the low dimensional classifier performance can

be analysed as

C(hbn) = arg min
k

[log(det(Σ̃bn,k)) + h̃Hbn(Σ̃bn,k)
−1h̃bn] (3.13)
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3.3.3 Classifier Performance Evaluation

We evaluate the classifier performance in terms of the average error prob-

ability:

Pe =
1

k

K∑
k=1

Pe,k, Pe,k = P (C(hbn 6= k|Hk)) (3.14)

where Pe,k is the conditional error probability under Hk. We are using

the Monte Carlo MATLAB simulations to estimate Pe.

3.4 Simulation and Results

We present three sets of numerical results. The first set shows the beamspace

channel masks for different cells. The second shows impact of physical

environment and system parameters on the localization performance. Fi-

nally, the performance of low-dimensional classifiers is discussed. We

have used matlab for the purpose of monte carlo simulations. The pa-

rameters used for the modeling and simulation are as mentioned in the

table.

Table 3.1: Parameter specifications for simulation

Parameters Values Remarks
Nr 25 Number of antennas at BS
Nt 5 Number of antennas at MS
f 38GHz Frequency of operation
Nsp 10000 Number of Sample positions in each cell

f 38GHz Frequency of operation
γk 0.2,0.3,0.4 Threshould values for Mk
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3.4.1 Beamspace Channel Statistics and Masks

Consider a MIMO system with Nr = 25 (BS) and Nt = 5 (MS), and

antenna gains Gr and Gt that are proportional to Nr and Nt. The propa-

gation frequency fc is 38GHz. We partition the MS movement region R

into 16 disjoint cells of size 25m x 25m, and number them as in fig. 2.4.

For each cell, we calculate the path loss of NLoS paths via (2.11), and

set the power of LoS path, | βlos |2, 10dB larger than the average power

of all NLoS paths within the cell. In each cell, we uniformly pick Nsp =

10000 sample MS positions and compute the average channel power, and

covariance matrix for this cell by (3.7). This is used for generating nor-

malized channel measurements as in (3.5). The channel sparsity masks

with different threshold values are generated using (3.1).

Figure 3.1: Channel sparsity mask for cell M1 .

The above fig. 3.1 shows Mk for cells 1,16 which are at corners of

the MS movement area, corresponding to γk = γ =0.1. The shaded bins

represent the dominant beamspace channel entries corresponding to pairs

of BS/MS beams that are strongly coupled. The mask dimensions and

patterns depend on the choice of γ and the physical environment.
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Figure 3.2: Channel sparsity mask for cell M16 .

3.4.2 Performance of MS localization

We have used Probability of error vs SNR to compare the performance

of MS localization by varying different parameters.

In each simulation we have carried out the following steps:

1. we assume in each cell MS is moving into different locations and
BS positon is fixed at origin.

2. We randomly select the scatters location for each MS position.

3. For each position in each cell we caliculate the channel matrix by
using Beamspace MIMO channel modeling.

4. We unformly choose Nsp sample positons in each cell and estimate
the empirical covariance matrix.

5. Next we determine the noisy channel measurement from the model
we defined.

6. Using the log-likelihood function we maximize the channel covari-
ance matrix for each kth cell with respect to the channel measure-
ment of the each MS postion.

7. Plotting of the probability of error vs SNR for each parameter. .
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We next evaluate impact on the performance of MS localization by

the physical propagation environment, cell size, and MIMO dimensions.

(A) Physical Propagation Environment:

We first discuss the impact of number of scatter paths Np. We set the

each cell size to 25m x 25m (totally 16 cells) and consider a system with

Nr = 25 antennas at BS and Nt = 5 antennas at MS. We evaluate the

probability of error (Pe) as a function of SNR for different values of Np

by progressively adding the scatters locations to previously locations.

Figure 3.3: Pe for different Np with Nr=25,Nt = 5

The above fig. 3.3 tells us the fact that Probability of error first de-

creases as Np increases from Np = 5 to 10, but it also gives a fact when

Np increases to 50 and 100 the Probability of error is increases. This

illustrates that for a given cell dimension too many paths can degrade the

performance and also as the number of scttering paths are increases the

channel sparse signatures for different cells are looking similar together.
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(B) MIMO Dimensions:

Now we see how the MIMO dimensions impact on the MS localization

performance. In practice, increasing the number of antennas at the Mo-

bile station is costly. So we only can increase the antennas at the base

station. WE fix the MS with Nt=5 and vary Nr= 10,25,60. The below

fig. 3.4 shows that systems with larger number of antennas can exploit an

environment with larger number of paths for improved performance.

Figure 3.4: Pe for Nt = 5 and different Nr in an environment with Np=5.

In fig. environment with few scatters Np = 5 (very sparse environ-

ment), and increasing Nr does not change performance. However in be-

low fig. 3.5, a much richer scatter environment Np=100 with increasing

Nr results in significantly improved performance.
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Figure 3.5: Pe for Nt = 5 and different Nr in an environment with Np=100.

From both figures we can observe that the channel dimension NtNr

increases as 50,125,300 and the dimension is comparable to Np=100. On

the other hand, Np=5 is much smaller than the channel dimension.

3.4.3 Low-Dimensional Classifier Performance

We will now see the performance of the low-dimensional classifier rel-

ative to the fulldimensional classifier in the below figures. The system

dimensionality is controled by factor γk in (3.1).We will now examine

how the low-dimensional classifier performance is changing with respect

γk= 0.2,0.3,0.4 for two different values of Np.
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Figure 3.6: Pe of low-dimensional classifier for system with Nr = 25,Nt = 5 and
Np = 5.

The above fig. 3.6. is corresponds to sparse environment Np=5 and

the results shows that even the dimensionality is changed drastically from

125 to 11, there is only a litte loss of performance. And the below fig. 3.7.

observes the rich scattering phenomenon with Np = 10 and in this case,

there is a more significant loss in performance with dimension reduction

due to larger number of paths.

Figure 3.7: Pe of low-dimensional classifier for system with Nr = 25,Nt = 5 and
Np = 10.

However, still the classifier corresponds to γ = 0.2 is giving a quite
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impressive performance compared with the full-dimensional. We can see

that the Pe is increases by a factor of 2 when the dimension is reduced by

a factor of 60, resulting in a very significant reduction in complexity.

3.5 Conclusion

The results from monte-carlo simulations of the MS localization per-

formance and Low-Dimensional Classifier was presented in this chap-

ter.The Pe in MS localization is observed by changing various parame-

ters. And, we observed the comparison between Full-dimensional and

Low-dimensional classifier performance. As expected low-dimensional

classifier is giving a fair results with drastic change in the dimension of

the system.
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CHAPTER 4

CONCLUSION

4.1 Summary of The Present Work

The User localization has been done by exploiting the channel sparse

characteristics. The problem of user positioning characterize ML clas-

sifier and, low-dimensional classifier by exploiting the channel sparsity

masks. The two classifiers performance has compared and the simula-

tion results obtianed via matlab monte carlo simulations. The impact

of physical environment and system parameters are analyised for a full

dimensional classifiers.

We have observed how the classifier performance is changing when

the scattering positions are added to the previous one. As the scatters are

added the all cell channel environment starts looking similar. So the Pe

is increases while the number of scatters are added. And when the num-

ber of antennas are deployed more at the BS in a less sparse environment

there is nothing significant achievement in the classifier performance bea-

cuse the dimension is not comparable to the number of scatters. But, in

a similar system if the Channel sparse environment Np is comparable to

the dimension, classifier achieves good performance.

We discussed the channel sparse signatures are exploited by low-dimensional

classifier in a low and rich scttering environment. In a low scttering en-

vironment low-dimensional classifier achieves almost a similar perfor-

mance to the full dimensional classifier with a drastic reduction in the



complexity observed by the simulation results. But in a rich scatter-

ing environment there is a significant loss in performance. However at

γk = 0.2 the Pe increases by a factor of only 2 but the dimension reduc-

tion is by a factor of 60.

4.2 Future Scope of Work

The work presented in this thesis can be further extended in many other

ways. We have considered, Uniform Linear Array of antennas in our

system modeling. In future works,effect of replacing ULA with two-

dimensional arrays structures can be studied. We can extend this frame-

work to include the path delay information, and In this model we have

assumed the MS is always facing BS, there may be a case when MS is

intentionally points the MS towards a BS. However our future goal is to

develop methods that do not require such user co-operation.
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