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ABSTRACT

KEYWORDS: Approximate Message Passing, Compressed Sensing, Iterative

Thresholding

Compressed sensing aims to undersample high-dimensional signals while still ac-

curately reconstructing them by exploiting prior knowledge on the signal. Exact recon-

struction is possible when the signal to be recovered is sufficiently sparse in a known

basis. Having applications in wide areas of signal processing, machine learning and

image processing, there has been extensive work in obtaining efficient algorithms to

solve this problem. Convex optimization solutions are expensive for large systems and

hence there has been considerable interest in fast iterative algorithms. Approximate

Message Passing (AMP) algorithms provide the best of both worlds in terms of per-

formance and speed. In this work we analyze the performance of AMP and provide a

simple modification to AMP to improve its convergence.
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CHAPTER 1

INTRODUCTION

A major area of interest in signal processing deals with the reconstruction of a signal

from a sequence of measurements. In general, it is not possible to uniquely reconstruct

the signal as it can take arbitrary values at time instants when the signal is not mea-

sured. However, with some prior knowledge or certain assumptions on the signal, we

can reconstruct the signal perfectly with a series of measurements. One such result is

the Nyquist-Shannon sampling theorem which states that if the signal’s maximum fre-

quency is bounded by fB, it is sufficient to sample the signal uniformly at time instants

separated by 1
2fB

, i.e., sample at a frequency of at least twice the signal’s maximum fre-

quency. The signal then can be reconstructed perfectly by means of sinc interpolation

on these measurements. These assumptions and prior knowledge on the signal space

vastly limits the solution space resulting in a unique solution.

We can reduce the required number of measurements even further when we have

more prior knowledge on the signal. One common and realistic assumption is that of

sparsity. Compressive sensing or sparse signal recovery allows us to perfectly recon-

struct a signal using a small number of measurements of the signal provided the signal

has a sparse representation in some transform domain [1, 2]. As most real life signals

have compressible representation in certain domains, we can recover the signal with

far fewer measurements than traditionally required by sampling theorems. However

simple linear reconstruction protocols as in sampling theorems are no longer sufficient

and we need to consider algorithms with non-linearity to efficiently recover the original

signal. Few such applications include faster acquisition of Magnetic Resonance Imag-

ing (MRI) signals [3, 4], computational photography, imaging using coded aperture and

even network management [5].

Ideas from sparse signal estimation have been used extensively in various problems

in signal processing, machine learning and image processing. Also use of sparsity-

inspired models have resulted in state of the art results for a large set of application

[6, 7, 8]. Sparse representation modelling also seems to have a strong connection with

deep learning. [9]



1.1 Organization

In Chapter 2, we formalize the model under consideration and present algorithms to

solve the compressed sensing problem. We will consider optimization and iterative

approaches. We also define phase transition curves as a measure of performance of

such algorithms. The main algorithm of interest would be the Approximate Message

Passing algorithm which we describe in greater detail. We also compare its performance

against that of optimization based algorithms through simulations

In Chapter 3, we explore the Universality of the AMP algorithm and evaluate its

performance on sub-Exponential matrices.

In Chapter 4, we suggest an extension to AMP called scaled AMP to improve the

convergence in the case of small systems. We show through simulations that scaled

AMP also provides non-trivial performance gains for measurement matrices sampled

according to heavy tailed distributions.

In Chapter 5, we conclude with the summary of the report along with some possible

directions for future work.
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CHAPTER 2

Efficient Algorithms for Sparse Signal Recovery

2.1 Compressed Sensing

The most basic model of sparse recovery involves a N−dimensional signal x which is

measured through a known n × N sensing matrix A to obtain the measurement vector

y of dimension n.

y = Ax

However the matrix A is fat, i.e., the number of rows is far lesser than the number of

columns(n < N ). Hence the system of linear equations is underdetermined and can

potentially have an infinite number of solutions. To combat this issue we assume that

the signal x has a sparse support, i.e., the number of non-zero elements of x is limited.

One such problem setting is the acquisition of very large images using a single

pixel camera. Here, rather than measuring the individual pixel values, we measure

the inner product of the scene with a set of test functions far fewer than the number

of pixels. When the image is compressible under JPEG, i.e., has a sparse Discrete

Cosine Transform, we can reconstruct the image accurately. Here the signal under

consideration would be the image in the DCT domain and the sensing matrix is the

product of the measurement matrix and the DCT matrix. By carefully choosing our

set of test functions, we can significantly reduce the number of measurements required

[10].

In certain other problem settings, we may not have the freedom to design our sensing

matrix. Provided the matrix A has certain properties, in most cases we can reconstruct

the signal perfectly.

2.1.1 Model

Let x0 ∈ R
N be the original signal of interest. Let A be a n×N sensing/measurement

matrix with n < N . We obtain the measurement vector y ∈ R
n from x0 as y = Ax0.



Also k is the number of non zero entries in x0. We wish to recover x0 from knowledge

of A and y.

As the system is underdetermined, recovery is not always possible. However under

certain conditions on k, n,N , we can obtain algorithms which recover x0 perfectly.

There are multiple canonical models for the signal x0. Two such models are:

• +: The signal is non-negative and has at most k non-zero entries

• ±: The signal has at most k non-zero entries which can have arbitrary signs.

In this report we consider the second case.

2.1.2 Phase transitions

For any algorithm, the trade-off between undersampling and sparsity can be most eas-

ily described in the large-system limit. We tend k, n,N → ∞ such that the ratio of

n/N → δ and k/n → ρ. Here, δ is a measure of undersampling while ρ is a measure

of sparsity where smaller the value of ρ, larger the sparsity. We can associate every pair

of (δ, ρ) ∈ (0, 1)2 into one of two phases. The ’success’ phase consists of all points for

which an algorithm typically succeeds in recovering the signal perfectly and the ’fail-

ure’ phase where it typically fails. The boundary separating these two phases forms

the phase transition. These phase transition diagrams depend on the algorithm used for

reconstruction, the canonical model for the signal and also on the ensemble of matrices

under consideration. Some ensembles of random matrices of interest are :

• Gaussian : Random matrix A with entries sampled from i.i.d. N(0, 1)

• Rademacher : Random matrix A with entries ±1 with equal probability

• Bernoulli : Random matrix A with entries 0 or 1 with equal probability

• Partial Fourier : Sub-matrix of a Fourier matrix with random rows deleted

4



2.2 Optimization Based approach

2.2.1 Exact Solution

For the given measurement y we seek the solution x0 to the equation y = Ax such that

among all solutions of the underdetermined system, x0 has the least number of non-zero

coefficients. This can be rewritten as a constrained optimization problem as

x̂0 = argmin
x∈RN

‖x‖0 subject to y = Ax

where ‖x‖0 = |{i : i ∈ {1, 2, . . . , N}, xi 6= 0}| is the pseudo L0 norm which counts the

number of non-zero elements in x. This is however a NP-Hard problem and hence we

do not have efficient algorithms which can solve it.

Even in the noisy case, i.e., when y = Ax + w, where w is the added noise vector,

this can solve by relaxing the equality in the constraint to an inequality.

x̂0 = argmin
x∈RN

‖x‖0 subject to ‖y − Ax‖22 ≤ ǫ

which is equivalently rewritten in the Lagrangian form as

x̂0 = argmin
x∈RN

λ ‖x‖0 +
1

2
‖y − Ax‖22

where λ is the regularization parameter.

In general even the noisy sparse recovery is intractable and belongs to the set of

NP-Hard problems. Hence we explore approximate solutions to the equation above.

2.2.2 Convex Relaxation

One way to change the NP-Hard problem to a tractable one is by convex relaxation, i.e.,

by replacing the pseudo L0 norm by a norm such as L1 or L2. Minimizing the L2 norm

results in the least square solution which is the solution with the least energy. This is

simple to perform as it involves only multiplication by the pseudo inverse. However in

the case of sparse signal recovery, it does not accurately obtain the sparse solution. On

the other hand, minimzing the L1 norm which is the sum of the absolute values, closely

5



(a) (b)

Figure 2.1: Finding sparse solution to the equation x1 + 2x2 = 2 using
(a) L1 minimization which gives the correct result
(b) L2 minimization which gives a low energy result which is not sparse

emulates the L0 minimization by effectively pushing the non-zero coefficients to 0.

For the noiseless case this results in

x̂0 = argmin
x∈RN

‖x‖1 subject to y = Ax

known as basis pursuit.

For the noisy case it results in

x̂0 = argmin
x∈RN

λ ‖x‖1 +
1

2
‖y − Ax‖22

which is known as basis pursuit denoising.

Under mild conditions on the sensing matrix A such as Mutual Coherence or Re-

stricted Isometry Property[11] and on the sparsity level, it can be shown that the noise-

less sparse recovery problem has a unique solution and that L1 minimization or basis

pursuit finds the correct solution. [12, 13]

We have now reduced the sparse recovery problem to a convex optimization prob-

lem. In fact it is a Linear Programming(LP) problem for the noiseless case and a

Quadratic Programming(QP) problem in the noisy case. We can now use efficient LP

6



Figure 2.2: Asymptotic phase transition plot for Gaussian ensemble for ± input model

and QP methods to recover the sparse signal.

The asymptotic phase transition for L1 minimization in the case of Gaussian ensem-

ble can be theoretically obtained through an approach based on combinatorial geome-

try. [14] It is interesting to note that even for other matrix ensembles, experimentally

obtained phase transitions closely match with that of the theoretical Gaussian phase

transition.

Despite being more efficient than an L0 minimization approach, the algorithm does

not scale well with large number of variables. In imaging problems, the number of

pixels could be as large as 106, resulting in a million variables and thousands of linear

constraints in the LP problem. Recovering the original signal would be expensive both

in terms of time and storage. Hence other approaches such as low complexity iterative

thresholding algorithms are of significant interest.

2.3 Iterative Methods

We first convert the minimization problem into a problem of estimating the mean of

a probability distribution. [15, 16] Consider the joint probability distribution over the

7



variables x1, . . . , xN as

µ(x) =
1

Z

N
∏

i=1

exp(−β |xi|)
n
∏

j=1

δ{yj=(Ax)j}

Here δ{yj=(Ax)j} corresponds to the Dirac distribution which is 0 everywhere other than

on yj = (Ax)j . Z is a normalization constant required to make this a probability

distribution. As β → ∞, the probability mass concentrates around the solutions of the

equation having the least number of non-zero entries. If we have access to the marginals

and if the solution is unique, we can solve for it using belief propagation.

The factor graph corresponding to this problem has N variable nodes (V ) and n

factor nodes (C). The edges of the graph correspond to the entries of A. This leads

to the graph being a complete bipartite graph. Each edge in the graph is associated

with belief propagation messages which in this case are probability measures over the

real line. The messages from the variable nodes to the factor nodes are denoted by

{νi→j}i∈V,j∈C and the messages from the factor nodes to the variable nodes are denoted

by {ν̂j→i}i∈V,j∈C .

In the large system limit, the messages to the variable nodes are approximately

distributed as Gaussian and to the factor nodes are approximately distributed according

to the product of Gaussian and Laplace distributions. Hence it is sufficient to track the

distribution parameters(the mean and the variance).

Let us also define η(x; τ) to be the soft thresholding function given by

η(x; τ) =



























x− τ if x ≥ τ

x+ τ if x ≤ −τ

0 otherwise

When also enforcing the large β limit we end up with the following equivalent

8



Figure 2.3: Soft Threshold

simpler form for the message passing algorithm.

xt+1
i→j′ ≡ η

(

∑

j 6=j′

Ajiz
t
j→i; τ̂

t

)

(2.1)

ztj→i′ ≡ yj −
∑

i 6=i′

Ajix
t
i→j (2.2)

τ̂ t+1 ≡ τ̂ t

Nδ

N
∑

i=1

η′

(

∑

j

Ajiz
t
j→i; τ̂

t

)

(2.3)

where xt
i→j and τ̂ t are the mean and variance of the message from the variable node

νi→j at time instant t.

The updates Equations (2.1) to (2.3) provide an easy way to implement the algo-

rithm. However the number of messages passed is of the order of nN which can be

quite large in applications such as imaging.

Notice that the message sent from the factor node j to a variable node i at time t,

involves summing over all the messages received by j at time t except for the message

from i itself. Hence the only difference between messages to various receivers is the

exclusion of the message from the receiver. A similar situation is present in the mes-

sages from the variable nodes to the factor nodes. It is tempting to just disregard this

exclusion and transmit to all the adjacent nodes the message obtained by adding all

the incoming messages. By doing so we end up with the iterative thresholding scheme

similar to

xt+1 = ηt
(

A∗zt + xt
)

(2.4)

zt = y − Axt (2.5)

9



where A∗ is the transpose of A and ηt (.) are filters which depends on the iteration

number.

Such algorithms are quite popular as they have very low per-iteration cost and scale

well for large number of variables. Hence they can be used in applications where using

standard LP solvers become very time intensive. However the downside to this simple

approximation is that they have very poor sparsity undersampling trade-off, far from

what standard LP solvers can achieve [17]. In particular, using the current approximated

algorithm would result in the estimate diverging from the actual solution for a large

set of (ρ, δ) pairs which would have otherwise been in the success phase of the LP

algorithm.

2.4 Approximate Message Passing

Approximate Message Passing(AMP) [18] is an iterative approach to compressive sens-

ing which provides sparsity undersampling trade-off similar to that of traditional LP

based methods while having a significant speed up as each iteration involves simple

matrix multiplications and element wise thresholding.

The algorithm starts with the initial estimate of x as x0 = 0 and iteratively improves

its estimate through the updates given below.

xt+1 = ηt
(

A∗zt + xt
)

(2.6)

zt = y − Axt +
1

δ
zt−1〈η′t(A∗zt + zt)〉 (2.7)

xt is the current estimate of x while zt is the current residue. ηt (.) are scalar threshold

functions applied element wise while η′t (a) is the differential of the filter ηt(.) evaluated

at a. 〈s〉 of the vector s is the average of the elements of s.

The difference between the previous iterative methods and AMP is the extra term in

the computation of the residue, i.e.,1
δ
zt−1〈η′t(A∗zt+zt)〉 . This correction term is crucial

to AMP and leads to performance similar to that of LP methods. Such correction terms

are common in statistical physics and are referred to as Onsager Reaction terms.

10



2.4.1 Heuristic approach to AMP

We consider a heuristic approach to derive the AMP Algorithm starting from the Mes-

sage Passing Algorithm defined in Equations (2.1) to (2.3). [19]

ztj→i′ = yj + Aji′x
t
i′→j −

∑

i

Ajix
t
i→j

xt+1
i→j′ = ηt

(

−Aj′iz
t
j′→i +

∑

j

Ajiz
t
j→i

)

Due to the choice of normalization of A such that the terms Aji ≈ 1√
n

, we can assume

that the excluded terms Aji′x
t
i′→j and Aj′iz

t
j′→i are O

(

1√
n

)

. With this assumption, we

can infer that the messages are of the form ztj→i = ztj+O
(

1√
n

)

and xt
i→j = xt

i+O
(

1√
n

)

where xt
i and ztj depend only on the sender and not on the receiver. The approximation

in the previous section was obtained by neglecting these O
(

1√
n

)

terms. However, this

results in non converging solutions.

Denote these differences as δztj→i and δxt
i→j . We obtain

ztj + δztj→i′ = yj + Aji′(x
t
i′ + δxt

i′→j)−
∑

i

Aji(x
t
i + δxt

i→j)

xt+1
i + δxt+1

i→j′ = ηt

(

−Aj′i(z
t
j′ + δztj′→i) +

∑

j

Aji(z
t
j + δztj→i)

)

Single terms of the form Ajiδz
t
j→i and Ajiδx

t
i→j are O( 1

n
) and can safely be neglected.

We can also linearize η around
∑

j Aji(z
t
j + δztj→i) to obtain

ztj + δztj→i′ = yj + Aji′x
t
i′ −

∑

i

Aji(x
t
i + δxt

i→j)

xt+1
i + δxt+1

i→j′ = ηt

(

∑

j

Aji(z
t
j + δztj→i)

)

− η′t

(

∑

j

Aji(z
t
j + δztj→i)

)

Aj′iz
t
j′

Comparing the terms on either side of the equation, we can infer

ztj = yj −
∑

i

Aji(x
t
i + δxt

i→j)

δztj→i′ = Ajix
t
i′

11



and

xt+1
i = ηt

(

∑

j

Aji(z
t
j + δztj→i)

)

δxt+1
i→j′ = −η′t

(

∑

j

Aji(z
t
j + δztj→i)

)

Aj′iz
t
j′

Substituting the δztj→i value back in the equation for xt
i, we get

xt+1
i = ηt

(

∑

j

Ajiz
t
j +
∑

j

A2
jix

t
i

)

≈ ηt

(

∑

j

Ajiz
t
j + xt

i

)

where the last approximation is due to the fact that Aji ≈ 1√
n

.

Similarly, for ztj , we get

ztj = yj −
∑

i

Ajix
t
i +
∑

i

A2
jiz

t
jη

′
t

(

∑

j′

Aj′iz
t
j′ + xt

i

)

≈ yj −
∑

i

Ajix
t
i +

1

n

∑

i

ztjη
′
t

(

∑

j′

Aj′iz
t
j′ + xt

i

)

We can rewrite these equations in terms of matrix operations to obtain the AMP update

xt+1 = ηt
(

xt + A∗zt
)

zt = y − Ax+
1

δ
〈η′t
(

xt + A∗zt
)

〉

2.4.2 Onsager term

The main idea behind iterative methods is to start with an initial estimate of the signal

and through successive iterations, improve the estimate by moving closer towards the

original signal. Looking at the distribution of x0 − xt after every iteration sheds some

light on the convergence of the algorithm.

Let us now consider the algorithm without the Onsager term so as to motivate its

importance. Consider the matrix H = A∗A − I . We begin with our initial estimate

of the signal as x0 = 0 and get z0 = y. Notice that A∗y = x0 + Hx0. When A is

a Gaussian random matrix with variance 1√
n

and x0 is sparse, Hx0 can be accurately

12



modelled as i.i.d. Gaussian entries with variance ‖x0‖2
n

. So A∗z0 is the original signal

with some additive Gaussian noise. Soft thresholding this to obtain x1 gives us a better

estimate as soft thresholding with an appropriate choice of threshold reduces the mean-

square error in sparse estimation problems. We can continue this for the next iteration

where we have A∗z1 = x0+H(x0−x1). Similar reasoning would suggest that the noise

now is i.i.d. Gaussian with variance
‖x0−x1‖2

n
. Continuing this for all the iterations, we

would be able to indirectly track the MSE across iterations. However this does not hold

as the noise terms can no longer be approximated as i.i.d. Gaussian as H and x0 − xt

are no longer independent and are in fact largely correlated.

The inclusion of the Onsager term in the computation of the residue, cancels out a large

part of this correlation improving convergence and allows us to efficiently track the

MSE across iterations.

2.4.3 State Evolution

An important tool in analyzing the performance of message passing algorithm in de-

coding of LDPC codes is density evolution. Density evolution allows us to analytically

track the probability of error across iterations and obtain the maximum noise at the

channel input, the decoding algorithm can tolerate. If we are able to analyze AMP us-

ing density evolution, we can obtain analytical phase transition plots for ensembles of

our choice. However one of the major assumptions of MP and density evolution is that

the Factor Graph is sparse and tree like so as to have no small cycles. In our case the

factor graph is far from sparse and is rather a complete bipartite graph.

Combining the intuition from the previous section and motivation through density

evolution, [15] introduce state evolution which allows us to track not just the MSE, but

any pseudo-Lipschitz function with some mild conditions.

We limit ourselves to the state evolution of MSE for AMP which is given by

σ2
t+1 = Ψ(σ2

t ) (2.8)

Ψ(σ2
t ) = E

[

(

ηt

(

X +
σt√
δ
Z

)

−X

)2
]

(2.9)

where σ2
t is the average MSE at iteration t. The expectation is over independent ran-

13



dom variables X and Z where Z is zero mean Gaussian with variance 1 and X has

distribution equal to the empirical distribution of the input signal.

2.4.4 Threshold Parameter

In the message passing formalism, we obtained a recursive definition of the threshold

parameter τ̂ t. This makes the algorithm parameter free. Instead we could choose τ̂ t as

parameters and optimize over them to obtain better performance. A similar approach is

chosen and we choose ηt(x) = η(x;λσt) where η(.) is the soft thresholding function.

Define ρSE(δ, λ) as the maximum value of ρ for which AMP converges for the

undersampling fraction δ with λ as the parameter. An interesting point to note is that

the convergence region of AMP for the canonical model ± is independent of the input

distribution.

For σ to tend to 0, we require that for σ close to 0, Ψ(σ2) < σ2, i.e., dΨ(σ2)
dσ2

∣

∣

∣

σ2=0
< 1.

This is know as local stability and can be used to obtain bounds on ρ as follows

ρLS(δ, λ) =
1− (2/δ)[(1 + z2)Φ(−z)− zφ(z)]

1 + z2 − 2[(1 + z2)Φ(−z)− zφ(z)]

∣

∣

∣

∣

z=λ
√
δ

(2.10)

where φ(z) is the density of the standard normal distribution and Φ(z) =
∫ z

−∞ φ(x)dx

is the Gauss error function.

The extra parameter λ can now be optimized as a function of δ such that ρLS is

maximum, i.e., AMP converges to the correct solution for the least level of sparsity

(maximum value of ρ).

λ(δ) =
1√
δ
argmax

z≥0

1− (2/δ)[(1 + z2)Φ(−z)− zφ(z)]

1 + z2 − 2[(1 + z2)Φ(−z)− zφ(z)]
(2.11)

The phase transition obtained through local stability for AMP closely matches the

theoretical phase transition obtained for L1 minimization based reconstruction. Hence

AMP provides the same performance with significant time and complexity reductions.

14



Figure 2.4: Optimal Value of λ for different δ obtained using local stability

2.5 Performance of AMP

As mentioned before, LP based methods provide very good sparsity undersampling

trade-offs. However they are expensive in terms of both memory usage as well as time

taken. AMP on the other hand has very low per iteration cost and requires negligible

amount of extra memory while providing similar performance to that of L1 minimiza-

tion approaches.

2.5.1 Time complexity

We compare the time taken for these two algorithms for different problem sizes to see

how they scale. We sample elements of A according to i.i.d. zero mean Gaussian with

variance 1
n

. We choose δ = 0.2 and ρ = 0.2 which is well within the asymptotic success

phase of the LP problem as seen in Figure 2.2. We choose the input signal to have non-

zero coefficients distributed according to the Rademacher distribution taking ±1 with

equal probability. To solve the L1 minimization problem, we used CVX, a package

for specifying and solving convex programs [20, 21]. We use CVX’s default optimizer

SeDuMi to obtain the reconstructed signal. Figure 2.5 shows the time required to re-

construct the original signal averaged over 25 problem instances.
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Figure 2.5: Average Time to reconstruct the signal

2.5.2 Sparsity undersampling trade-off

We obtain the experimental phase transition curves for AMP for the case of Gaussian

random matrices sampled as before and compare it with that of the L1 minimization

based approach. For all the phase transition plots in our results, we choose δ values

between 0.05 and 0.95 with step size of 0.02 and increment the values of ρ from 0.01

in steps of 0.01. We also choose the parameter λ for each δ as per Equation (2.11). We

choose the distribution on the non-zero entries of input according to the Rademacher

distribution.

For each value of δ and ρ, we create 20 instances of the problem and pass it to the

AMP algorithm. We include the (δ, ρ) pair in the success phase if at least for 50% of

the instances, AMP converges to the correct result. Similar plots can be obtained for

higher percentage of success which we do not consider as in the large system limit, they

converge to the same curve.

We notice that the gap between the theoretical phase transition for L1 and that of

AMP in Figure 2.6 is quite small. Another interesting observation is that though theo-

retical bounds on the performance of AMP were derived keeping the large system limit

in mind, we see that even for small problems such as N = 200 we have the phase

transition tending to that of the large system.
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Figure 2.6: Phase Transition plots for various values of N

2.5.3 State Evolution vs actual MSE

We saw in Chapter 2 that AMP follows state evolution which can be used to track

various quantities one of them being the MSE. We also motivated iterative thresholding

methods by assuming that the difference between A∗zt + xt (which we will refer to as

γt from now) and x0 is distributed according to an i.i.d. Gaussian.

We run simulations for two different input distributions namely the standard normal

and the Rademacher distribution. We also consider two sets of (δ, ρ), one within the

success phase (0.4, 0.2) and one outside the success phase (0.4, 0.6). We choose N =

5000 for all the cases. We plot the MSE at each time instant along with the MSE

predicted by state evolution to compare.

Notice that when (δ, ρ) pair are outside the success phase, AMP does not converge

to the actual solution.

We plot the histogram of γt − x0 at different instances of time t. Though this does

not show the independence across the elements, it gives us a good idea about how the

elements are distributed. We also plot the density of the zero mean Gaussian with

standard deviation equal to the L2 norm of γt−x0 to compare. From here, we only plot

the results for the Rademacher input distribution as the results for other distributions

are similar.
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(a) (b)

Figure 2.7: State evolution (line) and MSE (points) for Gaussian matrix with δ = 0.4,
ρ = 0.2 with input distribution (a) Rademacher (b) Gaussian

(a) (b)

Figure 2.8: State evolution (line) and MSE (points) for Gaussian matrix with δ = 0.4,
ρ = 0.6 with input distribution (a) Rademacher (b) Gaussian

Though in the second case, AMP does not converge, the distribution of γt − x0 is

still Gaussian which confirms our previous assumption.

2.5.4 Alternate choice of threshold

In the current algorithm the threshold for the filter is the product of λ and current MSE.

In general we cannot directly compute the MSE as we do not have access to the original

signal. We instead estimate it and use the estimate to obtain the threshold.

We can use a simpler alternative which works in practice while preserving the phase

transition, MSE convergence and Gaussian like noise. We choose the threshold as the

nth largest absolute value of the vector γt. Using this as a threshold allows us to forgo

the estimation of the MSE and makes the algorithm simpler.
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(a) (b)

Figure 2.9: Histogram of γt − x0 for δ = 0.4, ρ = 0.2 at (a) t = 1 and (b) t = 50

(a) (b)

Figure 2.10: Histogram of γt − x0 for δ = 0.4, ρ = 0.6 at (a) t = 1 and (b) t = 50

For Figures 2.11b to 2.11d we chose the parameters N = 5000, δ = 0.4 and ρ = 0.2

From here we use this simplified algorithm to obtain results for other random matrix

ensembles.
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(a) (b)

(c) (d)

Figure 2.11: (a) Phase Transition Plot
(b) State Evolution (line) and MSE (points)
Histogram of γt − x0 at (c) t = 1 and (d) t = 50
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CHAPTER 3

Universality of AMP

Though the proof of AMP relies on the fact that the elements of the sensing matrices

A are sampled according to i.i.d. Gaussian, in practice AMP seems to work for various

ensembles of matrices such as Rademacher and partial Fourier matrices. In [22] they

rigorously prove that AMP also works for matrices whose elements are drawn from

a sub-Gaussian distribution with zero mean and variance 1
n

with sub-Gaussian scale

factor equal to c
n

.

3.1 Sub-Gaussian Matrices

We obtain through simulation the phase transition curves for the Rademacher matrix

and also the bimodal Gaussian for N = 5000. The bimodal Gaussian matrix is gener-

ated as the sum of a Rademacher matrix and a Gaussian matrix and is then normalized

appropriately to ensure that the variance of the distribution is 1
n

. The ratio of the vari-

ance of the Gaussian distribution to that of the Rademacher distribution determines the

separation between the two peaks. Smaller this ratio, further apart are the peaks of the

Gaussian and for very large values there is no separation of peaks. We plot below the

results for two cases, one for small separation, i.e., almost same as Gaussian and one

for large separation.



(a) (b)

Figure 3.1: Probability density of Bimodal Gaussians with
(a) small separation (Bimodal 1) and (b) large separation (Bimodal 2)

Figure 3.2: Phase Transition plots for Rademacher and Bimodal Gaussian
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3.2 Sub-Exponential Matrices

We extend the convergence result from sub-Gaussian to other random matrices with

heavier tails such as the Laplace distribution. The Laplace distribution given by the

probability density µ(x) = λ
2
e−λ|x| is not sub-Gaussian as it has a heavier tail as com-

pared to that of a Gaussian. Hence this distribution does not fulfil the sub-Gaussianity

criteria stated in Section 3.1. However, when the elements of A are distributed accord-

ing to the Laplace distribution, we can experimentally verify that AMP continues to

work. We also consider the bimodal Laplacian defined similar to the bimodal Gaussian

with the replacement of the Gaussian by the Laplacian. Even in this case, AMP recovers

the original signal with similar sparsity undersampling trade-off. By this we can guess

that the convergence is majorly a tail property and propose that AMP works for other

sub-exponential matrices too.

To obtain the phase transition plots, we use N = 5000 and perform the simulation

as described in Section 2.5.2. For the MSE and state evolution plot as well as for the

histogram of γt − x0 we use N = 5000, δ = 0.4 and ρ = 0.2.

Notice that for all three choices of matrices, the phase transition curves match very

closely with that of the Gaussian. We also note that the state evolution predicts the MSE

with good accuracy for both the case when AMP converges to the original signal and

when it does not. An important observation is that for the choice δ = 0.4 and ρ = 0.6,

the MSE does not converge to 0 but still settles away from 0 and does not diverge as

the iterations increase. For both choices of ρ, the histogram of γt−x0 is approximately

Gaussian. Though for the larger value of ρ, the norm has not gone to 0, it still has the

Gaussian shape.

Considering all these observations we can conclude that for sub-exponential matri-

ces, the behaviour of AMP is similar to that of AMP on Gaussian matrices.
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(a) (b)

Figure 3.3: Probability density of Bimodal Laplace with
(a) small separation (Bimodal 1) and (b) large separation (Bimodal 2)

Figure 3.4: Phase Transition plots for Laplacian and Bimodal Laplacian
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(a) (b)

Figure 3.5: State evolution (line) and MSE (points) for Laplacian with (a) δ = 0.4,
ρ = 0.2 and (a) δ = 0.4, ρ = 0.6

(a) t = 1 (b) t = 50

(c) t = 1 (d) t = 50

Figure 3.6: Histogram of γt−x0 for Laplacian with (a)-(b) δ = 0.4, ρ = 0.2 and (c)-(d)
δ = 0.4, ρ = 0.6
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(a) (b)

Figure 3.7: State evolution (line) and MSE (points) for Bimodal 1 with (a) δ = 0.4,
ρ = 0.2 and (a) δ = 0.4, ρ = 0.6

(a) t = 1 (b) t = 50

(c) t = 1 (d) t = 50

Figure 3.8: Histogram of γt−x0 for Bimodal 1 with (a)-(b) δ = 0.4, ρ = 0.2 and (c)-(d)
δ = 0.4, ρ = 0.6
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(a) (b)

Figure 3.9: State evolution (line) and MSE (points) for Bimodal 2 with (a) δ = 0.4,
ρ = 0.2 and (a) δ = 0.4, ρ = 0.6

(a) t = 1 (b) t = 50

(c) t = 1 (d) t = 50

Figure 3.10: Histogram of γt − x0 for Bimodal 2 with (a)-(b) δ = 0.4, ρ = 0.2 and
(c)-(d) δ = 0.4, ρ = 0.6
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CHAPTER 4

Extensions to AMP

Although AMP performs quite close to the LP based methods for a large set of matrices

such as sub-Gaussian, sub-Exponential etc, it still excludes a large set of possible matri-

ces. Since the introduction on AMP in [18], there have been many extensions proposed

to AMP to improve the convergence and also include a more general setting.

4.1 Existing extensions of AMP

4.1.1 Generalized AMP

Generalized AMP [23] allows us to work with a more generalized model. An input

vector q ∈ QN has elements from the set Q and this generates an unknown signal x ∈
R

N though an element wise channel having the conditional distribution as pX|Q(xj|qj).
We obtain z ∈ R

n from x through a linear transform A ∈ R
n×N , i.e., z = Ax. Now

the elements of z are passed through a second channel with conditional distribution

pY |Z(yi). The problem now is to estimate x given the input vector q and output vector

y.

This can be easily reduced to the sparse estimation problem by choosing

• Q to have a single element, i.e., qj = qj′ ∀j, j′

• pX|Q(xj|qj) as a distribution with X = 0 occuring with a probability of (1− ρ)δ

• pY |Z(yj|zj) ∝ 1[yj = zj]

GAMP provides many advantages as opposed to traditional AMP.

• Due to the choice of input vector q, elements of x are no longer required to be
identically distributed but still have to be independently distributed.

• We no longer require sparsity. We can tolerate arbitrary distributions on x

• We can also model non-linearity and noise at the output through appropriate
choice of pY |Z



4.1.2 Vector AMP

Another extension to traditional AMP is Vector AMP [24]. VAMP has a rigorous state

evolution that holds for a much broader class of random matrices namely right orthog-

onal matrices. The key difference in the algorithm involves performing an SVD on the

matrix A to split the matrix into U and SV ∗ and introduce an intermediate variable

w = SV ∗x. We now iteratively estimate both variables to reconstruct the original sig-

nal x. The per iteration cost is similar to that of AMP. However for very large problems

performing SVD becomes computationally intensive.

4.1.3 Damped AMP

In this version of AMP, the updates to the estimate are damped by a factor α to improve

convergence. A weighted average of the previous estimate xt and the output of the soft

threshold gives us the new estimate xt+1. The update rules now are given by

xt+1 = αxt + (1− α)ηt
(

A∗zt + xt
)

zt = y − Axt +
1

δ
zt−1〈η′t(A∗zt + zt)〉

where α controls the damping and is typically chosen between 0 and 0.05. [25]

4.2 Scaled AMP

We introduce a simple modification to the original AMP algorithm to improve the per-

formance of AMP on Non-Gaussian matrices. The change is similar but not identical

to that of Damped AMP.

Noting that the update rules are not linear in A, we scale the matrix by α to obtain

A′ = αA and get y′ = αA = A′x. The estimated signal is not scaled and remains

the same. We now use these new matrix A′ and new output y′ to estimate the input x.

We experimentally verify that by appropriate choice of α, we can increase the success

phase of heavy tailed distributions from that of AMP.
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4.2.1 Laplacian Matrix

In Section 3.2, we saw that Laplacian matrices also follow state evolution of AMP and

result in the same phase transition curve. However for small values of N like 1000,

the phase transition for small δ occurs at a much smaller value of ρ than for that of

Gaussian. By running scaled AMP even with a small change of α = 0.9 from 1, we

obtain phase transition similar to that of Gaussian.

Looking at Figure 4.1, we notice that for α close to 1, performance is similar to

that of AMP. We see an improvement in the performance for small ρ as we decrease

the value of α. However when α becomes very small such as 0.5, we see a dip in

performance for values of δ close to 1.

From Figure 4.3, we notice that state evolution as defined for AMP overestimates

the MSE and smaller the value of α, larger is the over-estimate. We also notice that the

elements of γt−x0 are no longer distributed according to a Gaussian. Hence arguments

used in justifying AMP do not completely hold for the scaled version. Again in the

failure region the MSE is shifted away from 0 but does not diverge.

Figure 4.1: Phase Transition plots for Laplacian with scaling factor α
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(a) (b)

Figure 4.2: State evolution (line) and MSE (points) for Laplacian (α = 0.5) with (a)
δ = 0.4, ρ = 0.2 and (a) δ = 0.4, ρ = 0.6

(a) t = 1 (b) t = 50

(c) t = 1 (d) t = 50

Figure 4.3: Histogram of γt − x0 for Laplacian (α = 0.5) with (a)-(b) δ = 0.4, ρ = 0.2
and (c)-(d) δ = 0.4, ρ = 0.6
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4.2.2 Heavy Tailed Distributions

We will consider the set of distributions parametrized by d having the following proba-

bility density function

p(x) =











d−1

2|x|d if |x| ≥ 1

0 if |x| < 1

We sample elements of the matrix A according to p(x) and scale them appropriately so

as to have variance equal to 1
n

. Clearly, d > 3 is required for the existence of variance.

Smaller the value of d, heavier the tail. So, we are justified to assume that as d increases

AMP performs better.

From Figure 4.4, we see that AMP does not recover the signal at all for any value of

δ. So we scale the λ value by different values to try and obtain a better curve. Here we

plot for λ which is 10 times the optimal value for Gaussian. We also run scaled AMP

to obtain the phase transition. Similar to the case of Laplacian, as α decreases, initially

the performance improves and then reaches a maximum and again starts to deteriorate

for higher values of δ. For α = 0.5, the phase transition comes very close to that of the

Gaussian case.

When using Scaled AMP for this distribution, similar to the case of Laplacian, the

histogram of γt − x0 is not distributed according to a Gaussian. The algorithm still

converges to the optimal solution for δ = 0.4 and ρ = 0.2. For the case δ = 0.4 and

ρ = 0.6, the algorithm does not converge. Yet the MSE does not diverge.

The same is not true for the case when we use AMP with λ = 10λopt. As the

algorithm progresses, the estimate diverges rapidly from the optimal value. Looking at

the histogram of γt − x0 sheds some light on this issue. We notice that due to the heavy

tailed nature of p(x), few elements of γt−x0 have large absolute values (notice the shift

in the plot). When performing soft threshold, these values are reduced only by a small

value. Hence in the next iteration they contribute to large errors in the estimate and the

cycle repeats.
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Figure 4.4: Phase Transition plots for d = 4 with scaling factor α

(a) (b) t = 1

(c) t = 2 (d) t = 3

Figure 4.5: (a)State evolution (line) and MSE (points) (b)- (d)Histogram of γt − x0

for d = 4, α = 1, λ = 10λopt, δ = 0.4 and ρ = 0.6
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(a) (b)

Figure 4.6: State evolution (line) and MSE (points) for d = 4 and α = 0.5 with (a)
δ = 0.4, ρ = 0.2 and (a) δ = 0.4, ρ = 0.6

(a) t = 1 (b) t = 50

(c) t = 1 (d) t = 50

Figure 4.7: Histogram of γt − x0 for d = 4 and α = 0.5 (a)-(b) δ = 0.4, ρ = 0.2 and
(c)-(d) δ = 0.4, ρ = 0.6
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CHAPTER 5

Conclusions and Future Work

This report primarily deals with the performance of Approximate Message Passing and

a simple modification of AMP. A summary of the work done and some future directions

are given below.

5.1 Summary

In Chapter 4 we verify that AMP has similar undersampling sparsity trade-off for ran-

dom matrices such as Laplacian and Bimodal Laplacian, is similar to that of AMP for

Gaussian i.i.d. matrices. We also verified through simulations that state evolution con-

tinues to hold and gives a good estimate of the MSE across iterations and that the noise,

i.e., γt − x0 is distributed like a Gaussian for both cases when AMP converges to the

accurate solution and when it does not.

In Chapter 5 we present a simple modification to AMP which is the scaled AMP. For

the case of Laplacian random matrix, and small system size, we noticed that the phase

transition of AMP for small undersampling fractions is well below that of Gaussian. By

choosing an appropriate value of α, scaled AMP closes the gap between the Gaussian

and Laplacian cases for small systems. We considered heavier tailed distributions on

the random matrix A and verified that AMP has poor performance in this setting. We

also noted that in the failure region, the estimate diverges rapidly due to some very large

values on some indices. By choosing an appropriate scaling factor α for scaled AMP,

we see that the performance improves by a great extent.

5.2 Future Directions

We verified that the performance of AMP for sub-Exponential matrices is similar to that

for Gaussian matrices in the sparse estimation setting. One future direction would be to



theoretical justify this result by using similar techniques used to prove the performance

guarantees for sub-Gaussian matrices.

Another interesting direction would be to obtain an equivalent state evolution rule

for scaled AMP as the state evolution result used in AMP overestimates the MSE when

used with scaled AMP. The optimal scaling parameter α for a particular distribution

was found through simulations and was kept constant for all the undersampling ratios.

Obtaining an analytical optimal value as a function of the matrix A and parameters δ, ρ

would be interesting as this would allow us to achieve better performance when using

scaled AMP.

We also notice that scaled AMP is more resilient than AMP to nonzero mean mea-

surement matrices. A more detailed study and simulations to confirm this claim are

required to be carried out.
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