
Gesture Classification of Indian Sign Language

A Project Report

submitted by

GAURAV SINGH

EE14B125

in partial fulfilment of the requirements
for the award of the degree of

BACHELOR OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

MAY 2018

1

REPORT CERTIFICATE

This is to certify that the report titled Gesture Classification of Indian Sign
Language, submitted by Gaurav Singh, to the Indian Institute of Technology,
Madras, for the award of the degree of Bachelor of Technology, is a bona fide
record of the research work done by him under our supervision. The contents
of this thesis, in full or in parts, have not been submitted to any other Institute
or University for the award of any degree or diploma.

Dr. C.S.Ramalingam
Project Guide
Associate Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Place: Chennai
Date: 11th May 2018

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my guide Dr.C.S.Ramalingam for
giving me an opportunity to work under him. Also I would like to thank you
for constantly guiding me thoughtfully and efficiently throughout this project,
giving me an opportunity to work at my own pace along my own lines, while
providing me with very useful directions and insights whenever necessary.

I would also take this opportunity to thank all my friends who have been a
great source of motivation and encouragement.

Finally I would also like to thank all of them who have helped me complete
my project successfully.

Gaurav Singh
EE14B125
Student
Dept. of Electrical Engineering
IIT-Madras, 600 036

Place: Chennai
Date: 11th May 2018

TABLE OF CONTENTS

Contents

1 Introduction 1

2 Previous Work on ISL(Indian Sign Language) 1

2.1 RGB based approaches . 1

2.2 3D based approaches . 2

3 Dataset used 3

4 Previous Work done on the dataset 3

5 Neural Network Based Approach 5

5.1 Convolutional Layer . 8

5.2 Pooling Layer . 9

5.3 Fully Connected Layer . 9

6 Architecture of the Network 9

6.1 Generate Predictions: . 13

6.2 Loss function and training parameters 13

7 Training, Evaluation and Prediction 13

7.1 Training . 13

7.2 Evaluation . 15

7.3 Prediction . 16

8 Analysis and Assurance of the model 20

8.1 Maximum Achievable Accuracy . 21

8.2 Examples . 22

9 Future Work 22

10 References: 23

A Data parsing and Concatenation code 24

B CNN training and testing code 27

C Maximum Achievable Accuracy Calculation code 31

D Python Code for plotting 33

1

1 Introduction

There are millions of people around the world who can speak and understand
sign language. However, these millions become a tiny amount in front of the bil-
lions of people with the inability to understand or speak sign language. Hence,
there has always been a necessity as well as the need of coming up with an
automated procedure to translate the sign language into worded text.

However, there hasn’t been much development in this regard. The reason
is because of the absence of a universally spoken sign language thus creating
the absence of a common platform on which the work can be done. Also, it
is very difficult to integrate the platforms of different sign languages as each
one has different grammatical rules as well as the structure of the language.
The sign language that has seen the maximum amount of development in this
regard is the American Sign Language (ASL). The Indian Sign Language (or
also known as the Indo-Pakistani Sign Language), however has seen very little
development.

Hence there is a lot of scope for improvement of the Indian Sign Language
and in this report we are going to explore the ways of achieving so. But before
that, it would be important for us to look into how much work has been done
previously on this so that we can develop on the pre-established platform.

2 Previous Work on ISL(Indian Sign Language)

There has been multiple work done on the ISL, some of them include

2.1 RGB based approaches

Rekha et al.[2] work on a vocabulary of 23 static signs and 3 dynamic signs
of ISL. They use skin colour segmentation through a Gaussian model to lo-
cate hands. Then they use edge orientations (from Principle Curvature based
Region Detector) and texture (from Wavelet Packet based Decomposition) as
features to train a multiclass SVM and get a recognition rate of 86.3%. However
their approach is very slow and has an average recognition time around 55 s.

1

Table 1: Approaches for ISL

Authors Dataset/Sensor
Segmentation/features/
recognition method

Recognition
Rate (%)

Geeta[1] static(29, 1450) RGB
B-Spline, key maximum
curvature points

∼90

Rekha[2]
static (23, 920)
dynamic (3, 66) RGB

Skin color, edge orientations,
texture;SVM

77.2

Singha[3] static (24, 240) RGB
Skin color, Eigen Values;
nearest neighbour

97

Bhuyan[4] static (8, 400) RGB
Skin color, geometric
features;nearest neighbour

>90

Singha et al.[3] use Eigen values extracted from segmented hands to clas-
sify 24 static signs of ISL using RGB images. They do a nearest neighbour
classification using eigen value weighted Euclidean distances and achieve 97%
recognition accuracy.

Bhuyan et al.[4] use a skin colour based segmentation procedure to extract
hands. A model based approach with geometric features (relative angles be-
tween fingers) and Homogeneous Texture descriptors (HTD) is then used to
classify static signs according to a nearest neighbour heuristic. They used
eight gestures with a training dataset of 400 images and get a high recognition
accuracy (above 90%).

2.2 3D based approaches

Van den Bergh and Van Gool et al.[5] (not in reference to ISL, however useful
for our approach) use a hybrid approach to track hands by combining RGB
and depth data obtained from a ToF camera. They use a face detector (imple-
mented in OpenCV) to locate the face in the RGB image and obtain its distance
in the depth image, and for the remaining regions which satisfy a depth thresh-
old, they identify the skin colour using a Gaussian Mixture Model based skin
colour model. This enables them to find anything that is extended (like hands
) in front of the body towards the camera. After detecting the hands, they use
Average Neighbourhood Margin Maximization (ANMM) [22] (approximated us-
ing Haarlets) to do matching from their database. They achieved a recognition
rate of 99.54% on a vocabulary of six symbols and 350 sample images

2

3 Dataset used

The dataset (see table 2 for sign names), henceforth referred to as the ISL
Dataset, consists of 140 static signs handpicked from ISL. Volunteers were ad-
vised to be upright and keep their hands distinct from the body as much as
possible. This was done to enable depth images to have a greater level of detail.
Right and left hands were not interchangeable in all signs. All volunteers were
non-native to sign language. Volunteers were advised to reform the signs after
each trial of a sign. This ensured non-duplicacy of the image. Volunteers stood
about half a metre from a flat surface. There was a distance of approximately 1
m between the Kinect and the volunteer. The dataset has been selected from the
ISL general, technical and banking dictionaries. Apart from complete words,
the dataset also has signs for manual fingerspelling (signs for alphabets) . A
word may have different variantsparticularly single-handed and two-handed
variants. In such cases all have been included. Symbols for single-handed J,
single-handed Z and double-handed J are dynamic in nature, so they have not
been included. Some Hindi words like Bhangada and Varanasi have also been
incorporated. Some images were rejected as the gestures in them were incor-
rectly performed. The dataset overall consisted of a vocabulary of 140 symbols
was collected using 18 subjects, totalling 5041 images.

4 Previous Work done on the dataset

Zafar Ahmed Ansari and Gaurav Harit et al.[6] implemented a functional unob-
trusive Indian sign language recognition system using the above dataset. This
system proposes a method for a novel, low-cost and easy-to-use application,
for Indian Sign Language recognition, using the Microsoft Kinect camera (for
obtaining the depth values). In the fingerspelling category of our dataset, they
achieved above 90% recognition rates for 13 signs and 100% recognition for 3
signs with overall 16 distinct alphabets (A, B, D, E, F, G, H, K, P, R, T, U, W,
X, Y, Z) recognised with an average accuracy rate of 90.68%.

The method employed by them includes pre processing of the image involv-
ing feature extraction(they use SIFT algorithm for this) and noise reduction(
of depth values of the image) followed by k-means clustering to derive proper
classification boundaries. They then proceed to use kNN based procedure to

3

Table 2: List of signs of the ISL dataset
1. One 2. Two 3. Three
4. Four 5. Five 6. Six
7. Seven 8. Eight 9. Nine
10. Ten 11. A 12. Add
13. Appreciation 14. A-SingleHanded 15. Assistance
16. B 17. Bell 18. Between
19. Bhangada 20. Bite 21. Blow
22. Bottle 23. bowl 24. Boxing
25. B-SingleHanded 26. Bud 27. C
28. Conservation 29. Control 30. C-SingleHanded
31. D 32. Density 33. Deposit
34. D-SingleHanded 35. E 36. Elbow
37. E-SingleHanded 38. F 39. Few
40. Fine 41. Friend 42. F-SingleHanded
43. G 44. Ghost 45. Good
46. Gram 47. G-SingleHanded 48. Gun
49. H 50. Handcuffs 51. Help
52. Here 53. Hold 54. How
55. H-SingleHanded 56. I 57. Intermediate
58. Iron 59. I-SingleHanded 60. It
61. K 62. Keep 63. K-SingleHanded
64. L 65. Leaf 66. Learn
67. Leprosy 68. Little 69. Lose
70. L-SingleHanded 71. M 72. Mail
73. Me 74. Measure 75. Mirror
76. M-SingleHanded 77. N 78. Negative
79. N-SingleHanded 80. O 81. Obedience
82. Okay 83. Opposite 84. Opposition
85. O-SingleHanded 86. P 87. Participation
88. Paw 89. Perfect 90. Potentiality
91. Pray 92. Promise 93. P-SingleHanded
94. Q 95. Q-SingleHanded 96. Quantity
97. Questions 98. R 99. Respect
100. Rigid 101. R-SingleHanded 102. S
103. Sample 104. Season 105. Secondary
106. Size 107. Skin 108. Small
109. Snake 110. Some 111. Specific
112. S-SingleHanded 113. Stand 114. Strong
115. Study 116. Sugar 117. T
118. There 119. Thick 120. Thursday
121. T-SingleHanded 122. U 123. Unit
124. Up 125. U-SingleHanded 126. V
127. Vacation 128. Varanasi 129. V-SingleHanded
130. W 131. Warn 132. Weight
133. Work 134. W-SingleHanded 135. X
136. X-SingleHanded 137. Y 138. You
139. Y-SingleHanded 140. Z

predict the class of the test data point. The pseudo code for kNN classification
is given as follows:

Input: Let k be the number of nearest neighbours and D be the set of train-
ing samples

For each test sample z = (x′, y′) do:

• Compute d(x, x′), the distance between x′ and every example (x, y) ∈ D

• Select Dz ⊆ D, the set of k closest training examples to z

y′ = argmax
v

Σ
(xi,yi)∈Dz

I(v = yi)

4

• End for

Hence kNN being a computationally simpler method, the classification of
the images is done on the spot thus giving a real time gesture classification
method. However, this modelling was done clearly on the assumption that
the user is still and only the valid datasets are considered. To incorporate for
a moving user, we would try to employ a new method based on the neural
networks(CNN in this case) for the gesture classification.

5 Neural Network Based Approach

Neural Networks have gained a lot of popularity lately. The reason is because
they need no pre-processing of data and learn the weights accordingly to min-
imize the provided loss function. The only challenge in dealing with neural
networks is to avoid over-fitting and to optimally design the architecture in or-
der to get best accuracy of the test data.

In this case, we would be focusing on the RGB-D based Convolutional Neural
Network as the data-point is a 3-D array with x and y axis representing the
pixel’s position of the image whereas z axis representing RGB and Depth values
associated with each pixel.

But like training of any neural network is preceded by the formation of
Dataset, we would like to describe the approach taken to form a proper training
and testing dataset. The procedure can be described in the following steps:

• First we have been given the dataset comprising of the images and depth
values for each user. We separate them into two folders ’RGB’ and ’Depth’

• We then divide the images and depth values into training(Any 16 user’s
values) and testing(The remaining 2 user’s values) datasets. Thus we
divide the dataset into training and testing data with a ratio of approxi-
mately 90-10. The arrangement of data would look something like this:

– RGB

∗ Training

∗ Testing

– Depth

5

∗ Training

∗ Testing

• After partitioning the datasets, we parse through the established dataset
while keeping in tabs of the labels associated with each data point. (
Note: The labels exist on the filename and would be useful for defining the
training and testing labels as well as data synchronization.). The code for
parsing through the established dataset looks as follows:

Listing 1: Data parsing code
1 classes = ["Train", "Test"]
2 rgb_values = {}
3 depth_values = {}
4 rgb_labels = {}
5 depth_labels = {}
6 rgb_values["Train"] = []
7 rgb_values["Test"] = []
8 depth_values["Train"] = []
9 depth_values["Test"] = []

10 rgb_labels["Train"] = []
11 rgb_labels["Test"] = []
12 depth_labels["Train"] = []
13 depth_labels["Test"] = []
14
15 #Loop in order to take in the depth values of the images for ←↩

both training and testing data
16 for clas in classes:
17 filenames = os.listdir("../Project-Data/Depth/"+clas+"/")
18 print filenames
19 for fb in filenames:
20 print fb
21 for k in glob.glob("../Project-Data/Depth/"+clas+"/"+←↩

fb+"/*.txt"):
22 my_data = genfromtxt(k, delimiter = ’ ’)
23 depth_values[clas].append(my_data)
24 names = k.split(’/’)
25 fname = names[5].split(’.’)
26 labels = fname[0].split(’-’)
27 depth_labels[clas].append(labels[1:4])
28
29 #Loop in order to take in the RGB values of the images for ←↩

6

both training and testing data
30 for clas in classes:
31 filenames = os.listdir("../Project-Data/RGB/"+clas+"/")
32 print filenames
33 for fb in filenames:
34 print fb
35 for k in glob.glob("../Project-Data/RGB/"+clas+"/"+fb+←↩

"/*.png"):
36 image = cv2.imread(k)
37 rgb_values[clas].append(image)
38 names = k.split(’/’)
39 fname = names[5].split(’.’)
40 labels = fname[0].split(’-’)
41 rgb_labels[clas].append(labels[1:4])

• Now, we compare the labels of both the datasets to confirm the data syn-
chronization. The looks like follows:

Listing 2: Data synchronization code
1 val = set(rgb_labels)&set(depth_labels)
2 if(val != 0):
3 print "Data Synchronization Error"
4 exit()

• Finally after achieving the synchronization, we concatenate to form the
training data points and their corresponding labels. The code looks as
follows:

Listing 3: Data concatenation code
1 labels = {}
2 data = {}
3 data["Train"] = []
4 data["Test"] = []
5 labels["Train"] = []
6 labels["Test"] = []
7
8 #Concatenating the RGB values and depth values to form the ←↩

final data
9 for clas in classes:

7

10 for i in xrange(len(rgb_values[clas])):
11 rgb = np.asarray(rgb_values[clas][i])
12 dpth = np.asarray(depth_values[clas][i])
13 dta = np.dstack(rgb, dpth)
14 data[clas].append(dta)
15
16 labels[clas] = np.asarray(rgb_labels[clas])
17 labels[clas] = labels[clas][1]
18 labels[clas] = labels[clas] - 1

• We also take in values and labels of three separate datapoints for future
analysis and demonstration of the trained model.

Now, since we have established a valid dataset for training and testing, we
proceed into defining the neural network on which this data would be trained.
However, before we get into the network architecture, it would be wise to revise
all the important teminologies associated with a CNN.

5.1 Convolutional Layer

The Conv layer is the core building block of a Convolutional Network that does
most of the computational heavy lifting. The CONV layers parameters consist
of a set of learnable filters. Every filter is small spatially (along width and
height), but extends through the full depth of the input volume. For exam-
ple, a typical filter on a first layer of a ConvNet might have size 5x5x4 (i.e.
5 pixels width and height, and 3 because here eeach pixel had have depth 4,
the color channels and the depth value). During the forward pass, we slide
(more precisely, convolve) each filter across the width and height of the in-
put volume and compute dot products between the entries of the filter and the
input at any position. As we slide the filter over the width and height of the
input volume we will produce a 2-dimensional activation map that gives the
responses of that filter at every spatial position. Intuitively, the network will
learn filters that activate when they see some type of visual feature such as an
edge of some orientation or a blotch of some color on the first layer, or eventu-
ally entire honeycomb or wheel-like patterns on higher layers of the network.
Now, we will have an entire set of filters in each CONV layer (e.g. 32 filters),
and each of them will produce a separate 2-dimensional activation map. We
will stack these activation maps along the depth dimension and produce the

8

output volume.

Backpropagation:The backward pass for a convolution operation (for both
the data and the weights) is also a convolution (but with spatially-flipped
filters).

5.2 Pooling Layer

It is common to periodically insert a Pooling layer in-between successive Conv
layers in a ConvNet architecture. Its function is to progressively reduce the spa-
tial size of the representation to reduce the amount of parameters and compu-
tation in the network, and hence to also control overfitting. The Pooling Layer
operates independently on every depth slice of the input and resizes it spa-
tially, using the MAX operation. The most common form is a pooling layer with
filters of size 2x2 applied with a stride of 2 downsamples every depth slice in
the input by 2 along both width and height, discarding 75% of the activations.
Every MAX operation would in this case be taking a max over 4 numbers (little
2x2 region in some depth slice). The depth dimension remains unchanged.

Backpropagation:As we know max(x, y) operation has a simple interpreta-
tion as only routing the gradient to the input that had the highest value in the
forward pass. Hence, during the forward pass of a pooling layer it is common
to keep track of the index of the max activation (sometimes also called the
switches) so that gradient routing is efficient during backpropagation.

5.3 Fully Connected Layer

Neurons in a fully connected layer have full connections to all activations in
the previous layer, as seen in regular Neural Networks. Their activations can
hence be computed with a matrix multiplication followed by a bias offset.

6 Architecture of the Network

The architecture of the network here has been derived after multiple trials in or-
der to achieve maximum test accuracy from the model. However, we restricted
from trying out a deeper network as the dataset involved limited number of

9

data points in the training set. The optimal network architecture after multi-
ple trials resulted as follows:

• Input Layer: Here the input layer in one sense represents a single data
point. However a single data point consists of A∗B∗D values where A and
B represents the image’s width and height and D represents the depth or
the number of values associated with each pixel. (Here A = 480, B = 640

and D = 4)

The dimension of the input layer can be altered by changing the batch_size
and this will in turn influence the dimensions of the other hidden layers.

• Convolutional Layer 1: After defining the input layer, we now come to
defining the first hidden layer of the network. The parameters of the layer
are as follows:

– Kernel Filter Size: 5x5

– Number of filters: 32

– Activation Function: ReLU

– Padding: Same(Means we insert zero values to keep the x and y
dimension same as that of the previous layer)

ReLU(Rectified Linear Unit) activation function is zero when x < 0 and
then linear with slope 1 when x > 0. ReLU activation is a widely popu-
lar activation function as it is computationally simpler and induces non-
linearity into the model. The graph looks as follows:

• Convolutional Layer 2: This convolutional layer is very much similar
to the previous ConV layer. Hence, it the parameters of the layer are as
follows:

– Kernel Filter Size: 5x5

– Number of filters: 32

– Activation Function: ReLU

– Padding: Same

• Pooling Layer 1: This pooling layer is a max pooling layer with the fol-
lowing parameters:

– Filter Size: 2x2

10

Figure 1: ReLU Function

– Strides: 2

– Activation Function: MAX

• Convolutional Layer 3: The first two ConV layers have been used to ex-
tract out the features. Now, form here on, each ConV layer would focus
on providing weights to each feature in order to achieve accurate classifi-
cation. The parameters of the third convolutional layer are as follows:

– Kernel Filter Size: 5x5

– Number of filters: 64

– Activation Function: ReLU

– Padding: Same

• Convolutional Layer 4:The fourth and final convolutional layer is just as
it’s previous ConV layer with the following parameters:

– Kernel Filter Size: 5x5

– Number of filters: 64

– Activation Function: ReLU

– Padding: Same

• Pooling Layer 2:This pooling layer, just like the previous pooling layer is
applied to reduce the number of dimensions and thus reduce computa-
tions in the model. The parameters are as follows:

11

– Filter Size: 2x2

– Strides: 2

– Activation Function: MAX

• Flattening the pool layer: We have to define a fully connected dense
layer. But before that, we have to flatten the pooling layer to two dimen-
sions [batch_size, features]. Here features = A

4
∗ B

4
∗ 64 as each pooling layer

removed half of each height and width.

• Dense Layer and Dropout: The dense layer is a fully connected layer
with a total of 1024 neurons. The activation function used in this layer
is again ReLU. To help improve the results of our model, we also apply
dropout regularization to our dense layer.

The dropout rate is specified to be 0.4 or 40%. This means 40% of the
elements will be randomly dropped out during training. Also, the dropout
would be deactivated during the testing period. The reason of the exis-
tence of dropout regularization is to prevent over-fitting the training data.

• Logits Layer: The final layer in our neural network is the logits layer,
which will return the raw values for our predictions. We create a dense
layer with 140 neurons (one for each target class 0 to 139), with linear
activation.

Hence our final output tensor of the CNN, has a shape [batch_size, 140]

The network can visualised through the following image:

Figure 2: CNN Network

12

6.1 Generate Predictions:

After deriving the output tensor from the CNN we then proceed to derive two
important values from it:

• The predicted class for each example. Our predicted class is the element
in the corresponding row of the logits tensor with the highest raw value.

• The probabilities for each possible target class for each example. We de-
rived the probabilities from our logits layer by applying softmax activation
function. The softmax function is described by the following equation:

σ(z)j =
ezj

ΣK
k=1e

zk

where j = 1,K

6.2 Loss function and training parameters

After defining the final activation function as the softmax function, we use
cross entropy as the loss metric.

Now that we have established all the necessary parameters required for
training, we perform a total of 20000 epochs with a learning rate of 0.002.

7 Training, Evaluation and Prediction

After describing the model, it is now time to train and evaluate the model. After
that, we can then predict the output for some specific input data points and
infer the results later and use them to propose a new model to incorporate the
robustness.

7.1 Training

During the process the training, we keep track of the loss function to know
whether the model is learning or not. In this case we consider users 3 and 15
as the test set and the remaining users as the training set. The loss function
as a number of epochs comes out as follows(next page):

13

Table 3: Training Loss
Epochs Loss Epochs Loss Epochs Loss Epochs Loss
0 4.811 500 3.363 1000 2.514 1500 1.922
2000 1.466 2500 1.267 3000 1.05 3500 0.926
4000 0.828 4500 0.739 5000 0.652 5500 0.581
6000 0.526 6500 0.473 7000 0.432 7500 0.391
8000 0.354 8500 0.322 9000 0.296 9500 0.263
10000 0.242 10500 0.226 11000 0.202 11500 0.191
12000 0.18 12500 0.177 13000 0.163 13500 0.152
14000 0.141 14500 0.134 15000 0.126 15500 0.114
16000 0.109 16500 0.104 17000 0.103 17500 0.102
18000 0.1 18500 0.097 19000 0.094 19500 0.092

Plotting the value of loss a function of epochs comes out as follows(next
page):

14

Figure 3: Training Loss

7.2 Evaluation

Clearly from the above figure, we can safely say that the model has learnt
properly. However, just achieving a decreasing loss function is not enough.
This just proves that the model has learnt well for the given training data set.
However, we now might need to validate the model using test data. To make
sure that the data is not biased, we performed training and testing of the model
three times, each time with different sets of training and testing data. The
results came out as follows:

• Combination 1: Test Data involved users 17 and 18. Whereas the rest
were used for training. The result was:
INFO:tensorflow:Saving evaluation summary for step 20000: ac-

curacy = 0.9183, loss = 0.09127

{’loss’: 0.09127105, ’global_step’: 20000, ’accuracy’: 0.91839998}

• Combination 2: Test Data involved users 3 and 15. Whereas the rest were
used for training. The result was:
INFO:tensorflow:Saving evaluation summary for step 20000: ac-

curacy = 0.8999, loss = 0.10535

{’loss’: 0.10535219, ’global_step’: 20000, ’accuracy’: 0.89997231}

15

• Combination 3: Test Data involved users 5 and 10. Whereas the rest were
used for training. The result was:
INFO:tensorflow:Saving evaluation summary for step 20000: ac-

curacy = 0.9055, loss = 0.09738

{’loss’: 0.09738444, ’global_step’: 20000, ’accuracy’: 0.90553288}

Keeping these three results into account, we can say that the model gives
an accuracy of 90.79% on an average. Where this value was derived by taking
the average of the above three combinations.

acc =
acc1 + acc2 + acc3

3

Where acci is the accuracy of combination i.

7.3 Prediction

We have considered three unique images to see how the model performs and
how accurately can it predict the class of the given test image.

• Case 1: We consider the User ID 2 and the image labelled ’USER-2-60-
1.png’. It is given as:

Figure 4: Case 1

16

This image when entered into the network, gives out the following plot as
the output:

Figure 5: Prob Dist of Case 1

• Case 2: We consider the User ID 2 and the image labelled ’USER-2-27-
1.png’. It is given as:

Figure 6: Case 2

17

This image when entered into the network, gives out the following plot as
the output:

Figure 7: Prob Dist of Case 2

• Case 3: We consider the User ID 2 and the image labelled ’USER-2-7-
1.png’. It is given as:

Figure 8: Case 3

18

This image when entered into the network, gives out the following plot as
the output:

Figure 9: Prob Dist of Case 3

After considering the three cases, we also keep into account the two highest
probabilities in each case for future calculations. Here pk is the highest proba-
bility values and k is the corresponding class whereas pi is the second highest
probability value with i being the class associated with it.

Table 4: Two Highest probabilities for each case
User ID Label pk k pi i

1 2 60 0.8005 60 0.0642 77
2 2 27 0.4912 27 0.3158 30
3 2 7 0.4217 7 0.4122 70

19

8 Analysis and Assurance of the model

Before we proceed to analyse and define the assurance of the model, we would
first like to look into two terms:

• Classifiable Image: An image can be classified by the model and one cer-
tain class "can" be predicted as the class of the image

• Assured class: Model can only predict the class of the image if it is "as-
sured" that there can be no other class to which the image can be a part
of.

Defining these terms is not the only thing necessary. After the definition,
it then becomes mandatory to define the parameters associated with each of
this terms:

• Ratio: The ration takes into account of how much greater is the highest
value among the probability distribution(pk) in comparison to the second
highest value(pi). Hence, to measure the difference, we the ratio of the
two values as:

ratio = r =
pk
pi

• Classification filter value or β: This value finds out all the images unfit for
classification and filter them out. Now if the ratio r is less than this value,
we deem the image as un-classifiable. Thus if

r =
pk
pi

< β

The image cannot be classified. However, if r is greater than β, we consider
the image as classifiable. Thus if

r =
pk
pi

> β

The image is classifiable. We generally define the value of β as close to 1

as possible. Here, in our case, we have defined the value of β as 1.1. Now,
after considering the test data set(Users 17 and 18), we find out that out
of the 560 test images, we get 532 images as classifiable.

• Assurance filter value or α: After the image is declared classifiable, we
define another variable which would enable the model to classify the image
as one particular class. If the ratio r is less than this value that is:

r =
pk
pi

< α

20

We do not classify the image. However, if r is grater than this value that
is:

r =
pk
pi

> α

We classify the image as the class with the highest probability value(i.e.
k). The value of α is completely user dependent. Since, we had a dataset
consisting of only valid data points, we defined it as a pretty low value
that is 1.6

In out test set, out of the 532 classifiable images, we find out that 62.06%

can be classified with assurance given our defined value of α. (This also
shows that some classes can be more easily classified than the others)
We define this value as maximum achievable accuracy.

8.1 Maximum Achievable Accuracy

As we have seen that out of the 532 classifiable images, only 62.06% of them can
be classified with assurance. Now this quantity can be interpreted as accuracy
as ONLY 62.06% are classified as gives out an output of a class.

Thus, the maximum achievable accuracy of the model is given as:

Maximum Achievable Accuracy =
Number of data points with assured class

Number of classifiable data points

However, we use the word "maximum" because the data set used here only
involves valid images. Now, if we were to replace a bunch of valid images with
invalid images, these invalid images would either be discarded as unclassifiable
or as an image with an un-assured class(we have to choose α wisely so that
this happens). Either way it would only increase the denominator(or keep it
the same), thus reducing the accuracy(or keeping it the same). Now, we can
intuitively say that increasing the value of α would only decrease the accuracy
of the model as fewer images would be classified, however the robustness of
the model will increase as fewer invalid images would get classified. Hence, we
arrive at a trade-off where we either choose the accuracy or the robustness of
the model.

21

8.2 Examples

We have considered the three cases above mentioned to see the prediction out-
puts for the model. Now, we would consider these cases as examples to derive
inferences from the parameters defined above.

• Example 1:
pk
pi

=
0.8005

0.0642
= 12.46

As the value is greater than α, we can say that it is classifiable and that
too the class is ’60’ or as we have seen from table 2: "It"

• Example 2:
pk
pi

=
0.4912

0.3158
= 1.55

As the value is greater less α yet greater than β, we can say that it is
classifiable but we cannot assure a class to it.

• Example 3:
pk
pi

=
0.4217

0.4122
= 1.02

As the value is less than β, the image is not even classifiable

9 Future Work

We were able to achieve a good enough model for the images. However, we
have to consider that the real life datasets are videos. Now, if we were to divide
the videos into multiple frames and consider each frame as a data point, we
arrive at a input dataset with maximum of the images as invalid(because they
represent the intermediate stages of the gestures). Hence, here the previously
defined values α and β come into play.

Since we lacked a proper video based dataset of the ISL, we had to restrict
our testing to the pre-existing dataset. However, if we were to create a dataset
involving lot of intermediate invalid frames, we might be able to arrive at an
optimal value of α which would give us a decent accuracy with a good enough
robustness on the dataset.

Also, as the CNN is huge and computationally intensive, the testing and
prediction can be exported to an external host like AWS, etc to obtain a real
time prediction model.

22

10 References:

[1] Geetha M and Manjusha U (2012). A vision based recognition of indian
sign language alphabets and numerals using B-spline approximation. Int. J.
Comp. Sci. Eng. (IJCSE)
[2] Rekha J, Bhattacharya J and Majumder S (2011). Shape, texture and lo-
cal movement hand gesture features for Indian Sign Language recognition. In:
3rd International Conference on Trendz in Information Sciences and Computing
(TISC), 2011, pages 3035
[3] Singha J and Das K (2013). Indian sign language recognition using
eigen value weighted euclidean distance based classification technique. arXiv
preprint arXiv:1303.0634
[4] Bhuyan M, Kar M K and Neog D R (2011). Hand pose identi- fication
from monocular image for sign language recognition. In: 2011 IEEE Interna-
tional Conference on Signal and Image Processing Applications (ICSIPA), pages
378383
[5] Van den Bergh M and Van Gool L (2011). Combining RGB and ToF cam-
eras for real-time 3D hand gesture interaction. In: IEEE Workshop on Applica-
tions of Computer Vision (WACV), 2011, pages 6672
[6] Zafar Ahmed Ansari and Gaurav Harit (2016, February). Nearest neigh-
bour classification of Indian sign language gestures using kinect camera. [On-
line]. Available:

https://link.springer.com/article/10.1007%2Fs12046-015-0405-3
[7] C231n Convolutional Neural Networks for Visual Recognition [Online]. Avail-
able:

http://cs231n.github.io/convolutional-networks/
[8] Gavin Weiguang Ding (2018, January 1). Drawing ConV net model using
python. [Online]. Available:

https://github.com/gwding/draw_convnet
[9] Link to the dataset:

https://github.com/zafar142007/Gesture-Recognition-for-Indian-Sign-Language-
using-Kinect/tree/master
[10] Code to draw the image of the CNN:

https://github.com/gwding/draw_convnet

23

Appendix

A Data parsing and Concatenation code

Majority of the code has already been explained in the report, however the
complete code is now presented below.

Listing 4: Code for parsing and concatenating data
1 from __future__ import absolute_import
2 from __future__ import division
3 import numpy as np
4 import glob
5 import os
6 from numpy import genfromtxt
7 import csv
8 import cv2
9

10 #Defining variables to store data for training and testing
11 classes = ["Train", "Test"]
12 rgb_values = {}
13 depth_values = {}
14 rgb_labels = {}
15 depth_labels = {}
16 rgb_values["Train"] = []
17 rgb_values["Test"] = []
18 depth_values["Train"] = []
19 depth_values["Test"] = []
20 rgb_labels["Train"] = []
21 rgb_labels["Test"] = []
22 depth_labels["Train"] = []
23 depth_labels["Test"] = []
24
25 #Loop in order to take in the depth values of the images for both ←↩

training and testing data
26 for clas in classes:
27 filenames = os.listdir("../Project-Data/Depth/"+clas+"/")
28 print filenames
29 for fb in filenames:
30 print fb
31 for k in glob.glob("../Project-Data/Depth/"+clas+"/"+fb+"←↩

24

/*.txt"):
32 my_data = genfromtxt(k,delimiter = ’ ’)
33 depth_values[clas].append(my_data)
34 names = k.split(’/’)
35 fname = names[5].split(’.’)
36 labels = fname[0].split(’-’)
37 depth_labels[clas].append(labels[1:4])
38
39 #Loop in order to take in the RGB values of the images for both ←↩

training and testing data
40 for clas in classes:
41 filenames = os.listdir("../Project-Data/RGB/"+clas+"/")
42 print filenames
43 for fb in filenames:
44 print fb
45 for k in glob.glob("../Project-Data/RGB/"+clas+"/"+fb+"/*.←↩

png"):
46 image = cv2.imread(k)
47 rgb_values[clas].append(image)
48 names = k.split(’/’)
49 fname = names[5].split(’.’)
50 labels = fname[0].split(’-’)
51 rgb_labels[clas].append(labels[1:4])
52
53
54 #Checking to see if there is a syncronization error in order to ←↩

prevent mis-labelling of the data
55 val = set(rgb_labels)&set(depth_labels)
56 if(val != 0):
57 print "Data Synchronization Error"
58 exit()
59
60 labels = {}
61 data = {}
62 data["Train"] = []
63 data["Test"] = []
64 labels["Train"] = []
65 labels["Test"] = []
66
67 #Concatenating the RGB values and depth values to form the final ←↩

data

25

68 for clas in classes:
69 for i in xrange(len(rgb_values[clas])):
70 rgb = np.asarray(rgb_values[clas][i])
71 dpth = np.asarray(depth_values[clas][i])
72 dta = np.dstack(rgb,dpth)
73 data[clas].append(dta)
74
75 labels[clas] = np.asarray(rgb_labels[clas])
76 labels[clas] = labels[clas][1]
77 labels[clas] = labels[clas] - 1
78
79 data_pred = []
80 label_pred = []
81
82 #Using three special cases in order to review the assurance of each←↩

image classification
83 filename1 = "../Project-Data/RGB/Train/user1/USER-2-60-1.png"
84 filename2 = "../Project-Data/Depth/Train/user1/USER-2-60-1.txt"
85 image = cv2.imread(filename1)
86 depth = genfromtxt(filename2,delimiter = ’ ’)
87 data1_value = np.dstack(image,depth)
88 data1_label = 60-1
89 data_pred.append(data1_value)
90 label_pred.append(data1_label)
91
92 filename1 = "../Project-Data/RGB/Train/user1/USER-2-27-1.png"
93 filename2 = "../Project-Data/Depth/Train/user1/USER-2-27-1.txt"
94 image = cv2.imread(filename1)
95 depth = genfromtxt(filename2,delimiter = ’ ’)
96 data2_value = np.dstack(image,depth)
97 data2_label = 27-1
98 data_pred.append(data2_value)
99 label_pred.append(data2_label)

100
101 filename1 = "../Project-Data/RGB/Train/user1/USER-2-7-1.png"
102 #Compare with 2-70-1
103 filename2 = "../Project-Data/Depth/Train/user1/USER-2-7-1.txt"
104 image = cv2.imread(filename1)
105 depth = genfromtxt(filename2,delimiter = ’ ’)
106 data3_value = np.dstack(image,depth)
107 data3_label = 7-1

26

108 data_pred.append(data3_value)
109 label_pred.append(data3_label)

B CNN training and testing code

This is the main part of the project, which involves all the network architecture,
evaluation as well as prediction of certain specific images. We import data from
the previous code in order to train and evaluate the model. This code also
produces ’training_loss.txt’ as well as ’prob.txt’ for plotting in the future.

Listing 5: Code for training and testing CNN network
1 from __future__ import absolute_import
2 from __future__ import division
3 import numpy as np
4 import glob
5 import os
6 from numpy import genfromtxt
7 import csv
8 import cv2
9 #Importing data values from the first program

10 import data_inp
11 import tensorflow as tf
12
13 tf.logging.set_verbosity(tf.logging.INFO)
14
15 #Defining the CNN Network
16 def cnn_model(features, labels, mode):
17 n_classes = 140
18 # Input Layer
19 input_layer = tf.reshape(features["x"], [-1,480,640,4])
20
21 # Convolutional Layer #1
22 conv1_layer = tf.layers.conv2d(
23 inputs=input_layer,
24 filters=32,
25 kernel_size=[5, 5],
26 padding="same",
27 activation=tf.nn.relu)

27

28
29 # Convolutional Layer #2
30 conv2_layer = tf.layers.conv2d(
31 inputs=conv1_layer,
32 filters=32,
33 kernel_size=[5, 5],
34 padding="same",
35 activation=tf.nn.relu)
36
37 # Pooling Layer #1
38 pool1 = tf.layers.max_pooling2d(inputs=conv2_layer, pool_size←↩

=[2, 2], strides=2)
39
40 # Convolutional Layer #3
41 conv3_layer = tf.layers.conv2d(
42 inputs=pool1,
43 filters=64,
44 kernel_size=[5, 5],
45 padding="same",
46 activation=tf.nn.relu)
47
48 # Convolutional Layer #4
49 conv4_layer = tf.layers.conv2d(
50 inputs=conv3_layer,
51 filters=64,
52 kernel_size=[5, 5],
53 padding="same",
54 activation=tf.nn.relu)
55
56 # Pooling Layer #2
57 pool2 = tf.layers.max_pooling2d(inputs=conv4_layer, pool_size←↩

=[2, 2], strides=2)
58
59 pool2_flat = tf.reshape(pool2, [-1, 120 * 160 * 256])
60
61 # Dense Layer
62 dense = tf.layers.dense(inputs=pool2_flat, units=1024, ←↩

activation=tf.nn.relu)
63
64 # Add dropout operation; 0.6 probability that element will be ←↩

kept

28

65 dropout = tf.layers.dropout(
66 inputs=dense, rate=0.4, training=mode == tf.estimator.←↩

ModeKeys.TRAIN)
67
68 # Logits layer
69 logits = tf.layers.dense(inputs=dropout, units= n_classes)
70
71 predictions = {
72 "classes": tf.argmax(input=logits, axis=1),
73 "probabilities": tf.nn.softmax(logits, name="softmax_tensor←↩

")
74 }
75 if mode == tf.estimator.ModeKeys.PREDICT:
76 return tf.estimator.EstimatorSpec(mode=mode, predictions=←↩

predictions["probabilities"])
77
78 # Calculate Loss
79 onehot_labels = tf.one_hot(indices=tf.cast(labels, tf.int32), ←↩

depth=n_classes)
80 loss = tf.losses.softmax_cross_entropy(
81 onehot_labels=onehot_labels, logits=logits)
82
83 # Configure the Training Op (for TRAIN mode)
84 if mode == tf.estimator.ModeKeys.TRAIN:
85 optimizer = tf.train.GradientDescentOptimizer(learning_rate←↩

=0.002)
86 train_op = optimizer.minimize(
87 loss=loss,
88 global_step=tf.train.get_global_step())
89 if global_step/500 == 0:
90 fb = open("loss_train.txt","w")
91 fb.write(str(global_step) + " " + str(round(tf.←↩

reduce_mean(loss),3)) + "\n")
92 return tf.estimator.EstimatorSpec(mode=mode, loss=loss, ←↩

train_op=train_op)
93
94 # Configure for Evaluating Op (for EVAL mode)
95 if mode == tf.estimator.ModeKeys.EVAL:
96 eval_metric_ops = {
97 "accuracy": tf.metrics.accuracy(
98 labels=labels, predictions=predictions["classes"])}

29

99 return tf.estimator.EstimatorSpec(
100 mode=mode, loss=loss, eval_metric_ops=eval_metric_ops)
101
102 def main():
103
104 #Setting up train_data
105 train_data = data_inp.data["Train"]
106 train_label = data_inp.labels["Train"]
107
108 #Setting up test_data
109 test_data = data_inp.data["Test"]
110 test_label = data_inp.labels["Test"]
111
112 #Setting up the estimator as the cnn network
113 classifier = tf.estimator.Estimator(
114 model_fn=cnn_model)
115
116 # Set up logging for predictions
117 # Log the values in the "Softmax" tensor with label "←↩

probabilities"
118 tensors_to_log = {"probabilities": "softmax_tensor"}
119 logging_hook = tf.train.LoggingTensorHook(
120 tensors=tensors_to_log, every_n_iter=50)
121
122 # Train the model
123 train_input_fn = tf.estimator.inputs.numpy_input_fn(
124 x={"x": train_data},
125 y=train_label,
126 batch_size=100,
127 num_epochs=None,
128 shuffle=True)
129 classifier.train(
130 input_fn=train_input_fn,
131 steps=20000,
132 hooks=[logging_hook])
133
134 #Test the model
135 test_input_fn = tf.estimator.inputs.numpy_input_fn(
136 x= {"x": test_data},
137 y= test_labels,
138 num_epochs=1,

30

139 shuffle=False)
140 eval_results = classifier.evaluate(input_fn=eval_input_fn)
141 print(eval_results)
142
143 #Find specific prob distribution for specific data
144 spec_input_fn = tf.estimator.inputs.numpy_input_fn(
145 x = {"x": data_inp.data_pred},
146 y = data_inp.label_pred,
147 num_epochs = 1,
148 shuffle = False
149)
150 spec_results = classifier.predict(input_fn=spec_input_fn)
151
152 #print spec_results
153 f = open("prob.txt","w")
154 f.write(round(spec_results[’predictions’],4))
155
156
157 #Find the prediction vales for training data in order to ←↩

perform future operations(i.e. in the assurance.py)
158 pred_fn = tf.estimator.inputs.numpy_input_fn(
159 x = {"x":test_data},
160 y = test_label,
161 batch_size = 1,
162 num_epochs = 1,
163 shuffle = False
164)
165 pred_results = classifier.predict(input_fn=pred_fn)
166
167
168
169 if __name__ == "__main__":
170 tf.app.run()

C Maximum Achievable Accuracy Calculation code

After achieving the predictions of each test data point from the model, we then
proceed to calculate the maximum accuracy and the number of valid classi-

31

fiable images in the data set.We do so importing the derived results in the
previous code.

Listing 6: Code for calculation of Maximum Acc. and no. of valid images
1 from __future__ import absolute_import
2 from __future__ import division
3 import numpy as np
4 import glob
5 import os
6 from numpy import genfromtxt
7 import csv
8 import cv2
9 #Importing probabilities data after parsing the image through the ←↩

network
10 import cnn_train_test
11 import tensorflow as tf
12
13 avg = 1/140
14
15 #Stores the probabilities of the test data
16 k = cnn_train_test.pred_results[’predictions’]
17 k = np.asarray(k)
18
19 #A function to find the second highest element in the array
20 def getSecondHighest(a):
21 hi = mid = lo = 0
22 for i in range(0, len(a)):
23 x = a[i]
24 if (x > hi):
25 lo = mid
26 mid = hi
27 hi = x
28 elif (x > mid):
29 lo = mid
30 mid = x
31 else:
32 lo = x
33 return mid
34
35 #User defined quantities
36 alpha = 1.6

32

37 beta = 1.1
38
39 #Number of test cases
40 n_cases = k.shape[0]
41
42 #Number of classifiable images
43 n_valid = 0
44 #Number of images with assured classification
45 n_assured = 0
46
47 #Loop to calculate the above defined quantities by parsing through ←↩

the test set
48 for i in xrange(n_cases):
49 peak_val = np.amax(k[i])
50 second_peak_val = getSecondHighest(k[i])
51 ratio = (peak_val-avg)/(second_peak_val-avg)
52 if (ratio > alpha):
53 n_valid = n_valid+1
54 n_assured = n_assured+1
55 elif (ratio > beta):
56 n_valid = n_valid+1
57
58 assured_accuracy = n_assured/n_valid
59
60 print "Maximum Assured Accuracy = " + str(round(assured_accuracy,6)←↩

)
61
62 print n_valid

D Python Code for plotting

As mentioned above, the second code produces ’training_loss.txt’ as well as
’prob.txt’ as the results for plotting. Thus we use the below mentioned code to
read through the text files and generate necessary plots.

Listing 7: Code for plotting: Pre-Processing
1 import numpy as np
2 from numpy import genfromtxt

33

3 import matplotlib.pyplot as plt
4
5 filename = ’prob.txt’
6 filename2 = ’loss_train.txt’
7
8 k = genfromtxt(filename,delimiter = ’,’)
9 t = genfromtxt(filename2,delimiter = ’ ’)

10
11 t = np.asarray(t)
12 k = np.asarray(k)
13 x = np.arange(0,140,1)
14 t = np.transpose(t)
15 #Defining the width of the bar
16 width = 1/1.5
17
18 #Plotting the probability distribution of the first image
19 fig, ax = plt.subplots(nrows=1, ncols=1)
20 ax.bar(x,k[0],width,color=’blue’)
21 ax.set_xlabel(’Classes’)
22 ax.set_ylabel(’Probabilities’)
23 ax.legend([’Probability Distribution’])
24 fig.savefig(’plots/prob_1.png’)
25 plt.close(fig)
26
27 #Plotting the probability distribution of the second image
28 fig, ax = plt.subplots(nrows=1, ncols=1)
29 ax.bar(x,k[1],width,color=’red’)
30 ax.set_xlabel(’Classes’)
31 ax.set_ylabel(’Probabilities’)
32 ax.legend([’Probability Distribution’])
33 fig.savefig(’plots/prob_2.png’)
34 plt.close(fig)
35
36 #Plotting the probability distribution of the third image
37 fig, ax = plt.subplots(nrows=1, ncols=1)
38 ax.bar(x, k[2],width,color=’green’)
39 ax.set_xlabel(’Classes’)
40 ax.set_ylabel(’Probabilities’)
41 ax.legend([’Probability Distribution’])
42 fig.savefig(’plots/prob_3.png’)
43 plt.close(fig)

34

44
45 #Plotting the training loss value against the number of epochs
46 fig, ax = plt.subplots(nrows=1, ncols=1)
47 ax.plot(t[0], t[1],’k’)
48 ax.set_xlabel(’num_epochs’)
49 ax.set_ylabel(’loss value’)
50 ax.legend([’Training loss’])
51 fig.savefig(’plots/training_loss.png’)
52 plt.close(fig)

35

