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ABSTRACT

KEYWORDS: Computer Vision, Deep Learning, Machine Learning, Capsule

Nets, equi-variance, Neural Networks,CNN

In-variance to view points and affine transformations is one of the most sought after

feature in computer vision. General affine transformations like scaling, illumination,

rotation and translations should not come in the way of image classification/recognition.

Convolutional Neural Networks or CNN’s have become the established architecture for

computer vision as they are able to provide translational equi-variance. They are able

to learn features from the image which were up until then were hand-engineered. But

CNN’s are not very efficient in generating features which are equi-variant to general

transformations other than translation.

In this project an attempt was made to understand and improve upon two exist-

ing solutions for achieving scale and rotational equi-variance on MNIST Dataset, Har-

monic Networks and Capsule Networks. Harmonic Networks strive to achieve rotation

equi-variance by replacing regular CNN filters with rotational harmonics. The filters in

Harmonic Nets were further tuned in an attempt to induce equi-variance to scale.

The ideas proposed for use of Capsule Nets for MNIST classification were applied

for rotated and scaled MNIST digits to observe the performance and an altercation

was made to improve the performance and also to encourage the Capsule Net to learn

transformation equi-variant representations.
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CHAPTER 1

INTRODUCTION

Although CNN’s have become the go-to architecture for computer vision problems,

they still face several short comings. They are unable to learn equi-variant features

when the images are scaled or rotated. Many existing methods which employ CNN’s

either use data augmentation or hand designed image pre-processing methods to achieve

rotation and scale equi-variance. These methods are unable to provide elegant and

general solutions to the problem at hand. The work done in this project is mainly on

two separate approaches with aim achieve generalized solutions to the above stated

problems.

In the first part of the project the concept of harmonic networks was deeply studied

and implemented. The paper on Harmonic Nets is an attempt to provide rotational equi-

variance to CNN’s. The main idea in the paper is to restrict the filters in a CNN to a

general class of radial harmonic functions. This ensures that the feature maps generated

by HNets are equi-variant to rotation and therefore inherently induce a CNN to learn

rotation invariant feature map representations. This method works very well and beats

the state of the art in classification of rotated images. A similar approach derived from

the same core idea was applied to this network to modify and to try and achieve equi-

variance for scale. The filters of this network were further constrained by radial profile

weight sharing. A considerable improvement in performance on rotated and scaled

images was achieved.

In the second part the idea of Capsule Nets was explored. This paper provides a

novel approach to the problem by representing information in the form of vectors rather

than feature maps as in a regular CNN and applied dynamic routing in between capsule

layers to achieve part to whole relationships between two consecutive layers of capsules.

This architecture has now delivered state of the art performance on mnist classification.

The network was then applied and tuned to classify rotated and scaled images to observe

performance. The network managed to achieve high accuracy on scaled and rotated

mnist images. This indicated that then vector representation of features may lead to



some sort equi-variance to rotation and scale and therefore further attempts were made

to extract the values of rotation and scale parameters from the output of the Capsule Net

in order to verify this claim.

1.1 Literature Review

Given below is the list of papers which are related to the problem statement , along with

a brief gist on the core ideas proposed in the paper.

• Polar Transformer Networks (PTN’s)[5] propose a 3 stage end to end architecture
for classification. First, a polar origin predictor a CNN[1] that extracts feature
maps which are used to find the centre of the image. Second stage performs the
Log-polar transformation on the image and the final stage is a CNN classifier
used to predict the image class. Due to the Log-polar image transformation, ro-
tation and scaling of images are converted into translation, a transformation that
CNN’s are very good at identifying. But translations do not have an equi-variant
representation in log polar domain which is the reason a separate origin predictor
CNN module is used to deal with translations. Though this network is able to
beat the state of the art on rotated MNIST dataset it is not scale-able and cannot
make good predictions when multiple objects of interest are present in the same
image.

• Spatial Transformer Networks(STN)[6] provide a new attachable spatial trans-
former module to a regular CNN which can be inserted at any layer. The trans-
former module generates multiple feature maps from the given feature maps by
applying spatial transformations to them. When applied to the input layer of the
network itself is able to learn to crop out, rotate and normalize the image which
can lead to a simplified classification task for the CNN module, dramatically in-
creasing its performance. This model also exhibits scale-ability able to provide
competitive results on street view numbers and bird classification problems. The
main drawbacks of this model is its requirement of significantly larger number of
parameters.

• The paper Scale invariant pattern recognition[7] with logarithmic radial harmonic
filters proposes filtering the image using a matched phase-only LRH(logarithmic
radial harmonic) filter function and then use correlation at the origin in order to
perform image classification.

• Circular harmonic phase filters[8] for efficient rotation-invariant pattern recogni-
tion also follows a very similar approach as used in the paper described above,
using phase-only circular harmonics instead of LRH to achieve rotational equi-
variance. This paper along with the concept of steerable filters[3] forms the basic
foundations on which the idea of Harmonic Networks is based.

• Harmonic Nets[9] as already discussed, places constrains on the CNN filters
which cause it to generate feature maps which are equi-variant to rotation, this
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paper produces the state of the art performance on rotated MMIST dataset, but
only works for image rotations.

• Transforming auto encoders[2] lays the basic foundation on the idea of capsules
which is later perfected in Capsule Nets. This paper highlights the main ideas
about using vectorial representation of information instead of using feature maps
as in traditional CNN’s. It introduces ideas on part-whole relations between indi-
vidual layers of capsules.It also published results on simple experiments to prove
that the idea of using Capsules actually works. The experiments involve recon-
structing transformed MNIST digits and 3D stereo images of different types of
cars from outputs of the auto encoders.

• Finally the paper on Capsule Nets[4] discusses the idea about capsules, and the
Dynamic routing algorithm to carry out the proposed part-to-whole transforma-
tions between adjacent capsule layers. This paper is able to beat the state of the
art performance on MNIST data-set and at the same time able to encode transfor-
mation invariant features of the image in its vector output in sufficient detail to
allow approximate reconstructions of the image. The video on Youtube by Au-
rélien Géron1 also provides a deep and excellent explanation on the working of
Capsule Nets.

1.2 Outline of the Problem

The problem statement of this project is to attempt to improve upon harmonic nets

and classify the MNIST dataset which has been transformed through random 360◦ ro-

tations(figure 1.2) and random scaling by a factor in range [0.5, 2] (figure 1.3). For

capsule nets the aim is to classify a much less rigorous dataset - MNIST transformed

by random rotations through angles which are multiples 11.25◦. The images also scaled

by 1 of 32 different scales in [0.5, 1]. Along with classification, an attempt is made to

extract the rotation and scale parameters from the capsule network’s output vectors.

1.2.1 MNIST Dataset

The MNIST database of handwritten digits2 that has a training set of 55,000 examples,

and a test set of 10,000 examples. It is a subset of a larger set available from NIST.

The digits have been size-normalized and centered in a fixed-size image. Each image

has 28x28 pixel’s which are converted into a single 784 dimensional input vector for

training. A few sample MNIST images are shown in figure 1.1.

1Capsule Networks (CapsNets) - Tutorial,June 2018.
2MNIST Dataset
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Figure 1.1: MNIST images

Figure 1.2: Rotated MNIST images

Figure 1.3: Rotated and scaled MNIST images
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CHAPTER 2

Harmonic Nets

This chapter discusses about Harmonic Nets portion of the project.

2.1 equi-variance

Equi-variance is a useful property to have because transformations π of the input pro-

duce predictable transformations ψ of the features, which are interpretable and can

make learning easier. Formally, we say that feature mapping f : X → Y is equi-variant

to a group of transformations if we can associate every transformation π ∈ Π of the

input x ∈ X with a transformation ψ ∈ Ψ of the features; that is,

ψ[f(x)] = f(π[x]) (2.1)

A special case of equi-variance is invariance, when Ψ = I , the identity.

2.1.1 Complex Circular Harmonics

Rather than having all the weights in the filter learnt as in a conventional CNN in har-

monic nets the filters functions are restricted to a class of complex circular harmonics.

The general filter equation is given by

Wm(r, φ,R, β) = R(r)ei(mφ+β) (2.2)

The learn-able parameters in this filter function is the radial profile R(r) and the phase

offset β. Such a filter function provides equi-variance under the operation of circular

cross cross-correlation(∗), let the input feature be denoted as F then a version of this

feature map rotated by θ is denoted by F θ, then,

[Wm ∗ F θ] = eimθ[Wm ∗ F ] (2.3)



2.1.2 Equi-variance to Scaling

By using the same line of thought as in the above section,an attempt was made to come

up with a general class of functions which provide equi-varaint feature maps on scaling.

For this purpose one can look to the Fourier-Mellin transform, the magnitude of which

is invariant to both rotation and scaling, it is formulated as,

Mf (u, v) =
1

2π

∫ ∞
0

∫ 2π

0

f(r, θ)r−iu−1e−ivθdθdr (2.4)

Harmonic nets simply constraint their phase to be of the form eimθ to achieve equi-

variance to rotation. Following a similar line of thought one can constraint the radial

profile to be of the form rn, n ∈ N ,resulting in the filter equation,

Wn(r, φ,Θ, α) = αrnΘ(φ) (2.5)

Such a filter output is equi-varaint with respect to scaling.

2.1.3 equi-variance to Rotation and Scaling

At this point one might be tempted to combine the ideas from both the above section

and design a filter function as such,

Wmz(r, φ, α, β) = αrzei(mφ+β) (2.6)

Such a filter function indeed would output feature maps invariant to both rotation and

scaling but the problem with such a filter function is that it has only 2 learn-able pa-

rameters α, β and therefore in order to fit the data set would require a huge number of

feature maps, which is impractical.

There is a reduction in number of learn-able parameters per-filter from CNN to a

HN and from HN to a network using filters as in 2.6. Therefore we need to make a

trade-off between number of learn-able parameters per-filter and the amount of scale

equi-variance.

We constraint the radial profile of the HN filters to have same values for pairs of

adjacent rings, effectively stretching the profiles to provide a somewhat equi-variant
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Figure 2.1: Input images,learned filters and outputs for a simple network designed to
identify a circle.

response to feature maps even when they are scaled.The radial profiles are therefore

sharing weights.

This idea is better explained though a simple example. Consider a simple network

that is used to identify whether or not a given input image has a circle(figure 2.1(a)). We

can expect the network to learn a filter as in figure 2.1(b). Assume that the network was

trained only on un-scaled images,to such a network if an image scaled by a factor of 2

(figure 2.1(d)) is shown, its filter as in figure 2.1(e) would completely fail to recognize

the larger circle.But to this filter if radial weight sharing was applied then its radial

profile would appear something as in figure 2.1(h) and despite never having seen larger

circle the filter would still output a high correlation for such an image(figure 2.1 (i)).

2.2 Implementation and Results

2.2.1 Test Networks

First, a shallow CNN was trained on the standard MNIST dataset. This CNN is only two

layers deep and manages to get a classification accuracy of about 97%. This network is

used as a bench-mark to test the performance of the harmonic nets.

In order to test the working of harmonic nets and fully understand its TensorFlowTM

implementation, a shallow harmonic net also 2 layer with close to same number of

parameters of the bench-mark CNN was implemented. When tested on the standard
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MNIST dataset this model gave only 91% classification accuracy. In order to test if the

harmonic net is able to learn rotation "intuitively" the same model was then tested with

a test set containing random 360 ◦ rotations of the MNIST images, and the results are

documented in the table 2.1.

Both networks perform poorly on the rotated test set. But the harmonic net is still

able to outperform the bench-mark CNN, hence proving that the harmonic net is indeed

a better architecture to learn image rotations.

Network MNIST() Rotated MNIST

CNN 0.9707 0.3552

HN 0.9115 0.4029

Table 2.1: Test results for MNIST and rotated MNIST on CNN and HN,values represent
accuracies.

2.2.2 Rotated MNIST

In the next step the network mentioned in the paper with the same hyper-parameters was

implemented. The network described in the paper was trained only on 10,000 rotated

test images and was giving 100% test accuracy, implying that it was over-fitting the test-

set. Though this network was giving state-of-the art results as claimed in the paper[9],

such a network will most likely not generalize well when applied to both rotated and

scaled images.

A new network (figure2.2) with half the number of feature maps as the old net-

work was created and trained on standard MNIST dataset, but tested on rotated MNIST

data-set. Similar to the test networks this network performed poorly giving about 60%

classification accuracy.

In the next step a 1000 rotated images were added to the MNIST dataset and the

network was retrained. Even the addtion of such a small number of rotated images

dramatically increased the performance for the HN which now gave a classification

accuracy of 85%.

Gradually more rotated samples were added until the network’s accuracy increased

to about 90%.The final training set therefore contained 55,000 unrotated images and

9



Figure 2.2: The different models used for comparision.Red blocks correspond to corre-
lation and blue blocks correspond to pooling.

5000 rotated images.The final test set contained 10,000 rotated test images. This net-

work shall from now on be referred to as HN.

In the table 2.2 the performance of the harmonic net is compared to that of a CNN

with the same number of feature maps and layers. As expected the HN gives superior

performance compared to the CNN on rotated images.

Network MNIST MNIST +5k rot images

CNN 0.3823 0.8405

HN 0.5607 0.9052

Table 2.2: Test accuracy for different Networks on different Training sets for a rotated
test set.

2.2.3 Rotated and Scaled MNIST

Finally weight Sharing was applied to the filters in the harmonic nets and as the number

of learn-able parameters are decreased per-filter, the total number of feature maps were

doubled to keep the total number of parameters in the network same.

This network was then trained on the standard MNIST dataset along with 5000

rotated and scaled images. The test set contained 20,000 rotated and scaled images and

the total calssification accuracy obtained was 86% about 4% higher than the HN which

was trained and tested on the same dataset.

10



A bench-mark CNN model with the same number of feature maps as HN was also

trained on the same datasets for comparison. The table 2.3 contained the detailed results

obtained by different networks on different datasets.

Network MNIST +5k rot images MNIST +5k rot and sclaed images

CNN 0.3467 0.6153

HN 0.4439 0.8259

HN-wtshare 0.7832 0.8616

Table 2.3: Test accuracy for different Networks on different Training sets for a rotated
and scaled test set.

2.3 Conclusion

From the results obtained in the previous section(table 2.3) it is clear that the weight

sharing approach indeed improves performance in scaled datasets and the architecture

can be further optimized to compete for state-of-the-art performance on rotated and

scaled MNIST.
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CHAPTER 3

Capsule Nets

The work done on Capsule Nets is discussed in this chapter.

3.1 Capsules

The concept of capsules was first introduced in the paper Transforming Auto-Encoders[2].

The paper claims that the widely used CNN filter banks are not a good method for deal-

ing with complicated recognition tasks like facial identification, which require precise

spatial information regarding high level parts like face and mouth. In a regular CNN

these spatial relation are gradually lost due repeated pooling or sub-sampling opera-

tions, and though such a property is sometimes is desirable as it makes them invariant

to spatial changes, it makes them incapable of computing exact spatial relationships.

The paper claims that rather than using a single neuron which outputs a scalar values

,networks should use "capsules" which perform computations in their local field of view

and encapsulate the results in the form of a vector. The dimension of the vectors then

learn to represent certain features in the capsules local region. For example a vector

dimension could represent the probability for the existence of a particular feature, which

is view-point invariant and its other dimensions could output view-point equi-variant

representations of the said feature.

The other major advantages of capsules is their ability to form part-whole rela-

tionships between other capsules. A good example for this is provided in the paper

itself,consider the problem of facial recognition. Assume two capsules that represent

nose and mouth respectively.Assume they both are connected to a higher level capsule

which represents a face. Both the mouth and face capsules give predictions about the

representation for face capsule and if these predictions agree it means that the face is

present in a manner following a linear manifold part whole relationship corresponding

to the representation.



Figure 3.1: Three capsules of a transforming auto-encoder that models translations.
Each capsule in the figure has 3 recognition units and 4 generation units.
The weights on the connections are learned by backpropagating the dis-
crepancy between the actual and target outputs.

3.2 Transforming auto encoders

The transforming auto encoders in the paper are trained to reconstruct a transformed

image from the base image and the transformation matrix, after passing them through a

capsule layer.

In essence the capsules are made to encode inforamtion in the image in a vector.

This vector is used as input to another network which attempts to reconstruct the image.

In effect these auto-encoders are able to achieve some sort of a viewpoint equi-variant

information "compression" of the input. This experiment forms the core idea of the

project, which is to explore how the capsule vectors manage to encode equi-varaint

representations of features.

The auto-encoder demonstrated in the paper is shown in the figure3.1. 1

1Image taken from Transforming Auto-Encoders.[2]
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3.3 Caps-Net

The idea of using capsules in a neural network was finally successfully implemented in

the paper Dynamic Routing between Capsules [4] . This paper describes the use of a

Caps-Net and a routing algorithm between capsule layers, and is able to beat state of

the art performance on the MNIST dataset. The following subsections cover important

aspects of Capsule-Nets in brief.

3.3.1 Primary Capsules

The first layer of capsules also called the primary capsules are derived by reshaping fea-

ture maps extracted from a few convolutional layers as vectors. The first convolutional

layer uses 256 kernels of size 9x9 with stride of 1 to generate the first set of feature

maps. The second layers again uses 256 kernels of 9x9 size and stride 2 to generate 256

6x6 feature maps. These are then reshaped into 8-D vectors leading to a total of 1152

capsules.

3.3.2 Non-Linearity : Squash

The vectors of the these capsules are then passed through the squash function (eqn3.1),

this function squashes the length of large vectors to slightly less than 1 and that of small

vectors towards 0 while keeping their orientation unchanged. The length of a capsule

after passing through the squash function encodes the probability for the existence of

the entity represented by the capsule.

vj =
||sj||2

1 + ||sj||2
sj
||sj||

(3.1)

3.3.3 Secondary Layer

The Secondary layer of capsules is used to predict probability of existence of each

digit, therefore it has a total of 10 16-D capsules and the predicted label is extracted

corresponding to the capsule with the largest length.

14



3.3.4 Prediction Vectors

Each of primary capsules is required to generate a prediction vectors for output of each

of the secondary layer of capsules.These are used to calculate outputs for secondary

capsules.These prediction vectors are obtained by multiplication via a unique and learn-

able 16x8 weight matrix W as shown in the eqn3.2.

uj|i = Wijui (3.2)

3.3.5 Dynamic Routing

Once the prediction vectors are obtained the dynamic routing algorithm is implemented

to generate the prediction vectors for the secondary layer of capsules. figure3.2.

Figure 3.2: Dynamic Routing Algorithm as described in the paper

Once we have the prediction vectors uj|i, we initialize routing weights bij to 0. In

the next step the weights are passed to a softmax(eqn3.3) to give coupling coefficients.

These are multiplied with the prediction vectors and all predictions for a given sec-

ondary capsule are summed to get the output of a secondary capsule. The secondary

capsules are then squashed and the routing weights are updated by adding the dot prod-

uct of the output vector and the prediction vector to the routing weights. This process

is repeated required number of times.

cij =
exp(bij)∑
k exp(bik)

(3.3)
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Figure 3.3: The capsule net model taken from Dynamic Routing between Capsules[4]

3.3.6 Margin Loss

The margin loss for existence of a digit is defined as in eqn 3.4, this loss ensures correct

classification even when multiple digits are present

Lk = Tkmax(0,m+ − ||Vk||)2 + λ(1− Tk)max(m−, ||vk||)2 (3.4)

Where, m+ = 0.9,m− = 0.1,λ = 0.5.

3.3.7 Reconstruction Loss

The output of the capsule network is then sent to a feed forward neural network that

reconstructs the image, the reconstruction loss is defined as the mean squared loss be-

tween the original and reconstructed image. This encourages the capsule to learn mean-

ingful representations of each dimension.

3.3.8 Estimation Loss

In order to encourage the capsule to explicitly learn representations for angle and scale

an estimation loss, computed by the squared error between the parameter value and

the output of a feed forward neural network(which estimates these parameters)was also

added to the total loss.
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3.4 Implementation and Results

All the required functions for generating a generalized capsule network were first coded

in TensorFlow. Then the model described in the paper was replicated on MNIST to

obtain classification accuracy of 99.5%.

The same network was again trained on rotated and scaled images,surprisingly the

network was able to give a very good classification accuracy of 91%. This meant either

of two things, the capsules had learned transformation invariant features or that the

model had sufficient capacity to learn rotated and scaled images.

The accuracies for the Caps-Net on different datasets is shown along with those for

a bench-mark CNN is shown in the table3.1.

Network MNIST Rotated and scaled MNIST

CNN 0.9940 0.8944

Caps-Net 0.9949 0.9099

Caps-Net(est-loss) - 0.9236

Table 3.1: Test results for MNIST and rotated and scaled MNIST on CNN and Caps-
Net,values represent accuracies.

Attempt was made to train several feed forward neural networks on the outputs of

capsule vectors to predict the rotation angle and scale factor. The tolerance for scale

was set at 0.075 and for angle it was set to 27◦. The models did not yield good accu-

racies implying that the capsule by themselves have not learned elegant or continuous

representations for rotation and scale.

The parameter prediction accuracies for different feed forward neural networks are

shown in the table3.2.

Parameter Linear 512x1024 1024x1024

Scale 0.3718 0.5430 0.5464

Theta 0.3796 0.6491 0.6433

Scale&Theta 0.3669 | 0.3774 0.5159 | 0.6224 0.5217 | 0.6149

Table 3.2: Test results for prediction of scale and angle from outputs of Capsule net
using several feed forward neural networks.The Column labels represent size
of hidden layers.
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In order to encourage the capsules to learn better representations for angle and scale

end-to-end models were trained first for estimation of individual parameters and then

later to both angle and scale together. As expected adding estimation loss improves

both the classification accuracy as well as the parameter estimation accuracy. The ac-

curacies for various estimator models along with classification accuracies are shown in

the table3.3.

Parameter Linear 512x1024 1024x1024

Scale 0.7755 0.8156 0.8073

Theta 0.5316 0.7059 0.6972

Scale& Theta 0.7673 | 0.4874 0.8010 | 0.6825 0.7965 | 0.6693

Table 3.3: Test results for prediction of scale and angle for different estimation net ar-
chitectures.The Column labels represent size of hidden layers in the estima-
tor network.

Figure 3.4: The original and reconstructed images of the standard MNIST Dataset
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Figure 3.5: The original and reconstructed images of the rotated and scaled MNIST
Dataset

3.5 Conclusion

Even though training end-to-end models improves the parameter estimation accuracy it

is still not as high as expected. This means even though the capsules are able to learn

about rotation and scale(as evident from reconstructed images figure3.5) it is not in a

linear or a continuous manner.

Another interesting observation is that the capsules are able to provide higher accu-

racies for scaling than for rotation indicating that they are inherently better at learning

representation for scale compared to rotations.

Both scale and angle estimation accuracies saturate around 82% and 72% respec-

tively implying that this must be the limit to the representational capacity of the cap-

sules.

The accuracies of 82%, 72% can also be misleading in a way,because this also in-

cludes cases where the network’s prediction for digit itself was wrong.The classification

accuracy of the model itself was around 92%, when we factor in this into consideration

,we can say that the actual estimation accuracies are higher than those in results.
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CHAPTER 4

Future Work

1. The wt-share harmonic net can be fined tuned in attempt to further improve its
performance.

2. A CNN model whose initial filters perform scale invariant convolution similar to
mellin transformed can be learned and such features could be fed as inputs to the
harmonic nets.

3. Other methods to encourage the capsule to learn invariant representations can be
tried.

4. The capsule net can be trained to predict homo-graphic matrix for MNIST trans-
formed by all general affine transformations.
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