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ABSTRACT

KEYWORDS: ISI, Viterbi, MLSE, Delayed Decision Feedback Sequence Estima-

tion (DDFSE), Channel tracking, Per Survivor Processing

The aim of this project is to study the performance of sequence estimation algorithms

in the presence of dispersive (ISI), time varying and noisy channels. We first look at the

Viterbi algorithm, which is the optimal technique for Maximum Likelihood Sequence

Estimation under the assumption that all the parameters characterizing the channel are

known at the receiver. Due to the very high complexity of the Viterbi algorithm for

channels with a long channel response and because it is inapplicable for channels with

infinite channel response, we look at the Delayed Decision Feedback Sequence Estima-

tion (DDFSE) algorithm. The DDFSE algorithm is a reduced state Viterbi algorithm

with feedback incorporated into the structure of path metric computations. We then

look at one possible realization of the Per Survivor Processing technique - the adaptive

MLSE technique to deal with a time varying Rayleigh fading channel with ISI. In this

we use Least Mean Square (LMS) for the channel tracking in the realization of adap-

tive MLSE decoders. We then extend this application of PSP to an adaptive DDFSE

scenario to reduce computational complexity.
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CHAPTER 1

Introduction

The medium for wireless communications is the radio channel between the transmitter

(Tx) and the receiver (Rx). There can exist a direct Line-of-Sight (LOS) path between

the Tx and the Rx or the signal may reach the Rx by being reflected by different and

possibly moving Interacting Objects (IOs) or it can be a superposition of both. Each

of these multipath components have a different amplitude and delay. Thus, mobile

radio communications have time varying channels, characterized by small-scale fading

effects such as multipath fading leading to Inter Symbol Interference (ISI) in addition

to the presence of AWGN noise.

The cascade of the encoder and transmission channel impulse response (assuming it is

finite) may be described as a finite state machine with associated state diagrams and

trellis diagrams. Data detection approaches can be divided into symbol-by-symbol de-

tection methods and sequence estimation techniques. While symbol-by-symbol detec-

tion methods have very low complexity, they have undesirably high error rates in the

wireless environment. The Viterbi algorithm was initially proposed in 1967 as a method

to decode convolutional codes. Since then, among other applications, it has been a pri-

mary candidate for maximum likelihood sequence estimation. Under the assumption

that the receiver has exact channel state information, the Viterbi algorithm gives the

maximum likelihood solution for signal corrupted with ISI and AWGN by searching

for the path with minimum cost in the trellis diagram.

However with growth in channel length and modulation constellation size, the com-

plexity of the Viterbi algorithm increases exponentially and is not practically imple-

mentable. The algorithm is also not applicable in cases with infinite channel response.

Various methods have been suggested to deal with increasing channel response length.

One of them is the truncation of the channel response. This method leads to last few

components of ISI not being considered and the error propagation is catastrophic. An-

other approach to reduce complexity is to use a LE (Linear Equaliser) or DFE (Decision

Feedback Equaliser) to cancel the tail of ISI part before sending it to the Viterbi algo-

rithm. But pre-filtering still causes significant error propagation and high BER.



To get a better BER performance with reduced complexity, we look at Delayed Decision

Feedback Sequence Estimation (DDFSE). The complexity of the algorithm is varied by

a factor u, which can be varied from 0 to L − 1 (where L is the number of taps in the

channel response) for minimum to maximum complexity respectively. It is based on

a trellis with the number of states exponential in u. When u = 0, it reduces to the

Decision Feedback Equalizer (DFE). If channel memory is finite, at u equal to L− 1, it

is equivalent to the Viterbi algorithm. For intermediate values of u, it can be described

as a reduced state Viterbi algorithm with feedback incorporated in the structure of path

metric calculations.

The above mentioned sequence estimation algorithms are suited for time invariant ISI

channels. In order to deal with fast time varying channels, we look one instance of

the Per Survivor Processing (PSP) principle as the adaptive MLSE. In this particular

realization of PSP, channels are updated independently for each survival trellis path

and the decision feedback is retrieved from each individual trellis path with no decision

feedback delay. We use Least Mean Squares (LMS) method for the per-survivor channel

tracking. The PSP further increases the complexity of the MLSE algorithm and as the

next step we look at applying the PSP principle to DDFSE to reduce complexity and

study the trade-off between complexity and performance.

The remaining of this thesis is organized as follows. Chapter 2 defines the system

model and the notation we use for the remainder of the thesis. Chapter 3 look at the

structure of the Viterbi algorithm and its performance under various values for decoding

delays. Chapter 4 details the DDFSE algorithm and its workings and we compare its

performance to the Viterbi algorithm. Chapter 5 looks at PSP and its realization with

Viterbi and DDFSE and future work in the area.
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CHAPTER 2

System and Channel Models

2.1 System Model

The complex symbols to be transmitted is denoted by the vector s of length N corre-

sponding to symbols transmitted from time 1 to N . The radio channel in a wireless

communication system is often characterized by a multipath propagation model. The

propagation environment is aptly modelled by a few dominant paths (usually 3 to 6).

For Chapters 3 and 4 where we explore the Viterbi and DDFSE algorithm, we assume a

time invariant channel model with only multipath components. The multipath channel

model used here is modelled using the PED-B power delay profile (PDP). The chan-

nel impulse response is denoted by the vector h and has L taps. In Chapter 5 we

look at a time varying Rayleigh channel. The channel response at the time instant k

(1 <= k <= N ) is denoted by the vector hk having L taps and the fading across time

is characterized by Rayleigh fading.

Figure 2.1: Received signal with ISI and AWGN

The discretized received signal at the receiver is denoted by a vector r of length N .

Due to multiple taps being present in the channel response, the received sequence is a

convolution of the transmitted symbols and channel response as shown in Figure 2.1.

The received symbol at kth time instant is given by:

rk =
L−1∑
i=0

sk−ihi + nk (2.1)



where rk is the kth received symbol, sk is the kth transmitted symbol, hi is the ith tap of

channel response and nk is the AWGN noise term, a circular Gaussian random variable

with real and imaginary parts each having variance N0/2.

2.2 Channel models

The channel impulse response used in Chapters 3 and 4 follow the PED-B PDP. The

PED-B channel model is one of the commonly used set of empirical channel models in

the ITU-R recommendation for outdoor-to-indoor pedestrian for medium delay spread

[6]. The relative delay and average power for this channel model is as in Table 2.1.

Tap Relative delay (ns) Average Power (db)

1 0 0
2 200 -0.9
3 800 -4.9
4 1200 -8.0
5 2300 -7.8
6 3700 -23.9

Table 2.1: Caption

In Chapter 5, we look at a channel model with Rayleigh fading. To generate channel

impulse responses with Rayleigh fading, the modified Jakes model [4] is used. The

modified Jakes model employs the use of Walsh-Hadamard matrices (WH) in order

to produce several uncorrelated waveforms. For N0 as a power of 2, the waveform is

generated with N0 + 1 oscillators and the jth fading waveform is generated as:

T (k, j) =

√
2

N0

N0∑
n=0

Aj(n)× ([cos(βn) + jsin(βn)]cos(ωnk + θn)) (2.2)

with N = 4 ∗ N0 rays arriving at angles αn = 2π(n − 0.5)/N such that ray n expe-

riences a Doppler shift of ωn = ωDcos(αn), where ωD is the maximum Doppler shift

corresponding to the Doppler frequency. By using βn = πn/N0, the real and imaginary

parts of the waveform have equal power and are uncorrelated and the variable θn is ran-

domised to give different realisations of the waveforms. The parameter Aj(n) is the jth

WH code sequence in n. The WH codewords are orthogonal vectors and give zero in-

ner product with one another. Thus the Rayleigh fading waveforms generated using this

4



method are uncorrelated. L waveforms are generated for a channel impulse response of

length L and the each tap is multiplied by the corresponding amplitude according to the

required power delay profile.
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CHAPTER 3

MLSE - Viterbi

3.1 Introduction

The Viterbi algorithm [1] operates on the trellis model to provide the optimal maximum

likelihood solution for a data sequence tampered by ISI and AWGN. In the trellis, each

node corresponds to a distinct state at a given time, and each branch represents a tran-

sition to some new state at the next instant of time. Its most important property is that

to every possible state sequence, there exists a unique path through the trellis and vice

versa. If the size of the modulation constellation is M (for example it is 4 for QPSK),

the number of states at each instant of the trellis grows as ML−1 where L is the number

of taps in the channel response. At each instant of time, the algorithm takes decisions

recursively to get the transition from previous state to the next state.

3.2 The Viterbi Algorithm

At each time instant k, the trellis has ML−1 states and the lth state is denoted by the

vector xk of length L− 1 where

xl
k = [x(k − L+ 2), ..., x(k − 1), x(k)] (3.1)

Each element of the state vector xl
k can be an element from the modulation constella-

tion, thus giving a total of ML−1 states. Each of these states store a survivor sequence

and its corresponding cumulative metric upto that point of time. The survivor sequence

of each state consists of the decoded symbols upto that node at each point of time and

the cumulative metric keeps a track of the corresponding error of that survivor sequence

as compared to the received symbols. The inputs to the algorithm are the received vec-

tor r and the channel response vector h. The survivor sequence is updated symbol by

symbol at each time instant from 1 to N by looking at the cumulative metrics of each



of its previous states and branch metrics of the transition from previous state. At time

instant k, each state can be accessed from M previous states at time k − 1. For each

state l, the branch metric from previous state m is calculated as

bmm,l
k−1,k = |r[k]− (

L−1∑
i=1

xmk−1[i]h[L+ 1− i] + xlk[L− 1]h[1])|2 (3.2)

The survivor sequence is chosen according to the least cumulative metric.

3.2.1 Inputs

(a) Received symbol vector r of length N

(b) Channel impulse response h of length L

3.2.2 Storage and initialization

(a) Survivor sequence: Each state stores a survivor sequence. The survivor sequence
of state l is denoted by the vector SPl, a vector of length N and at the end of time
k, each survivor sequence is updated to its kth element.

(b) Metrics: Each state stores a cumulative metric and the cumulative metric of state
l is denoted by CM l. At time 0, all the cumulative metrics are initialized to 0.
The branch metric from state m to l from time k − 1 to k is denoted by bmm,l

k−1,k

and is calculated as mentioned above.

(c) Till time k = 0, the bits transmitted are assumed to be 0

(d) The last L−1 symbols to be transmitted are forced to a known symbol in order to
force the trellis to a single state at the end of the algorithm in order to get a zero
error floor in the presence of no noise or very high SNR.

3.2.3 Steps of the Algorithm

(a) At each time instant k
(a) For each state l from 1...ML−1 (for time instants k from N − L + 2 to N

the number of allowed states decrease as a factor of M as we are forcing
last L − 1 symbols to known bits), find the survivor path and SPl and the
cumulative metric CM l as follows

i. Each state l hasM previous possible states. Calculate the branch metric
from each of the previous states as mentioned above. The previous state
m whose CMm + bmm,l

k−1,k is the least has its survivor sequence chosen
for state l

ii. The survivor sequence of the state l is updated by appending the sur-
vivor sequence of the state m with xlk[L− 1]

7



iii. The CM l is updated as CMm + bmm,l
k−1,k

(b) Since the last L− 1 symbols are forced to known values, the trellis collapses to a
known state. The survivor sequence of this known state is the decoded sequence

3.3 Decoding delay

Certain modifications are necessary while implementing this in practice. For very long

transmitted sequences, it is impractical to wait for the whole sequence to get decoded.

And observing the trellis pattern can reveal that the survivor sequences of all the states

merge after a certain delay. In other words, it is possible to make a decision at time k for

a symbol of index k− δ. In general, if the decoding delay δ is chosen large enough, the

BER performance is not affected much. We look at 3 possible strategies for choosing

the decoded symbol at time k:

(a) Minimum Cumulative Metric (CM): At time k, we choose the (k − δ)th element
of the survivor sequence with the minimum cumulative metric and give that as
the decoded symbol.

(b) Majority rule: At time k, we look at the (k− δ)th elements of all ML−1 survivors
and choose the symbol that is in majority number

(c) Random Selection: At time k, we choose the (k − δ)th element of the survivor
sequence of a random state.

3.4 Simulation Results

We run the Viterbi algorithm for a channel response length of L = 3. The symbols are

QPSK gray coded, thus giving a constellation size of M = 4. The channel response

h follows PED-B power delay profile. The power of the vector h is normalised to 1,

so the symbol energy Es has a mean value of 1. For QPSK modulation, the following

relation holds : Es/N0 = 2 ∗Eb/N0. The simulation is done for range of Eb/N0 from

0dB to 14dB. The plot of BER vs Eb/N0 for the Viterbi algorithm with channel length

L = 3 (without the application of any decoding delay, ie. the decoded sequence is taken

at the end of the algorithm) is given in Figure 3.1

The performance of the Viterbi algorithm under the presence of decoding delays was

also studied. The three methods mentioned in the previous section were implemented.

8



Figure 3.1: BER vs Eb/N0 for L = 3

Figure 3.2: BER vs Eb/N0 for different decoding delays for minimum CM method

The BER curves for decoding delays of δ = 6L, δ = 3L and δ = L against Eb/N0

for minimum cumulative metric method is as shown in Figure 3.2 along with the ideal

BER curve (decoded signal taken after end of the algorithm). The BER curves for the

same decoding delay values for the majority rule method is as shown in Figure 3.3. The

performance for the random selection method is as in Figure 3.4.

The performance for δ = 6L almost matches the performance of the ideal Viterbi algo-

rithm for all three methods. Hence using a decoding delay of 6L (18 symbols in this

case) or even 5L (15 symbols) can give very good BER values.

As decoding delay decreases, the performance in all three methods deteriorate. How-

ever the deterioration as we move to δ = 3L and δ = L (9 and 3 symbols respectively)

in the minimum CM method is much lesser than in the majority rule method or the ran-

dom selection method. The random selection method performs the worst as we move to

lower values of decoding delays. Thus, in cases where lower values of decoding delays

are required, the minimum CM is the best way to go.

9



Figure 3.3: BER vs Eb/N0 for different decoding delays for majority rule method

Figure 3.4: BER vs Eb/N0 for different decoding delays for random selection method

10



CHAPTER 4

Delayed Decision Feedback Sequence Estimation

4.1 Introduction

The DDFSE algorithm [2] is a method to reduce the complexity of the Viterbi algorithm

with some trade off on the performance. The complexity of the algorithm is controlled

by a factor u which can be varied from 0 to L − 1 where L is the number of taps in

the channel response. The parameter u serves as a way to define the tradeoff between

complexity and performance of the algorithm. As in the Viterbi algorithm, at each step,

the states describe all possible values taken on by a finite number u of previous inputs.

While the parameter u is at its minimum value of 0, the DDFSE algorithm is equivalent

to a simple decision feedback equaliser and when u is L − 1, it is equivalent to the

Viterbi algorithm.

4.2 U-V decomposition of the channel

The discrete channel impulse response is assumed to have L taps. This discrete time

channel is specified by a causal, rational transfer function H(D) =
∑L−1

i=0 hiD
−i, as-

suming the channel impulse response is finite. The state machine defined using this

transfer function gives a state space S where |S| = ML−1, since L − 1 is the degree

of H(D). The state space S can be decomposed into U×V where |U| = Mu and

u serves as the reduced memory of the channel. The decomposition is obtained by

representing the transfer function as

H(D) = Hu(D) +Du+1H+(D) (4.1)

where Hu(D) =
∑u

i=0 hiD
i and H+(D) =

∑L−1
i=u+1 hiD

i−u−1.



Defining wk as

wk =
L−u−2∑
i=0

hi+u+1sk−i (4.2)

we can define the received sequence as a result of ISI and AWGN as

rk =
u∑

i=0

hisk−i + wk−u−1 + nk (4.3)

Thus the state of the system at time k can be divided into a reduced state uk =

[xk−u+1, ...xk] and partial state vk = [xk−L+2, ...xk−u]. The reduced state is used to

build the trellis and the partial state is estimated at each time for every state to be used

in the branch metric computations. The partial state vk+1 at time k + 1 is a function of

uk and vk.

4.3 The DDFSE Algorithm

The DDFSE has a trellis with reduced number of states. The number of states in the

trellis is Mu where M is the constellation size and u is the complexity parameter. The

reduced states form the trellis as the complete state space did in the Viterbi algorithm.

The algorithm proceeds the same as in the Viterbi algorithm with the updation of sur-

vivor sequence and cumulative metric using the reduced states and the branch metric

from state m at time k − 1 to state l at time k is calculated as

bmm,l
k−1,k = |r[k]− (

u∑
i=0

umk−1[i]h[u+ 1− i] + ulk[u]h[1] + wk−u−1)|2 (4.4)

where wk−u−1 is calculated using the estimated partial state vk−1 at time k − 1.

As in the Viterbi algorithm, the last u − 1 symbols of the transmitted signal are forced

to known values in order to force the trellis to a known state at the end of the algo-

rithm. The storage required for survivor sequences and cumulative metrics also reduce

drastically with reduction in the parameter u. Mu survivor sequences of length N and

cumulative metrics corresponding to the same are stored.

For each time instant k, the survivor sequence and the cumulative metric for each state

l from 1...Mu are updated as follows:

12



(a) Each state l has M previous states. The branch metrics bmm,l
k−1,k for all possible

previous states are calculated (this would involve the partial states stored in the
previous states). The previous state m with the least CMm + bmm,l

k−1,k has its
survivor metric chosen for state l

(b) The survivor sequence of state l is updated by appending the survivor sequence
of state m with ulk[L− 1]

(c) The CM l is updated as CMm + bmm,l
k−1,k

(d) The partial state is chosen as a function of the previous states of m with the
minimum branch metric. The estimate vlk is a function of umk−1 and vmk−1.

Thus in this manner, the DDFSE algorithm combines the Viterbi algorithm and the

Decision Feedback Equaliser. The estimate of the partial state is what stores the feed-

back information extracted from the best path. By analogy with the Decision Feedback

Equaliser, this feedback is used to cancel interference from past inputs greater than u

samples in the past. With u = 0, this reduces to only the DFE.

4.4 Simulation Results

We run the DDFSE algorithm for a channel response length of L = 5 which follows the

PED-B profile. QPSK gray coded modulation is followed giving M = 4. The DDFSE

is simulated for values of u = 4 (full Viterbi realisation), u = 3 and u = 2. The BER

performance for Eb/N0 in the range 0dB to 14dB can be seen in Figure 4.1

Figure 4.1: BER performance of DDFSE for different values of u and L = 3

The complexity of the algorithm reduces drastically from u = 4 as 44 to u = 3 as 43 to

u = 2 as 42 and this reflects in the drastic reduction in computation time required. How-

13



ever, the reduction in performance is not as drastic in terms of the BER performance of

the algorithm.

Thus, the DDFSE gives a viable alternative for the Viterbi algorithm to get a good

BER performance while also reducing the complexity for channels with large impulse

responses. By altering the definition of the transfer function U-V decomposition and

thus subsequently the definition of the partial state vk, this algorithm can also be applied

to channel impulse responses with infinite length.

14



CHAPTER 5

Per Survivor Processing

5.1 Motivation

The Viterbi algorithm and the reduced complexity approximations to the Viterbi algo-

rithm give the optimal performance in the case that the channel parameters are exactly

known. However in many practical communication systems, these channel parameters

may not be known and needs to be decoded along with the data sequence or even with

good initial channel estimates, the channel parameters may be varying due to a fast

fading environment which is the case in many wireless environments. Thus, data aided

channel tracking is a favourable option for such channels. The Per Survivor Process-

ing [3] principle encompasses a variety of techniques that provide a general framework

for using the code or survivor sequence associated with each state in the trellis as the

data-aiding sequence for the per-survivor estimate of the unknown channel parameters.

Thus each state in the trellis, along with a survivor sequence, also has its own channel

estimate.

The intuitive rationale behind this method is that since the channel estimates at a par-

ticular time are not known exactly, we calculate the transition metrics based on esti-

mates of the channel parameters which is based on the survivor data sequence leading

to that transition. Thus, if a particular survivor sequence is right, the channel estimates

corresponding to that particular survivor sequence is evaluated using the correct data

sequence. Thus at each point of time, since we don’t know which survivor is correct,

we extend each survivor based on estimates obtained using its associated date sequence.

By proceeding to update the channel estimates of each survivor in this manner, the best

survivors are extended using the best data sequence available.

Uncertainties in sequence estimation are usually due to imperfect knowledge of some

channel parameters such as carrier phase or timing epoch or the impulse response itself.

PSP [3] provides a common and unifying approach to deal with all these cases. An

appealing aspect of PSP is that the per-survivor channel parameters estimator associated



with the best survivor is derived from data information that can be perceived as high

quality and with zero-delay, making it appealing for fast fading channels. Also since

many possible data sequences are considered, the estimation of channel parameters

without a training sequence works better.

In this chapter we look at two instances of the application of PSP principles. The

first is adaptive MLSE. In this, the Viterbi algorithm is carried out normally, with each

survivor state having a channel estimate, updated through the LMS algorithm aided by

previous data sequences. The second is adaptive DDFSE. To reduce the complexity

and the memory required to store the channel response estimates, we apply the channel

updation principles of PSP to DDFSE.

5.2 Adaptive MLSE

The steps in the algorithm for adaptive MLSE are essentially the same as in the Viterbi

algorithm, except for a small change that at each instant of time k, the channel impulse

response used for calculation of the metrics is no longer a constant vector h, but a vector

specific to that state and the estimate at the previous instant, denoted by hl
k−1. Thus the

computation of the branch metric from previous state m to state l, from time instant

k − 1 to k is now calculated as

bmm,l
k−1,k = |r[k]− (

L∑
i=1

xmk−1[i]h
l
k−1[L+ 1− i] + xlk[L− 1]hlk−1[1])|2 (5.1)

The input to the algorithm is now an initial estimate of the channel response. The

storage also consists of the channel response for each state in the trellis and is updated

at each instant of time. The channel response at time k for state l is denoted by hl
k−1

which is a vector of length L. At k = 0 the channel response for all states are initialised

to the initial channel estimate and thus at k = 1 the initial channel estimates are used

for computation of metrics.

At each instant k, for each state l, after the survivor sequence and the cumulative metrics

are updated according to the previous state m having the minimum CMm + bmm,l
k−1,k,

the channel response of state l is updated according the previous channel estimate of

state m and the survivor data sequence of l. The updation step goes as follows:
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hl
k = hm

k−1 + β ∗ err ∗ ak (5.2)

where err is defined as

err = r[k]− (
L∑
i=1

xmk−1[i]h
l
k−1[L+ 1− i] + xlk[L− 1]hlk−1[1]) (5.3)

and ak is a vector of length L and is derived from the survivor sequence of state l, SPl

as

ak = [SP l[k], SP l[k − 1], ..., SP l[k − L+ 1]] (5.4)

and β is chosen as a tradeoff between the tracking capability and excess Mean Square

Error (MSE) as in the traditional LMS algorithm.

5.3 Adaptive DDFSE

The complexity of the Viterbi algorithm increases exponentially with increase in chan-

nel length and constellation size. And with the introduction of PSP principles, the

memory required and the complexity increases further. Thus, we move to the DDFSE

approach and introduce channel tracking as in adaptive MLSE to deal with the fast

fading channel.

The U-V decomposition of the channel described in the DDFSE algorithm is applied to

the channel estimate of each state. As in the DDFSE algorithm, the number of states in

the trellis is Mu where M is the constellation size and u is the complexity parameter.

The input to the algorithm is an initial estimate of the channel response. The channel

response at time k for state l is denoted by hl
k−1 which is a vector of length L. At

k = 0 the channel response for all states are initialised to the initial channel estimate

and thus at k = 1 the initial channel estimates are used for computation of metrics. The

estimation of the partial states vk is carried out the same way as in DDFSE.

The branch metric from state m at time k − 1 to state l at time k is calculated using the

previous channel estimate of state l as:
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bmm,l
k−1,k = |r[k]− (

u∑
i=0

umk−1[i]h
l
k−1[u+ 1− i] + ulk[u]h

l
k−1[1] + wk−u−1)|2 (5.5)

where wk is defined as :

wk =
L−u−2∑
i=0

hlk−1[i+ u+ 2]s[k − i] (5.6)

At each instant k, for each state l (from 1 to Mu) the survivor sequence, the cumulative

metrics and the partial states are updated according to the previous state m having the

minimum CMm + bmm,l
k−1,k using the branch metric calculation in Equation (5.6). The

channel response of state l is updated according the previous channel estimate of state

m and the survivor data sequence of l. It is carried out as:

hl
k = hm

k−1 + β ∗ err ∗ ak (5.7)

where err is calculates as:

err = r[k]− (
u∑

i=0

umk−1[i]h
l
k−1[u+ 1− i] + ulk[u]h

l
k−1[1] + wk−u−1) (5.8)

and β and the vector ak are calculated as in adaptive MLSE.

5.4 Simulation Results

The simulation results are for a channel model with impulse response length L = 3.

The channel impulse response varies over time with Rayleigh fading. The Rayleigh

fading model is generated according to the modified Jakes model and the power delay

profile used is the PED-B profile according to ITU-R specifications. The Doppler fre-

quency used for Jakes model is 150 Hz. Modulation used is QPSK, giving M = 4. All

simulations are done for a range of Eb/N0 from 2dB to 12dB.

The optimum performance is obtained when the algorithm at every time instant knows

the exact channel response. That is referred to as the ’known channel response’ perfor-
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mance in the BER curves. The adaptive MLSE simulation has a full Viterbi realization.

It can also be seen as DDFSE with u = L − 1 (u = 2 in this case). The adaptive

DDFSE for u = 1 is also carried out. The BER vs Eb/N0 curves for all the three

methods mentioned above are as shown in Figure 5.1.

Figure 5.1: BER curves for Viterbi with exact channel estimates known at each instant
(blue), adaptive MLSE (red) and adaptive DDFSE with u=1 (green)

The performance of adaptive MLSE matches closely with that of the performance with

known channel estimates. There is a degradation of only a fraction of a dB for the

adaptive MLSE. As we move to adaptive DDFSE with u = 1, that is reduction of one in

the complexity parameter, the degradation is about 2dB. As we move to higher Doppler

frequencies, the degradation in both adaptive MLSE and adaptive DDFSE worsen due

to the nature of the fast fading channels.

5.5 Future work

All the algorithms mentioned above have been studied in a symbol-spaced (T spaced)

scenario. In future work, we plan to study the performance of these channel tracking

sequence estimation algorithms in a T/2 spaced scenario.
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