Dynamove: Improving Driver Productivity with

Advanced Driver Assistance Systems for Trucking Fleets

A Project Report

submitted by

ROHAN GURUNANDAN RAO

in partial fulfilment of the requirements

for the award of the degree of

DUAL DEGREE (BACHELOR AND MASTER OF TECHNOLOGY)

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

MAY 2019

THESIS CERTIFICATE

This is to certify that the thesis titled Dynamove: Improving Driver Productivity
with Advanced Driver Assistance Systems for Trucking Fleets, submitted by Rohan
Gurunandan Rao, to the Indian Institute of Technology, Madras, for the award of the
degree of Dual Degree (B.Tech and M.Tech), is a bona fide record of the research
work done by him under our supervision. The contents of this thesis, in full or in parts,
have not been submitted to any other Institute or University for the award of any degree

or diploma.

Radha Krishna Ganti
Research Guide
Associate Professor

Dept. of Electrical Engineering
II'T-Madras, 600 036

Place: Chennai

Date: 10th May 2019

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor Prof. Radha Krishna Ganti
for the continuous support during my Dual Degree study, as well as for providing mo-
tivation and encouragement for pursuing this as a startup, and also for his patience and
immense knowledge. His guidance helped me throughout my project and writing of
this thesis. I could not have imagined having a better advisor and mentor for my Dual

Degree study.

I am also grateful to my team, a continously varying team of students who worked
with me on this idea, and in particular, the core team consisting of Abhijit, Raj, Aditya
and Arjun, who provided a host of ideas to develop this further. I am also fortunate
to have had the opportunity to discuss with experts in the field of transportation, from
people ranging from the Govt. of India’s Niti Aayog, to large companies including
Waymo, Velodyne, NVIDIA, Intel, Tata Motors and Bosch, to startups like PIX Moving
(China), Zoox (USA), Autoware (Japan) and accelerators like Y Combinator (USA) and

Axilor Ventures (India).

I would like to thank IIT Madras for providing me outstanding education and the
best professors, and for providing the resources and funding for trying to take this
project further in the form of a startup. In particular, the Nirmaan pre-incubation pro-
gram was of great help, apart from research funding I received as part of this project.
Last but not the least, I would like to thank my family and my friends for providing

emotional support during this challenge.

ABSTRACT

KEYWORDS: traffic; telematics; computer vision; FPGA; ARM; GAN

India unfortunately has one of the highest road accident rates in the world, at nearly
150,000 people killed every year, and many more injured. Cities like Bangalore and
Mumbai are also notorious for their horrible traffic, leading to enormous loss of pro-
ductivity as well as fuel. To solve these problems, we conceptualized, designed and
developed a product and deployed it into various small and mid-sized Indian trucking
fleets operating in Bangalore, Chennai and Mumbai. A brief description of the product

is described below.

Dynamove is an intelligent transportation startup that is building retrofittable driver
assistance and vision-based telematics systems, with a special focus on issues and con-
straints faced in emerging markets such as India. Our product consists of an Al-enabled
dual camera device and an in-vehicle telematics module which makes road vehicles
safer, smarter, connected, and more reliable. Through a host of sensors driven by
cutting-edge artificial intelligence, computer vision, and behavioural modelling, our
plug-and-play module helps drivers stay alert and focused, and help them drive better
by coaching them based on their driving. These help in reducing fuel, maintenance, and

pilferage losses while making journeys safer and drivers better.

Development of this product required a lot of iterations and pivoting, as we met
different key stakeholders through events and competitions, and understood the market
better. This report covers work on software defined radio communication with FPGAs,
computer vision accelerators on FPGAs, autonomous car perception software develop-
ment, deep learning optimization for ARM chips with binarization, image enhancement
methods for cameras using generative adversarial networks (GANs), semantic segmen-
tation for Indian road scenes, and algorithms for measuring driver alertness, distraction

and productivity.

il

TABLE OF CONTENTS

ACKNOWLEDGEMENTS| i
ABSTRACT ii
LIST OF FIGURES! vi
ABBREVIATIONS vii
I Introduction| 1
re Defined Radio on an FPGA| 3

2.1 The FM Radio Protocoll 4
[2.2 The algorithm for FM Demodulation| 5
(2.3 Obtain IQ Samples from the RTL-SDR|. 5
2.4 Plot the PSD of the received signal| 6
2.5 Shift and dectmate signal|fo 7
[2.6 Unwrap angle and differentiate in time to get phase] 8
2.7 Real-time FM processing| 8

3 Computer Vision Algorithms on an FPGA| 9
[3.1 Grayscale Conversion| 10

4 Detecting drowsiness, distraction and drunkenness with computer vision| 12

4.1 Face Detection| 12
.2 Facial Feature Tracking| 0. 13
“.3 Head Pose Orientation Estimation| 13
4.4 Blink Detection with Eye Tracking 13
4.5 Gaze Tracking using Region Based Thresholding| 14
IS Object Detection Algorithms on Embedded Devices| 15

(6 Building Perception Systems for Fully Autonomous Cars| 21

il

[6.1 Move-It Hackathon, March 2018| 21
[6.2 DIY Robocars KuaiKai, May 2018} 23
[/ Image Enhancement methods for Camera Systems| 29
8 Generating and training on Indian datasets| 31
[9 The final product: An Alerting and Monitoring System to Improve Driver |
[Productivity| 37
9.1 Overall System Design Patenf 38
9.2 Road Facing Camera Patent|. 39
[9.3 Spatiotemporal Deblurring Patenty 0. 39
[9.4 Driver Facing Camera Patent| 39
0.5 Web Architecturelo 40

LIST OF FIGURES

2.1 An illustration of the architecture of the RTT.-SDRJ 3
[2.2 The SDR# software for Windows that can capture and demodulate 1n- |
coming RF signals and display/play the FM radio on a computer,| . . 4

[2.3 The set of steps involved in demodulating the FM Radio signal in Python.|
[2.4 Power spectral density of an FM signal around 97.4 MHZ7| 7
[2.5 The central frequency lobe for the FM radio signal| 7
[3.1 The software architecture of the PYNQ-Z1 FPGA| 9
[3.2 'The base overlay for the PYNQ-Z1 with AXI, HDMI and peripherals| 10
.1 Detecting drowsiness after auto-calibration| 14
4.2 Tracking facial features, head pose, eye gaze and pupil dilation, to de- |
L tectdrowsiness and drunkenness| 14
.3 Different device orientations/positions and with varying amounts of vi- |
bration, on India’sroads| 14
[5.1 TImage Classification, Object Detection (single object), Object Detec- |
tion (multiple objects) and Instance Segmentation| 15
[5.2 Object Detection, Semantic Segmentation and Instance Segmentation| 16
[5.3 The Jetson Tegra SoC block diagram with integrated NVIDIA Pascal |
GPU, NVIDIA Denver 2 + ARM Cortex-AS57 CPU clusters, and multi- |
media acceleration engines| 17
[5.4 End-to-end Al Pipeline including sensor acquisition, processing, com- |
| mandand controll Lo 17
[5.5 Performing a convolution of binary mput and binary weights using an |
XNOR-bitcount operation| 19
[6.1 Autoware Software Stack: Sensing, Computing and Actuation| . . . 21
[6.2 The Velodyne LIDAR Ultra Puck (VLP-32C), with 32 channels| 22
6.3 Data collection for the Chinese Police Gesture Datasett 23
[6.4 Start grnid detection algorithm|.00, 24
[6.5 Processed grid detection output{. 25
[6.6 Sign detection algorithm| 25

[6.7 Object detection for pedestrians and cars| 26
[6.8 Redundancy for the different vision tasks| 27
[6.9 Car following algorithm using size of bounding box and tracking| . . 27
6.10 Camerat+l IDARonthefront 28
611 Theinsider viewl.o oo i i 28
[6.12 Navigatingthe S-Bend| 28
(/.1 ~Sample Deblurred Images. Arranged from left to right as blurred, de- |

blurred and ground truth.| o000 30
[8.1 ~AutoNUE Data Acquisition Setup| 31
[8.2 L to R: example 1mage, prediction with pretrained model, prediction |

after training on this dataset, ground truth| 32
(8.3 OutputImage 1| 33
(8.4 OutputImage?2| 33
(8.5 OutputImage3| 34
[8.6 Example 1: Input US/Europe road -> Al Generated Indian Road| . . 34
(8.7 Example 2: Input US/Europe road -> Al Generated Indian Road| . . 35
(8.8 Example 3: Input US/Europe road -> Al Generated Indian Road| . . 35
(8.9 Example 4: Input US/Europe road -> Al Generated Indian Road| . . 36
[9.1 The first prototype of the device| 37
9.2 Overall System Design| 38
[9.3 Road-Facing Camera ADAS Design| 39
(9.4 Driver Behaviour Monitoring System Design| 40
0.5 A Web-Based Fleet Dashboard 41

vi

ABBREVIATIONS

FPGA Field Programmable Gate Array
SDR Software Defined Radio

HLS High Level Synthesis

GAN Generative Adversarial Network
CNN Convolutional Neural Network
GPU Graphics Processing Unit

NPU Neural Processing Unit

Vv2X Vehicle to Everything

ADAS Advanced Driver Assistance Systems

vii

CHAPTER 1

Introduction

This project began around May 2017. Flipkart, one of India’s largest e-commerce
companies, which was recently acquired by Walmart, conducted a |Gridlock (2019)
Hackathon as part of their 10th Anniversary Celebrations. They were interested in

solutions to ease or eliminate Bangalore’s horrible traffic.

I found a team of 5 others who were interested in participating in this competition,
and we started discussing ideas under the team name |Dynamove| (2019). I came up
with the name as an amalgamation of the words dyna and move, since I was interested

in using reconfigurable hardware (FPGAs) for improving mobility.

The initial idea was to build Vehicle to Everything (V2X) systems using Software
Defined Radio (SDRs) for FPGAs. Since they would be reconfigurable, we could
change the frequency and support various protocols, and enabling vehicles to com-
municate with each other at traffic intersections and on highways was proven to reduce

stop-and-go traffic significantly.

Within a few weeks, we expanded the V2X idea to include Advanced Driver Assis-
tance Systems (ADAS) on FPGAs. This ADAS would include V2X features too, and
everything would run on the same FPGA. The first steps were to implement basic 1Q
modulation and demodulation using an off-the-shelf SDR, in parallel with some image

processing (like lane detection) on the same FPGA board.

As I had prior experience with the Xilinx Zynq series FPGAs, and since they also
had ADAS as one of the suggested applications, I decided to go ahead with them. We
chose to use the Digilent PYNQ-Z1| (2019) for our testing, which was available at a
student discount of $65 and had a Zynq ZC7020 processor on-board. It also had sup-
port for an operating system that would allow me to access FPGA overlays via Python
functions. They provided a base overlay with access to all major peripherals, and it was

possible to modify this to add custom accelerators or blocks into the design.

We were also looking into building a Software Defined Radio by using open source

projects like the [HackRE (2019). We ordered high bandwidth ADCs and DACs, FP-
GAs, and began designing a PCB. We also wanted to build a full infotainment system
by integrating this with an augmented reality heads-up display (ARHUD). We subse-
quently decided to go ahead with the Analog Devices |AD9361| (2019) RF front-end
that would connect to the FPGA via an FMC connector and handle the RF waveform
acquisition, allowing the FPGA to perform the processing. For testing, we also used the
RTL-SDR| (2019) USB based module that had limited range and bandwidth, but was
good for prototyping.

In short, this project began as a result of an interest in FPGAs, and the expectation
that we could integrate every aspect of intelligent transportation onto a single FPGA
with some peripherals, including all features of Advanced Driver Assistance Systems
(ADAS), Vehicle to Everything (V2X) Communication, an Augmented Reality Heads

Up Display (ARHUD) and even a predictive maintenance/fuel optimization feature.

Endless iteration and prototyping, as well as discussion with key stakeholders over
the next two years, led us to refine our original idea, while also being awarded special
mentions, awards and accolades at a number of national and international events. These
included Flipkart’s (Gridlockl (2019) Hackathon, the Rajasthan (2017) Hackathon 2.0,
Shaastra’s Startup Wars, KPIT Sparkle|(2018), the India Innovation Growth Programme
2.0, two autonomous car competitions in China, the European Conference for Computer
Vision, Niti Aayog’s MOVEHack (2018)), and the |Pioneer (2018) Fellowship. We also
published 2 papers at the DSP| (2018) in Vehicles conference at Nagoya University in

Japan and filed 4 patents as part of this work.

CHAPTER 2

Software Defined Radio on an FPGA

The RTL-SDR|(2019) is a very cheap $25 USB dongle that can be used as a computer-
based radio scanner for receiving live radio signals within a limited area. Most of
the software and drivers required for demodulation are open source and available free
of cost. The device has a frequency range of 50 MHz to 2.2 GHz, and a maximum
sampling rate of 3.2 MSPS. It has a programmable RF down-converter, and so can be

used as a wide band radio scanner, and also receive/play a limited set of signals.

The architecture of the device is illustrated below. As described above, it has a wide
band programmable RF front-end, which can capture a bandwidth of around 3.2MHz,
convert it into a digital signal, and transfer the raw data via USB to a PC for further

processing.

us6

= -To/ Fnu-n

RFS;.? -m Coatre e P Drwuonn

l Te R§20T

Figure 2.1: An illustration of the architecture of the RTL-SDR.

The following figure is a free software + driver toolkit called SDR# for Windows
that provides a GUI and functionality to use the RTL-SDR module for scanning the

frequency range, and playing AM/FM radio.

All the demodulation and processing of the raw I-Q samples is being performed on
the computer itself, and then routed to the audio devices. A number of different features

are included in the software, including an FFT, recording, noise reduction, and more.

Bl soReuI 001491 - ATL-SOR (USE] = =

— |
=S H0 U 97.400.000 «»
¥ Source: RTL-SDR (USE) : COMRCIAL - 8203 - Em casa, no carro, em tods o Tado Zoo
RTL-SDR (S T J
+ NFI AW vLse use
@ WEM 08 Cif O RAW)
Shift [§] Contrast
Filter Blackmar-Hamiz 4 X
Benduich Oirder
] 200001 501 |
O Bhift
FM Staren 7] Step Sme
| =1
Srap o Grid (] [100 kHe = Fenge

Correct I |
Swap | &0 [T

Audio

Rer

FFT Display

Audic Noise Reduction

1F Noke Reduction =

Basehand Moise Banker *

Otfeat

[3
[3
[3
»
-
[3
>
(S

¥

Figure 2.2: The SDR# software for Windows that can capture and demodulate incoming
RF signals and display/play the FM radio on a computer.

2.1 The FM Radio Protocol

In Frequency Modulation (FM), the message signal is encoded in the instantaneous

frequency of the carrier waveform. This takes on the following form:

s(t) = Acos[27T/ fe+ fam(7)dr))]
o t @.1)
= Acos[2 fot + 27 fa / m(7)dr]

—00

Thus, for the baseband signal s;(¢), the magnitude is constant, but the phase carries

information.

: (2.2)

And so, differentiation of the unwrapped phase of the signal will give us the message

signal that is being transmitted.

= 2 fam(t) 2.3)

2.2 The algorithm for FM Demodulation

We wanted to implement the same basic functionality in Python, then in C, so that
the computationally intensive portions could be transferred to the FPGA fabric and
accelerated there. Once the RTL-SDR driver and Python library were installed, the FM

demodulation algorithm involved the following steps.

[Obtain1Q)

Samples PG e Shift (if Unwrap
(OV'CFE;m;l PSD of reqd.) and angle arid
pled) from received then = /fd-l
| »T1-<DR | signal decimate)
Y= =

Figure 2.3: The set of steps involved in demodulating the FM Radio signal in Python.

2.3 Obtain IQ Samples from the RTL-SDR

In 2008, Eric Fry (Osmocom! (2018))) wrote software and libraries that could convert a
TV tuner chip like the one inside the RTL-SDR, into a software defined radio. Compil-
ing and installing the required libraries in Linux allows accessing the raw I-Q samples

via Python as follows.

from rtlsdr import RtlSdr

from contextlib import closing

#we use a context manager that automatically calls .close()
#on sdr whether the code block finished successfully

#or an error occurs

#initializing an Rt1lSdr instance automatically calls open ()

with closing (RtlSdr()) as sdr:

sdr.sample_rate = sample_rate = 2400000

sdr.center_freqg = 97.4e6
sdr.gain = 20
ig _samples = sdr.read_samples (l0xsample_rate)

2.4 Plot the PSD of the received signal

Once the raw I-Q samples have been obtained as described in the code snippet above,
the power spectral density (PSD) can be plotted to ensure that there is a radio channel

in that frequency band.

from scipy import signal
from scipy.fftpack import fftshift

import matplotlib.pyplot as plt

#computer Welch estimate without detrending
f, Pxx = signal.welch(iq_samples, sample_rate, detrend=lambda
X: X)

f, Pxx = fftshift(f), fftshift (Pxx)

plt.semilogy (f/1le3, Pxx)
plt.xlabel ("f [kHz]")
plt.ylabel ("PSD [Power/Hz]")

plt.grid()

plt.xticks (np.linspace (-sample_rate/2e3, sample_rate/2e3, 7))

plt.xlim(-sample_rate/2e3, sample_rate/2e3)

PSD [PowenHz]

-1200 -800 -400 o 400 800 1200
f [kHz]

Figure 2.4: Power spectral density of an FM signal around 97.4 MHz

2.5 Shift and decimate signal

PSD [Power/Hz]

-120 —80 —40 [1] 40 80 120
f [kHz]

Figure 2.5: The central frequency lobe for the FM radio signal

2.6 Unwrap angle and differentiate in time to get phase

angle_commercial = np.unwrap (np.angle(igq_commercial))

demodulated_commercial = np.diff (angle_commercial)

2.7 Real-time FM processing

The code described in the sections above was reading a 10 second stream into a buffer
into memory, and then performing the processing. Doing this in real-time would require
an asynchronous streaming read function, which was available in the rtlsdr library. Hav-
ing obtained the samples, the most intensive part of the processing was to differentiate
the unwrapped phase of the baseband signal to obtain the message. This was the part
implemented on the FPGA in the form of an accelerator, and then Python functions
were implemented to access the memory locations to send data, initiate the processing,

and receive the output.

CHAPTER 3

Computer Vision Algorithms on an FPGA

For the purpose of optimizing different ADAS algorithms to run on a low-cost embed-
ded system, we tried to implement software based computer vision algorithms on the

FPGA fabric. We used the PYNQ-Z1| (2019) FPGA board, from Digilent, for which

Xilinx provided a Python-based overlay with an architecture as described below:

Python

Linux Drivers
(JupyterNB)

uBoot and Linux

ARM SoC | FPGA

Figure 3.1: The software architecture of the PYNQ-Z1 FPGA

The ARM dual-core processor is coupled with FPGA fabric on the Xilinx Zynq
series SoCs. The FPGA is connected to various peripherals, including the HDMI, the
memory, and high speed interfaces like PCIE. The CPU is connected to the fixed pe-
ripherals like USB, I2C and Ethernet. The CPU runs a Linux kernel with uBoot, and
there are drivers that connect from the CPU to the FPGA fabric. The OS runs a Jupyter
Notebook where we can write high-level Python code to interface with accelerators on

the FPGA.

The FPGA base overlay (below) has a set of basic IP blocks that are designed so
that the FPGA can be used with basic GPIO and peripheral usage functionality straight
out of the box. This base overlay can be modified to include additional accelerators into

any of the paths.

Figure 3.2: The base overlay for the PYNQ-Z1 with AXI, HDMI and peripherals

3.1 Grayscale Conversion

Running grayscale conversion is a necessary stage of any edge detection, thresholding,
or corner detection pipeline. All of these operate on gradients, which can only be calcu-
lated with a single channel of colour. The code below implements grayscale conversion

naively in software, using a nested-for-loop. This takes nearly 50 seconds per frame!

for y in range (0, height):
for x in range (0, width):
offset = 3 * (y * MAX_FRAME _WIDTH + x)
gray = round((0.299xframe_i[offset+2]) + \
(0.587«frame_i[offset+0]) + \
(0.114xframe_1i[offset+1]))

frame_iloffset:offset+3] = gray,gray,gray

Running this same grayscale conversion on the board using OpenCV compiled onto
the CPU using the NEON Floating Point Unit (FPU) on the ARM processor and other
optimization directives, provides a simple method for Canny edge detection as follows.
This has a latency of 1 second per frame. Much faster, but still not nearly real-time for

ADAS applications.

10

import cv2

frame-canny = cv2.Canny (np-frame,100,110)

Using the Xilinx Vivado HLS Suite, I was able to add the Sobel Edge detection
accelerator into the HDMI pipeline of the PYNQ. This utilized the FPGA adequately
and was able to run with a latency below 15ms on a 1920x1080 size image, meaning it

could run faster than 60fps on a full HD video stream.

The compute requirements for 1920 x 1080 x 60fps is equivalent to that required
for 12 cameras of size 640 x 480 running at 30fps. This is important for ADAS as it
proves that we can place cameras all around the vehicle and process multiple streams

simultaneously.

Similarly I was also able to implement the FASTX Corner Detection algorithm and

place the accelerator into a similar pipeline to run the full HD stream in real-time.

Having implemented these basic functionalities, I wanted to add the feature to de-
tect different obstacles on the roads, which required object detection algorithms to be
optimized to run on a resource-constrained and memory bandwidth limited device like
an FPGA. This involves algorithms like YOLO and Mobilenet SSD, along with various

types of optimization.

But before I implemented those, I decided to focus on the driver side camera, and

try to implement algorithms to detect his state of alertness.

11

CHAPTER 4

Detecting drowsiness, distraction and drunkenness with

computer vision

In Winter 2017, I worked on building computer vision algorithms to monitor a person’s
face and identify if he is distracted, drowsy, or drunk. This requires the following set of

steps, which are detailed in the sections below:

e Face Detection
e Facial Feature Tracking

e Head Pose Orientation Estimation

Blink Detection with Eye Tracking

Gaze Tracking using Region Based Thresholding

4.1 Face Detection

For face detection, there are three major methods for detecting faces in an image, which
tradeoff speed for accuracy. The fastest, but least accurate, is the Haar Cascade based
face detector introduced by Viola and Jones| (2001). The second method is more accu-
rate but slower, and uses Histogram of Oriented Gradients (HOG) features and a linear
Support Vector Machine (SVM) as the classifier. Finally, the most accurate method in
recent times has been the Convolutional Neural Network (CNN) based models, which
take an image as input and return the bounding boxes for all faces in the image. These
run the slowest, especially without hardware like GPUs. Fortunately, most of this func-
tionality is included either in the OpenCV library, or in the dlib (King (2009)) library
written by Davis King. So we did not need to implement it ourselves, only had to

tradeoff the different methods.

4.2 Facial Feature Tracking

In the Computer Vision and Pattern Recognition (CVPR) conference in 2014, a paper ti-
tled "One Millisecond Face Alignment with an Ensemble of Regression Trees" (Kazemi
and Sullivan| (2014)) provided an extremely fast and accurate method for identifying 68
facial features on a person’s face, given the face (so the pre-requisite was to do face
detection). Fortunately, dlib (King (2009)) had an implementation of this as well, so it

was just a single function call to implement it.

4.3 Head Pose Orientation Estimation

In this step, we need to use the facial features identified in 2D, and project them onto
a generic 3D model of a head. This gives us the head in a world coordinate frame.
Finally, we also make some approximations for the intrinsic parameters of the camera,
and assume no distortion. This lets us solve the matrix equation using the Direct Linear
Transform (DLT) and the implementation in OpenCV uses the solvePnP function for
pose estimation. This gives us a 3D vector pointing perpendicular to the face. From this
we can project onto the 2D image to show it on the screen. The website Mallick| (2019)

was useful for implementing this.

4.4 Blink Detection with Eye Tracking

In this step, we take the features that correspond to the eyes and calculate a parameter
called the Eye Aspect Ratio (EAR), which is the ratio of the maximum vertical eye
distance and the maximum horizontal eye distance. This EAR value is then tracked
over multiple frames, and if below a certain threshold for a sufficent duration, the driver
is considered to be drowsy. In addition, we also built in an adaptive model that would
modify the threshold for different people by averaging over the first minute of driving.

Here, the website Rosebrock! (2019) was useful for the implementation.

13

4.5 Gaze Tracking using Region Based Thresholding

In this step, we used the eye gaze to provide additional information to the algorithm,
and also because drunkenness can only be detected with computer vision by identifying
slow gaze movements. The eye gaze was classified into one of 9 regions, by splitting
the field of view right in front of the head orientation. This meant that a person could
be looking to the left, but if his eyes were facing far right, that means he was looking at
the road. It was a higher risk situation (not fully focused on the road), but neither is the

driver completely distracted.

Figure 4.1: Detecting drowsiness after auto-calibration

Figure 4.2: Tracking facial features, head pose, eye gaze and pupil dilation, to detect
drowsiness and drunkenness

Figure 4.3: Different device orientations/positions and with varying amounts of vibra-
tion, on India’s roads

14

CHAPTER 5

Object Detection Algorithms on Embedded Devices

In computer vision, there are a few types of tasks that require to be distinguished for

further discussion.

e Image Classification: Given an image containing a single object or scene, identify
the class to which it belongs. This generally involves training of a classifier to
differentiate between two or more classes of images in a multi-dimensional space.
Before 2012, this was done by extracting hand-picked features and passing them
to the classifier. Since 2012, excellent results have been obtained by different
types of neural network architectures, starting from AlexNet (Krizhevsky et al.|

(2012)) in 2012, and going all the way up to ResNet-152 (He et al| (2016)) in
2015.

e Object Detection: Given an image, identify all the different objects and also clas-
sify them into different categories. Before 2013, this involved splitting an image
into many different regions and passing them all through a classifier. Since 2013,
there have been various methods that improved the region proposal, feature ex-
traction and classifier stages of the pipeline. Finally in 2016, a paper titled "You
Only Look Once (YOLO)" (Redmon et al.| (2016))) replaced the entire pipeline
with a single end-to-end convolutional neural network. Since then, various pa-
pers have improved significantly using deep learning.

Classification Classifostion Object Detection Ingtance

+ Localization Segmentation

CAT, DOG, DUCK CAT, DOG, DUCK

A /
Y

Single object Multiple objects

Figure 5.1: Image Classification, Object Detection (single object), Object Detection
(multiple objects) and Instance Segmentation

e Image Segmentation: Given an image, classify each and every pixel of the image
into one of two or more classes. Once again, before the advent of deep learning,
it was common to use different classical computer vision methods, including K-

Means clustering (Lloyd| (1982)), region growing (Adams and Bischof (1994)),

and the famous normalized cuts method (Shi and Malik! (2000)). Now with deep
learning, we use convolutional neural networks to classify every pixel into the
respective class. This would be called semantic segmentation as there is no dif-
ference between instances of the same class. However, there are also techniques
for instance segmentation, which distinguish between different instances of the
same class.

Object Detection Semantic Segmentation Instance Segmentation

Figure 5.2: Object Detection, Semantic Segmentation and Instance Segmentation

The latest methods for object detection involved the use of deep convolutional neural
networks (CNNs), and resulted in an increase of mean Average Precision (mAP) scores
from 40% to over 80%. The algorithms of Girshick et al from Microsoft - RCNN

(Girshick et al.| (2014)), Fast RCNN (Girshick| (2015))) and Faster RCNN (Ren et al.,
(2015)), took 20 seconds (0.05 FPS), 2 seconds (0.5 FPS) and 150 ms (7 FPS) per image

on powerful NVIDIA GPU hardware. They had separate stages for region proposals and
for classification, making them slower. YOLO by Redmon et al.| (2016) described an

end-to-end approach and was able to run an image within 22 ms (or 45 FPS) on similar

GPU hardware.

GPUs were well suited to these initial CNN approaches to solve the problem. They
had high speed interconnects and high memory bandwidths of over 300 GBps. The
weights file for the first version of YOLO was over 750MB. Transferring any part of
this for processing on an FPGA like the PYNQ-Z1|(2019) was not at all feasible. It had
just 630KB of Block RAM (BRAM) and just 512 MB of system RAM. The memory

bandwidth of the PYNQ-Z1 was below 120MBps. It would take more time to transmit

the weights per image than to actually perform the calculations.

Fortunately, NVIDIA also released embedded GPU boards, under the name Jetson.
The Jetson-TX2| (2019) series boards were powerful hexa-core ARM systems, with
connected 256-core GPU and 8GB of shared RAM. It was possible to use the GPU

16

with small modifications of the code and a custom compiler and set of libraries called

CUDA (Compute Unified Device Architecture - NVIDIA| (2019)) released by NVIDIA.

A, ¥

{ MCPU Power Rl | | BCPU Power Rail |y |
! ' ' Clock & Raset : @, | |CAN.PMC| |
i | Denver2 |\ | CorewAll | | | mye] =3 12c. sPI, |
i |cPuchsier | | | CPUClustar | - Timers, : ® @ |omic, GRIO| |
. - - - Mailboxes,] I-»| i
@ Semaphore, % i
§ Config Reg, o
(CPU switch fabric (Soherent) CoreSight 7 Sys Config UDA'IQT;EZ;I:
1 | GFIO | Fuses,
BFMF, AFE, Controllar i | ThrmSnsr,
SysRAM SRESEE o [Pem
TZRAM Cortex-R5 EFMP E
IRAM Boot, Power Mgmt. System fabric]—b @
&
‘ (R | :
1 s XUSB
Cortex-A9 APE | ,| EBAVB,
] e . General PCIE Audio Processor UFs,
{ Power pUpOSE i | sommac,
: Rail A 4 DMA Audic 1O | . saTA
H)
‘ L 4 '
l—-[Host Command buffer and Synchonization]
CSl ||camera|| Video || Video || JPEG || Security 20 Display
camera ISP encode | [decode TSECs || graphics | 3x haads

input 5 SE

Memary Controfler sscampress || decompress

wECC

M weisis

v v v v v v v L A A J yYYY V¥
Memary fabric and arbitration]

32164M28b
LPDDR4

Figure 5.3: The Jetson Tegra SoC block diagram with integrated NVIDIA Pascal GPU,
NVIDIA Denver 2 + ARM Cortex-A57 CPU clusters, and multimedia ac-
celeration engines

The Al pipeline (NVIDIA (2018)), from sensor acquisition to control looks as fol-

lows. For the YOLO "darknet" object detection algorithm, the input was either via
MIPI CSI camera (included with the developer kit), or via a USB-3.0 camera. It was
then processed using CUDA (without cuDNN) and displayed on screeen using OpenCV

bindings for C++.

Jetson Al Pipeline

Ingest Decode GPU Compute m’l Qutput

Cupa
Sensors MIPI €SI ISP prickiig m
Cameras m H.265 Caffe
LIDAR Torch
Ultrasonic TensorRT
RF, ADC TensorFlow -
> ma Actuators
QP 5P
| rcie geE

Figure 5.4: End-to-end Al Pipeline including sensor acquisition, processing, command
and control

17

The shared RAM of 8GB was used by the CPU as well as the GPU. The final
inferencing speed for the algorithm was around 7 FPS. There was also a less-accurate,

higher framerate version of YOLO, called tinyYOLO. On the Jetson, it ran at 16 FPS.

The FPGAs which were being used to demonstrate such object detection tasks were
the Zynq Ultrascale FPGA boards, costing over $3000 and would only run these al-
gorithms at around 10 FPS. On the other hand, the Jetson cost "only" $600 for the

developer kit.

We demonstrated the YOLO algorithm on the Jetson TX2 (with object tracking for
increasing speed to 10 FPS) and the FPGA based software-defined radio FM processing
at the KPIT Sparkle| (2018) 2018 Grand Finale, and we were placed in the top 10 out of
1500 national teams. However, we were also told by many experts that even the $600
cost is prohibitively expensive for deployment in Indian vehicles, and we need to reduce
the costs. Also, software defined radio may be too futuristic/expensive and will not sell

in India.

We began researching methods to optimize the object detection algorithms for FP-
GAs and other embedded systems. A PhD student at Stanford, now Professor at MIT,
Song Han, took a lecture as part of the CS231 course, titled "Efficient Methods and
Hardware for Deep Learning". This described four types of efforts - algorithms for
efficient training and inference, and hardware for efficient training and inference. We
were particularly interested in optimizing inference latencies, and so the algorithms/ar-
chitectures for efficient inference were most interesting. The algorithms for efficient

inference are listed below:

e Pruning

Weight Sharing

Quantization

Low Rank Approximation

Binary/Ternary Net

Winograd Transformation

Of these, we tried quantization with 8-bit and 16-bit weights, especially useful for

fixed point math operations on the FPGA, but not as useful without software support

18

on the GPU. In fact, with the GPU, the quantized operations did not lend to any differ-
ence in speed, though the weight files were of a reduced size (hence reduced memory
access time, but with such high bandwidth memory, it didn’t translate to any visible
performance gains). We also tried binary and ternary nets, using the Xilinx library for
PYNQ called BNN-PYNQ (Umuroglu et al.|(2017)) (binarized neural networks). This

supported simple networks for classification, but none for object detection.

The authors of the YOLO paper came up with a new method (Rastegari et al.|(2016))
that utilized the advantages of binarized networks and also a technique to improve the

speed of inferencing, even on highly constrained embedded systems, described below:

(1) Binarizing Weight ,
0103 .. 025" W _!|wl|ﬁl =¥
5 T

02404 . -201

(2) Binarizing Input

1 [-
. | B2 010301 EHX1H“=.31"--.‘ | f101t & (Xl)_Hl
Inefficient | a0, 022 El | 1. 1%
7 v 1 Xallr=py i sign(Xa)=H,
Redundant computations in overiapping areas s1gn (I)
: - i _ .3 fa s
Efficient ST 2z *j= . él 1.4l A
e k | ~B2 R I
- _ i g A A K sign(I)
(4) Convolution with XNOR-Bitcount
02 -0.1 .03 01 Bi0ai02s 1 ~ £t 1 R ' O«
-14 05 .. 0.2 2 * 02 04 .-204° | ™ SR T ® o e U } O !
053 ..-12 02" W T AT S 0 sign(W) |
I sign(I) K

Figure 5.5: Performing a convolution of binary input and binary weights using an
XNOR-bitcount operation

The figure above describes how a binarized input and binarized weight tensor can be
efficiently convolved by using XNOR bitcount operations. The first method described,
when performed with a binary network algorithm, results in a binary weight network,
with similar accuracy, 32x less memory required, and 2x speedup of computations.
However, when both the weights as well as the inputs are binarized as in the final
method, 32x less memory is required, and there is a 58x speedup on average. This
enables us to use a vector XNOR operation for doing the convolution of 32-bit or 64-bit

vectors at a time, and then a popcount operation to find the number of set bits.

Using the method described above, it should have sped up the operations signifi-

cantly on even an ARM CPU. However, while the size of the model file reduced as

19

expected to 32x smaller, the operations did not speed up, and the reason for this was
due to how it was being stored and retrieved from memory. Once this was written in
the required fashion, it still did not give acceptable performance (accuracy and output),

and so we had to try something else.

20

CHAPTER 6

Building Perception Systems for Fully Autonomous Cars

6.1 Move-It Hackathon, March 2018

In March 2018, I was fortunate to be one of the 20 engineers selected globally for
an autonomous car hackathon in China, called the Move It Hackathon (PIX-Moving!
(2018))), organized by PIX Moving, a startup based in Guiyang.

During this hackathon, PIX gave us a Honda Civic sedan, and a basic golf kart chas-
sis, and gave us all the sensors, computers and equipment required to hack it to drive
autonomously within a week. There were experts from Nagoya University in Japan,
who built the open source software stack called Autoware (2018)), experts from
Velodyne (which makes LIDAR systems for self-driving cars), and experts from Baidu
as well. We had engineers experienced in vehicle electronics, path planning and map-

ping, sensor fusion, software, and in optimization on hardware.
The Autoware software stack is as described below:

Sensing Computing Actuation

Perception Planning
Camera YM

. =3
LiDAR Prediction S
»

'.' Decision ‘t

S Custom

O =

Data Socket System Util

Figure 6.1: Autoware Software Stack: Sensing, Computing and Actuation

Autoware is a flexible and powerful open-source platform for autonomous vehi-

cles. The software stack runs on the Robotic Operating System (ROS)

(2009)) middleware that is commonly used for robotics, which runs as a node-based
inter-process communication system on top of a Linux-based operating system. Pro-
cessing all the data from the sensors and running different algorithms requires a pow-
erful computing system. In our case, we used a system with an NVIDIA GTX 1080
graphics card, an Intel Core 17 processor and 16GB of RAM. We also installed the
NVIDIA drivers for CUDA, cuDNN and cuBLAS.

Using Autoware required the installation of the drivers for the LIDAR, and then the
ros-velodyne driver as well. It will then send LIDAR point cloud data over Ethernet.
Based on this, it was possible to use ROS to record a "ROSbag" file, which is a recording
of the timestamped data for simulation later. This can also be used to generate a map of
the environment, something that is necessary for Autoware to perform all localization
and mapping tasks. Finally, the vehicle can be setup to follow the waypoints generated
from the map trajectory, and also to dynamically avoid any obstacles that may come in

the way.

Figure 6.2: The Velodyne LIDAR Ultra Puck (VLP-32C), with 32 channels

Setting up actuation on the "chassis/cafe car" was easier, since there was direct
drive-by-wire (DBW) access to the acceleration, brake and steering. However, doing the
same on the Civic required a CAN "Panda" module from a company called comma.ai.

It was not as easy to control as the other car, but it worked.

22

Figure 6.3: Data collection for the Chinese Police Gesture Dataset

Finally, we also built the world’s first open source Chinese police gesture dataset.
We all spent some time participating in a data collection activity, by installing 6 cam-
eras+LIDAR at different angles in front of a green screen, and performing the different

gestures. A model was then trained using a pre-trained Inception architecture (Szegedy’

(2015)) and transfer learning, to predict the gestures.

6.2 DIY Robocars KuaiKai, May 2018

In May 2018, the same company, PIX Moving, had another event, but this time it was
a meetup+competition, with two categories - a small sized car and a full sized car cat-
egory. Once again, I was selected to be one of the top 13 engineers worldwide partici-
pating in this event. We all teamed up for the ultimate challenge, that of a human driver

vs an Al driver, to compete for the Grand Prize of $100,000.

The advanced challenges were: GPS outage, Under Construction Sign Perception,
Queuing, Automatic Parking, Slope Driving, Refueling Simulation, Accident Avoid-
ance, and Stop Line. The basic challenges included: Checkered flag start, Pedestrian
Avoidance, Bus Stop Sign Perception and S-Bend driving. There were a total of 16 chal-
lenges, for 160 points. We were provided 2 vehicles, the BAIC Motor EU4000 electric

23

cars. We were also given the PIX Moving Vehicle Control Unit (VCU) hardware to

control them easily.

In terms of hardware and sensors, we were provided two 32-channel LIDARs and
two 16-channel LIDARs, 4 Mindvision Ethernet cameras, and the PIX Moving factory
and engineering team support. The VLP-32C was installed on top of the vehicle, while
one camera and a VLP-16 were installed in front of it on the grille. The second camera

was mounted inside the vehicle, on the windshield.

In terms of software, we went with Autoware once again. The other option we had
was to use Baidu’s Apollo Auto, but it supported only 64-channel LIDAR at the time,
and we had more experience with Autoware, so we chose to go with it. Mapping and
localization were done with LIDAR, path planning was also done once we created a
map from point cloud data, and visual perception was done with custom ROS nodes for

the start grid, sign detection and pedestrian detection.

I Vision tasks - start grid B

= Start moving only when
checkerboard not visible

» Checkerboard detectionwith
pure CV approach

1. Thresholding

2. Blobdetection

3. Output—ROIlfromblob grid
4. Detectionresult

5

[Don’tstart yet] to path planning

Figure 6.4: Start grid detection algorithm

The processed output of the grid detection is as shown below. It identifies the blobs

on the image using various shape and convexity constraints and then finds the grid Rol.

24

Figure 6.5: Processed grid detection output

I Vision tasks -sign detection 20

= Non-standard signs and behavior

= Detection withsimple CV
1. Color Thresholding
2. Image mask

3. Detectionresult

4,

Classification with SSIM
(Structural Similarity Index)

Detection SSIM comparison w [FUEL STOP]
result to pre-builtlibrary to path planning

Figure 6.6: Sign detection algorithm

In the above algorithm, instead of using deep learning to train a sign detection
model, we decided to use a simple computer vision approach (since all the signs were
blue in colour), by thresholding the image, then finding the mask for blue, and then the
region of interest for matching. Finally, we ran the match with the pre-built sign library

using the Structural Similarity Index (SSIM), and this gave good results.

25

Vision tasks — object detection B

= Pre-trained SSD (Single Shot Multibox Detector)
» Trained on COCQO dataset
= Modified classification layers for three classes
= Pedestrians, cars, background

= Real-time on GPU

Exira Foalure Layars
VEG-16 A
o —Jhrough Comws 3 ysr

= wn =
e F] =}
Classtier | Gon: 3x M 41) m
. -0 i
“ = @
i — — - R &
i - 1. 8. |@ 743mAP
- | . s E| BOFPS
Cosct 3 ,:;-; ‘;\-";' ” Ad \ Conv. SIA4NICIassasia) | W E
L0 | ol 2 I, § =
“ I = -
; R W -y + =
] W iea | v 0 U=
> oy TaixIZ8

Cony: 3x3x1024 Cony; 1xIx 028 Come Txix238 Comv Tixl28 P Conw: 1R1H120
Camv: GedxS12-a2 Conv Ixdx256-52 Com: Mei256-21 Oony: Salx?50-a1

Figure 6.7: Object detection for pedestrians and cars

In the object detection algorithm, we used an off-the-shelf SSD model
(2015))) that was trained on the Microsoft Common Objects in COntext (COCO) dataset
(Lin et al.| (2014)), and then modified the output layer to predict whether an object was

a pedestrian, a car, or the background. This ran in real-time on the GPU, along with all

the other Autoware processes, as a separate ROS node.

We also used the different sensors we had for extra redundancy and for improving
the detection accuracy. Only if different cameras gave the same results, we would
consider it for path planning, as shown in the figure below. The same algorithms would
run on both video streams, but the results were compared before passing it on to the

path planner.

Similarly, for the car following task, we used the algorithm described below. It used
the SSD object detection model, and if a car was detected within the ROI, it would
track it and try to maintain the size of bounding box using speed control of the vehicle

actuation. All this was performed within ROS.

26

I Vision tasks B

Cameraimage1 Cameraimage 2

ST

Detection
consensus?

V \:es
Hodstection to path planning

Figure 6.8: Redundancy for the different vision tasks

I Vision tasks - car following B

Camera image
9 Car

detected?

Continue

Within car

following
ROI?

Figure 6.9: Car following algorithm using size of bounding box and tracking

27

Trajectory information was stored using Autoware’s waypoint_saver and loaded us-
ing waypoint_loader. The lane planner was used for global planning, and A* for local
planning. For control, the pure pursuit algorithm was used for getting the trajectory and
speed information to navigate to the subsequent waypoints, and a twist filter was used
to smooth the velocity. Finally, the vehicle_gateway was used to send the actuation

information to the PIX VCU.

The final result was that our team scored 105/160 on the race day. The best human
driver scored 150/160. After the race, we continued to optimize the ROS nodes and the
vehicle performance, and we were able to reach a score of 120/160. We placed first, but

didn’t beat the human driver, so won an award of $40,000.

Figure 6.11: The insider view

Figure 6.12: Navigating the S-Bend

We also presented our work titled "The PIX Moving Kuaikai: Building a Self-
Driving Car in 7 Days" at the DSP in Vehicles conference at Nagoya University, Japan,

in October 2018.

28

CHAPTER 7

Image Enhancement methods for Camera Systems

In the CS6350: Computer Vision course I took in the Jan-May 2018 semester, my term
project assignment was on Panorama Generation from Videos with Significant Blur.
We used a single-image architecture for deblurring images, which was trained using a

Generative Adversarial Network (GAN).

The paper on GANs by \Goodfellow ef al.| (2014) introduces an adversarial frame-
work with two models - a generator G and a discriminator D, where the generator at-
tempts to generate samples that mimic the training data, while the discriminator at-
tempts to identify if the observed sample is real or fake. This corresponds to a minimax
two player game. When D and G are multi-layer perceptron networks, they are end-to-

end trainable using backpropogation and the minimax objective function.

The above framework was further improved by [sola et al| (2017) for Image to
Image Translation using Conditional Adversarial Networks (also known as pix2pix),
where the objective function was modified to condition the discriminator on the input
image. There is also an additional L1 loss component for the generator to closely re-
semble the ground truth output. Although pix2pix gives excellent results for a variety
of image translation tasks (colorization, in-painting, edges to handbags/shoes, segmen-

tation to photos, etc), it doesn’t work well for deblurring.

The DeblurGAN paper by [Kupyn ef al.| (2017) improved on pix2pix using a new
Wasserstein GAN objective function that is more stable and also includes a perceptual
content loss. Recent papers also used residual blocks for deeper networks and larger re-
ceptive fields. Finally, there were papers attempting to use multiple images in sequence
to deblur the final image using spatio-temporal architectures with 3D convolutions and
deep residual learning methods. We were able to identify a unique method of perform-
ing multi-image convolution on a video stream and a method to implement the same in
hardware, and filed a patent on it. However, it was too slow for use both on an ARM

CPU as well as on an NVIDIA GPU, and hence we could not use it further.

(b} Example 11

Figure 7.1: Sample Deblurred Images. Arranged from left to right as blurred, deblurred
and ground truth.

We also identified a CVPR 2018 publication titled "Learning to See in the Dark"

(Chen et al.|(2018). It trained a neural network to translate raw images from cameras

with low ISO to highly enhanced and clear images. To do this, it trained the network
by using images taken of the same scene using a camera with much higher ISO, like a
DSLR. The network then learned how to translate between the low ISO image inputs to
the high ISO image outputs. The disadvantage was that it required a significant amount
of processing power and RAM to train this network, as well as for inferencing of the
results (an NVIDIA Titan X graphics card, and 64-128 GB of RAM). It also required
the raw image output of the camera, something that was not easily available from USB

webcams or from MIPI.

Finally, the solution we used for image enhancement on our device was very sim-
ple and computationally inexpensive. We used an adaptive histogram equalization on
all the three colour channels, and a gamma correction for dark scenes (like at night).
This significantly improved the prediction accuracy as well as confidence scores for our

object detection algorithms!

30

CHAPTER 8

Generating and training on Indian datasets

In August 2018, Intel and the International Institute of Information Technology Hyder-
abad (III'T-H) released a unique Indian road dataset. It consists of 10,000 images, finely

annotated with 34 classes collected from 182 drive sequences on Indian roads.

The dataset consists of images obtained from a front facing camera attached to a
car. The car is driven around the Hyderabad, Bangalore cities and their outskirts. The
images are mostly of 1080p resolution, but there is also some images with 720p and

other resolutions. The figure bellow gives an illustration of the data acquisition setup:

LEFT Front-Far

RIGHT Front-Far

FRONT Near

)

REAR |Hear
ey

Timestamp = 2018-05-08 03:46:59

Figure 8.1: AutoNUE Data Acquisition Setup

Intel and III'T-H also held a competition as part of the European Conference on Com-
puter Vision (ECCV) 2018, titled "Scene Understanding for Autonomous Navigation in
Unstructured Environments" or AutoNUE. They wanted teams to perform semantic and

instance segmentation of different classes of Indian vehicles as provided in their dataset.

Although there were already datasets existing in a similar format from countries

like USA and Europe, like KITTI (Geiger et al| (2013)), CityScapes
(2016)) and BDD100K (Yu et al|(2018)), none of them had the unique vehicles and

two-wheelers that we see only in India. As a result, a model that was trained on them

would perform poorly on the AutoNUE dataset. It required retraining on the new object

classes to get a decent output as shown below (semantic segmentation):

Figure 8.2: L to R: example image, prediction with pretrained model, prediction after
training on this dataset, ground truth

And so for the challenge, I decided to use the Mask RCNN (He et al.| (2017)) archi-

tecture that was recently published for semantic and instance segmentation. I used the

32

Matterport open source implementation (Abdulla (2017)), which uses a Feature Pyra-
mid Network (FPN) and ResNet-101 backbone. They also provided a blog post with
details of how to use transfer learning to train on a custom dataset. The results after

training for over 100 hours, with multiple hyperparameters fine tuned, was as follows:

Figure 8.4: Output Image 2

As you can see, the model is able to identify vehicles like rickshaws, people, two-
wheelers, cars, buses and trucks, and also segment each instance individually. We were
declared as the best performing Indian team in this challenge, and awarded a travel grant

to ECCV 2018 by Intel and IIIT-H.

33

autorickshaw-0:999

i B

Figure 8.5: Output Image 3

We also trained a pix2pix (Image Translation using Conditional Adversarial Net-

works by [Isola et al.| (2017)) model for transforming US/European image data into

Indian road data. After 300 hours of training, nearly 75 epochs, it did reasonably well,
as shown below. This provided a quick method of getting the required data without

actually putting devices on the road.

Figure 8.6: Example 1: Input US/Europe road -> Al Generated Indian Road

Here you can see that the smooth and perfect roads abroad are converted to pothole
filled and confusing roads for India. This clearly highlights the "unstructured" nature of

India’s roads.

34

Figure 8.7: Example 2: Input US/Europe road -> Al Generated Indian Road

Here it makes the roads more dusty, and removes some of the foliage in the distance.
The reason for this is because most of the Indian data we used for transfer learning was

taken on highways, and that contributes to a clear sky ahead of the ego vehicle.

Figure 8.8: Example 3: Input US/Europe road -> Al Generated Indian Road

Once again, the houses are cleared to be replaced by clear skies. The roadside also

becomes dustier, as it would be in India.

35

Figure 8.9: Example 4: Input US/Europe road -> Al Generated Indian Road

Finally, in this image, the generative adversarial network converts a car on the side
of a road in US/Europe into an autorickshaw! This is definitely very useful, it has
learned that rickshaws are vehicles in India and it should try to replicate them from the

provided data.

36

CHAPTER 9

The final product: An Alerting and Monitoring System

to Improve Driver Productivity

In September 2018, we participated in the MOVEHack Global Mobility Hackathon
conducted by Niti Aayog, Govt. of India. This was in association with Intel, who
provided the AutoNUE dataset and the challenge for all the teams. We reached the
finals in Delhi, and ended up placing 2nd worldwide! We spoke to many people there,

and refined our product as follows.

WODKS
HOW IT WORKS

Driver-Facing Camera
Authenticates the driver and checks
for drowsiness, distraction, and
drunkenness. Equipped with IR LEDs
for night vision, it also loop records up
to 24 hours in HD.

OBD-Il Compatible

Understand everything that goes
on inside your vehicle to improve
its performance. Get speeding
alerts, harsh incidents, and fuel
and maintenance monitoring.

GPS Tracking

Track the vehicle whereabouts,
gel real-time and reliable alerts
about deviations and delays

el ol Road-Facing Camera

Monitors the road in the day and
the night. Al-based collision
avoidance, tailgating alerts, rule
vialation alerts etec will be added
soon. |t also loop records up to 24
hours in HD.

4G + WiFi + Bluetooth

Our devices are always
connected to you. Access all the
critical data from anywhere 24'7

Figure 9.1: The first prototype of the device

This is a plug-and-play device that mounts onto the windshield of a vehicle. It has
two cameras facing in opposite directions - to face the driver and the road. It also comes
with an On-Board Diagnostics (OBD) module, which connects to the in-vehicle sensors
and provides information about speed/acceleration/braking/fuel levels and more. The

device has GPS for location tracking, 4G to upload data to the cloud, and the cameras

use Al and computer vision to identify potentially dangerous incidents and flag them
for review by uploading geotagged video and OBD snippets to the cloud. We filed 4

patents as part of this project, as described below.

9.1 Overall System Design Patent

This patent was titled "A modular multi-sensor hybrid architecture for driving environ-
ment monitoring and analysis". We described a broad and flexible design that could be
extended to incorporate additional sensors in the future. A processing system would
take in information from multiple sensors, which may be pre-processed in some way
beforehand, and then it would generate alerts and insights depending on the use case.

The design is shown below.

SENSOR #1

Camera
Dynamic mapping of
Cities for acoident
hotepots. traffiz data;
routs optimization
Forward Caollision Waning, — e]
Lane Drft Warning, identity or, Intrusion
vehicies, pedestrians, animais, 3 :
obetackss ; Diriver scoring and
- ».- - ooaching using
SENSOR #2 / behavloural modeling
| Traffic signs, signals,
Road Facing Camera " R (taligating)
Raak-iime waming
\ system while driving
OUTPUTS

=
Pula vislatisng, ot GENERATED e
cause analyss
i pffcess'”g M Alerting & Insights
System T
aps Real-time loc
| i and triangu

si-ride suggestions
rimprovirg afficlency

map for trac
SENSOR #3
Acceleration. brake, Fuel aconomy =
fual ievat, poar ratio, oplimization, pradicfiva Con;ai?g:a;u;?-
Bngine prassure, B maintanance e i

On Board Tolling and Paymants
Diagnostics (0OBD)

Alerts tothe fieet
manager in case of rash
of réckiess diving

Wahiche tracking and
oeofancing alarms

SENSOR #4

Figure 9.2: Overall System Design

38

9.2 Road Facing Camera Patent

This patent was titled "Systems and methods for road-facing camera based driver assis-
tance and autonomous driving systems". We described a hybrid vision based telematics
platform which captures information about the road and outside-vehicle environment,
and in-vehicle sensors via on-board diagnostics, and processes it on the device in real-
time, and also sends insights to the cloud for post-drive analytics. The design is shown

below.

Multiole Boad mmd Neural Network
Images of the road g ' ok i
acing cameras
L On-Board /
In-Vehicle Sensors Diagnostics (OBD-
> N

Steering angle

Processing
System

Alerting & Insights

Speed

Figure 9.3: Road-Facing Camera ADAS Design

9.3 Spatiotemporal Deblurring Patent

This patent was titled "A Spatio-temporal Architecture for Real-time Blind Motion De-
blurring on an FPGA". We described an implementation of a specific machine learning
architecture in hardware by using specialized optimization techniques for deblurring of
arbitrarily blurred video sequences. Unfortunately we were not able to get the published

implementation to work on our PCs, and so could not port it to the FPGA either.

9.4 Driver Facing Camera Patent

This patent was titled "Multi sensor driver behavior monitoring system". We described

an implementation of neural network architecture in hardware by using multiple sensor

39

data and specialized deep learning techniques for real-time driver behavior detection.

The design is shown below.

Acceleration
/ Braking
On Board /
Diagnostics Sieering angle
(OBD) J__._,___.-""‘"
-'_'_'_'_: Gear Ratio
Speed
Head pose
estimation

Eye gaze tracking

Blink Frequency
Face recognition
Driver Facing 74—7 Eye Aspect ratio
Camera
? Yawn detection
Pupil Size

Fhone usage or other

distraction

Head movement
frequency

Figure 9.4: Driver Behaviour Monitoring System Design

9.5 Web Architecture

J

Meural Metwork

N

>

Y

g

Alert

Fatigue level

Drunkenness

Distraction detection

—» Drowsiness detection

We asked one of the members from our team to build us a web-based dashboard. 1

implemented a storage system using the Amazon Web Services (AWS) Simple Storage

System (S3) that would provide secure and encrypted storage for each driver, which

could easily be accessed across a fleet. The dashboard image looks something like

below:

4

=)

CLOUD DASHEOARD - A BIRDS'-EYE VIEW

fecseetsecined Typesfincrerms ocusen Agccess the dashbeard from

e i A i s R —— anywhere

‘ Get an overview of driver

performance in real-time

sty of Inckiery

Automatically generate logs
far all compliance checks

Mumter of arcrients prevesten
U0 (F ACCTa s Coea

BIE S -

Receive SMS/mail alerts on
key issues at hand

o@e!ﬂ

Get insights on how to
improve your driver as wellas
[t vehicle performance

oy vt

Figure 9.5: A Web-Based Fleet Dashboard

And so, having built this device, we have started deploying it into trucks from differ-
ent companies, including BD Dhalla Transport in Mumbeai, and Instavans in Bangalore.
We are still ironing out minor issues, but the overall concept has been proven and re-

quires time and effort to pursue the opportunity and scale.

41

e

10.

I11.

12.

13.

14.

15.

REFERENCES

. Abdulla, W. (2017). Mask r-cnn for object detection and instance segmentation on

keras and tensorflow. https://github.com/matterport/Mask_RCNNL

AD9361 (2019). Ad9361. URL https://www.analog.com/en/products/
ad9361.htmll

Adams, R. and L. Bischof (1994). Seeded region growing. [EEE Transactions on
Pattern Analysis and Machine Intelligence, 16(6), 641-647. ISSN 0162-8828.

Chen, C., Q. Chen, J. Xu, and V. Koltun (2018). Learning to see in the dark. CoRR,
abs/1805.01934. URL http://arxiv.org/abs/1805.01934.

Cordts, M., M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele, The cityscapes dataset for semantic urban scene

understanding. In Proc. of the IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR). 2016.

CPFL (2018). Autoware. URL https://www.autoware.org/.
DSP (2018). Dsp. URL https://www.dsp-workshop.org/.
Dynamove (2019). Dynamove. URL https://www.dynamove. in.

Geiger, A., P. Lenz, C. Stiller, and R. Urtasun (2013). Vision meets robotics: The
kitti dataset. International Journal of Robotics Research (IJRR).

Girshick, R., Fast r-cnn. In Proceedings of the 2015 IEEE International Conference on
Computer Vision (ICCV), ICCV ’15. IEEE Computer Society, Washington, DC, USA,
2015. ISBN 978-1-4673-8391-2. URL http://dx.doi.org/10.1109/ICCV.
2015.1609.

Girshick, R., J. Donahue, T. Darrell, and J. Malik, Rich feature hierarchies for ac-
curate object detection and semantic segmentation. In Computer Vision and Pattern
Recognition. 2014.

Goodfellow, 1. J., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, Generative adversarial nets. In Proceedings of the

27th International Conference on Neural Information Processing Systems - Volume 2,
NIPS’14. MIT Press, Cambridge, MA, USA, 2014. URL http://dl.acm.org/
citation.cfm?i1d=2969033.2969125.

Gridlock (2019). Flipkart gridlock hackathon. @ URL https://stories.
flipkart.com/gridlock—-hackathon-innovation/.

HackRF (2019). Hackrf. URL https://greatscottgadgets.com/
hackrf/.

He, K., G. GKkioxari, P. DollAaLr, and R. Girshick, Mask r-cnn. In 2017 IEEE Inter-
national Conference on Computer Vision (ICCV). 2017. ISSN 2380-7504.

42

https://github.com/matterport/Mask_RCNN
https://www.analog.com/en/products/ad9361.html
https://www.analog.com/en/products/ad9361.html
http://arxiv.org/abs/1805.01934
https://www.autoware.org/
https://www.dsp-workshop.org/
https://www.dynamove.in
http://dx.doi.org/10.1109/ICCV.2015.169
http://dx.doi.org/10.1109/ICCV.2015.169
http://dl.acm.org/citation.cfm?id=2969033.2969125
http://dl.acm.org/citation.cfm?id=2969033.2969125
https://stories.flipkart.com/gridlock-hackathon-innovation/
https://stories.flipkart.com/gridlock-hackathon-innovation/
https://greatscottgadgets.com/hackrf/
https://greatscottgadgets.com/hackrf/

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

He, K., X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016.
ISSN 1063-6919.

Isola, P., J.-Y. Zhu, T. Zhou, and A. A. Efros (2017). Image-to-image translation with
conditional adversarial networks. CVPR.

Jetson-TX2 (2019). Jetson-tx2. URL https://www.nvidia.com/en-us/
autonomous-machines/embedded-systems/ jetson-tx2/.

Kazemi, V. and J. Sullivan, One millisecond face alignment with an ensemble of re-
gression trees. In 2014 IEEE Conference on Computer Vision and Pattern Recognition.
2014. ISSN 1063-6919.

King, D. E. (2009). Dlib-ml: A machine learning toolkit. Journal of Machine Learning
Research, 10, 1755-1758.

Krizhevsky, A., L. Sutskever, and G. E. Hinton, Imagenet classification with deep
convolutional neural networks. In Proceedings of the 25th International Conference
on Neural Information Processing Systems - Volume I, NIPS’12. Curran Associates
Inc., USA, 2012. URL http://dl.acm.org/citation.cfm?i1d=2999134.
2999257.

Kupyn, O., V. Budzan, M. Mykhailych, D. Mishkin, and J. Matas (2017). Deblur-
gan: Blind motion deblurring using conditional adversarial networks. ArXiv e-prints.

Lin, T.-Y., M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar, and
C. L. Zitnick, Microsoft coco: Common objects in context. In D. Fleet, T. Pajdla,
B. Schiele, and T. Tuytelaars (eds.), Computer Vision — ECCV 2014. Springer Interna-
tional Publishing, Cham, 2014. ISBN 978-3-319-10602-1.

Liu, W., D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg
(2015). SSD: Single shot multibox detector. arXiv preprint arXiv:1512.02325.

Lloyd, S. (1982). Least squares quantization in pcm. I[EEE Transactions on Information
Theory, 28(2), 129—-137. ISSN 0018-9448.

Mallick, S. (2019). Head pose estimation using opencv
and dlib. URL https://www.learnopencv.com/
head-pose—-estimation-using-opencv—-and-dlib/.

MOVEHack (2018). Movehack. @ URL http://pib.nic.in/newsite/
PrintRelease.aspx?relid=181379.

NVIDIA (2018). Nvidia ai. URL https://devblogs.nvidia.com/
Jjetson-tx2-delivers—-twice—intelligence—edge/l

NVIDIA (2019). Nvidia cuda. URL https://www.nvidia.in/object/
cuda-parallel-computing—-in.html.

Osmocom (2018). Osmocom. URL https://osmocom.org/projects/
rtl-sdr/wiki/Rtl-sdr.

Pioneer (2018). Pioneer fellowship. URL https://www.pioneer.app/.

43

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/
http://dl.acm.org/citation.cfm?id=2999134.2999257
http://dl.acm.org/citation.cfm?id=2999134.2999257
https://www.learnopencv.com/head-pose-estimation-using-opencv-and-dlib/
https://www.learnopencv.com/head-pose-estimation-using-opencv-and-dlib/
http://pib.nic.in/newsite/PrintRelease.aspx?relid=181379
http://pib.nic.in/newsite/PrintRelease.aspx?relid=181379
https://devblogs.nvidia.com/jetson-tx2-delivers-twice-intelligence-edge/
https://devblogs.nvidia.com/jetson-tx2-delivers-twice-intelligence-edge/
https://www.nvidia.in/object/cuda-parallel-computing-in.html
https://www.nvidia.in/object/cuda-parallel-computing-in.html
https://osmocom.org/projects/rtl-sdr/wiki/Rtl-sdr
https://osmocom.org/projects/rtl-sdr/wiki/Rtl-sdr
https://www.pioneer.app/

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.
43.

44.

45.

46.

PIX-Moving (2018). Move it hackathon. URL https://www.pixmoving.com/
move—1it.

PYNQ-Z1 (2019). Pyng-zl. URL https://store.digilentinc.com/
pyng-zl-python-productivity—-for-zyng-7000—arm-fpga-soc/.

Quigley, M., K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and
A. Y. Ng, Ros: an open-source robot operating system. In ICRA Workshop on Open
Source Software. 2009.

Rajasthan (2017). Rajasthan hackathon 2.0. URL https://www.hackerearth.
com/challenges/hackathon/rajasthan—-hackathon—-20/.

Rastegari, M., V. Ordonez, J. Redmon, and A. Farhadi, Xnor-net: Imagenet classifi-
cation using binary convolutional neural networks. /n B. Leibe, J. Matas, N. Sebe, and
M. Welling (eds.), Computer Vision — ECCV 2016. Springer International Publishing,
Cham, 2016. ISBN 978-3-319-46493-0.

Redmon, J., S. Divvala, R. Girshick, and A. Farhadi, You only look once: Unified,
real-time object detection. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2016. ISSN 1063-6919.

Ren, S., K. He, R. Girshick, and J. Sun, Faster r-cnn: Towards real-time object de-
tection with region proposal networks. In Proceedings of the 28th International Con-
ference on Neural Information Processing Systems - Volume 1, NIPS’15. MIT Press,
Cambridge, MA, USA, 2015. URL http://dl.acm.org/citation.cfm?id=
2969239.2969250.

Rosebrock, A. (2019). Drowsiness detection with opencv. URL https://www.
pyimagesearch.com/2017/05/08/drowsiness—detection—-opencv/L

RTL-SDR (2019). Rtl-sdr. URL https://www.rtl-sdr.com.

Shi, J. and J. Malik (2000). Normalized cuts and image segmentation. /IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 22(8), 888-905. ISSN 0162-8828.

Sparkle, K. (2018). URL https://www.sparkle.kpit.com.

Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, Going deeper with convolutions. In Computer Vision and
Pattern Recognition (CVPR).2015. URL http://arxiv.org/abs/1409.4842.

Umuroglu, Y., N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre, and
K. Vissers, Finn: A framework for fast, scalable binarized neural network infer-
ence. In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, FPGA °17. ACM, 2017.

Viola, P. and M. Jones, Rapid object detection using a boosted cascade of simple fea-
tures. In Proceedings of the 2001 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition. CVPR 2001, volume 1. 2001. ISSN 1063-6919.

Yu, F., W. Xian, Y. Chen, F. Liu, M. Liao, V. Madhavan, and T. Darrell (2018).
BDDI00K: A diverse driving video database with scalable annotation tooling. CoRR,
abs/1805.04687. URL http://arxiv.org/abs/1805.04687.

44

https://www.pixmoving.com/move-it
https://www.pixmoving.com/move-it
https://store.digilentinc.com/pynq-z1-python-productivity-for-zynq-7000-arm-fpga-soc/
https://store.digilentinc.com/pynq-z1-python-productivity-for-zynq-7000-arm-fpga-soc/
https://www.hackerearth.com/challenges/hackathon/rajasthan-hackathon-20/
https://www.hackerearth.com/challenges/hackathon/rajasthan-hackathon-20/
http://dl.acm.org/citation.cfm?id=2969239.2969250
http://dl.acm.org/citation.cfm?id=2969239.2969250
https://www.pyimagesearch.com/2017/05/08/drowsiness-detection-opencv/
https://www.pyimagesearch.com/2017/05/08/drowsiness-detection-opencv/
https://www.rtl-sdr.com
https://www.sparkle.kpit.com
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1805.04687

LIST OF PAPERS BASED ON THESIS

1. David Robert Wong, Alexander Carballo, Rohan Rao, Oscar Rovira, Chuan Yu
The PIX Moving Kuaikai: Building a Self-Driving Car in 7 Days 8th Biennial
DSP in Vehicles Conference, (2018).

2. Rohan Rao Driver Safety in the Indian Context S8th Biennial DSP in Vehicles
Conference, (2018).

45

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF FIGURES
	ABBREVIATIONS
	Introduction
	Software Defined Radio on an FPGA
	The FM Radio Protocol
	The algorithm for FM Demodulation
	Obtain IQ Samples from the RTL-SDR
	Plot the PSD of the received signal
	Shift and decimate signal
	Unwrap angle and differentiate in time to get phase
	Real-time FM processing

	Computer Vision Algorithms on an FPGA
	Grayscale Conversion

	Detecting drowsiness, distraction and drunkenness with computer vision
	Face Detection
	Facial Feature Tracking
	Head Pose Orientation Estimation
	Blink Detection with Eye Tracking
	Gaze Tracking using Region Based Thresholding

	Object Detection Algorithms on Embedded Devices
	Building Perception Systems for Fully Autonomous Cars
	Move-It Hackathon, March 2018
	DIY Robocars KuaiKai, May 2018

	Image Enhancement methods for Camera Systems
	Generating and training on Indian datasets
	The final product: An Alerting and Monitoring System to Improve Driver Productivity
	Overall System Design Patent
	Road Facing Camera Patent
	Spatiotemporal Deblurring Patent
	Driver Facing Camera Patent
	Web Architecture

