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ABSTRACT

KEYWORDS: Event Cameras ; DVS; Deep Learning; Intensity Estimation; Ac-

tivity Recognition

Event cameras are an emerging class of cameras that only report pixel-wise intensity

changes (called "events") over a large dynamic range with extreme high temporal res-

olution. They offer other several advantages such as low latency and low power con-

sumption in contrast to conventional cameras. In this thesis, we try to solve two vision

problems - Human Activity Recognition (HAR) and Video Intensity estimation using

event cameras.

We have proposed a deep learning solution to the HAR problem as an extension

to the previous work using SVM classifier (Baby et al., 2018). We have used outdoor

activity data (UCF11 DVS video dataset) for our experiment. Event streams windowed

into videos are trained by a Deep Network (CNN + LSTM) classifier.

In the intensity estimation problem, we have tried intensity reconstruction of an

intermediate video frame between two consecutive video frames of normal cameras

(30fps) using events between them. The framework comprises of an event interpolation

system followed by denoising autoencoder. We were able to reconstruct videos at 60fps.
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CHAPTER 1

INTRODUCTION

Frame based conventional cameras operate at a fixed frame rate irrespective of the in-

tensity values of the frames, whether they are changed or not. This often leads to issues

like data redundant frames, high memory usage etc. Event cameras on the other hand,

respond asynchronously to changes in pixel illumination and offer high temporal reso-

lution over large dynamic range.

There are a myriad of applications that need high frame rate as well as low power

consumption at the same time such as surveillance, remote sensing, and security where

the cameras may be battery operated (or solar power driven) and therefore have stringent

limitations on power consumption.

These two individual features (high frame rate of event cameras and rich pixel in-

formation of frame based cameras) provide complementary information. Fusing image

frames with the output of event cameras offers the opportunity to create an image state

infused with high-temporal-resolution. We aim to use this fusion to solve typical vision

problems like Activity/Gesture recognition and Intensity estimation in our paper.

DVS is intrinsically suitable for gesture/activity recognition since it does not record

any static information about the scene. Thus, we can avoid the overhead of preprocess-

ing algorithms such as background subtraction and contour extraction used in conven-

tional image processing. This part of the paper is an extension to the previous paper by

my lab. The previous algorithm involved Bag of Words and Motion maps framework

which attempted to solve this 11 class classification problem by SVM classifier. This

paper attempted to obtain better classification results using deep learning architecture.

We have trained the UCF11 DVS video dataset on CNN features followed by LSTM

units.

In the second part of the paper, We present a intensity estimation formulation of an

intermediate frame between two consecutive video frames using event frames. We also

use a denoising autoencoder to smoothen the image reconstruction.





CHAPTER 2

Human Activity Recognition

2.1 Previous Work

Our solution is an extension to (Baby et al., 2018). explore the feasibility of using DVS

for Human Activity Recognition (HAR).

They propose to use feature maps known as Motion Maps. These are basically

different 2-D projection slices, x - y,x - t and y - t, obtained by averaging each left out

dimension respectively. DVS event streams are converted into a video by accumulating

events over a time window and Motion Maps are created out of them. They fuse Motion

Maps with Motion Boundary Histogram (MBH) (Lo and Tsoi, 2014) to extract features.

SURF features and MBH features using dense trajectory are also extracted. Bag of

features encoding from both these descriptors are combined and given to linear SVM

classifier (one-vs-all).

This classifier gives good performance on the benchmark DVS dataset as well as on

a real DVS gesture dataset collected by our lab.

However, the current solution has a lot of complex feature engineering. Some of

the feature extracts like BoVW may not perform fairly on complex data. Morever,

current framework may not be robust to unknown datasets. There are a of parameters

(especially in SVM) that need to fine tuning based on underlying data. Deep Learning

architecture would provide a black box solution to the problem and are much easier to

train.



Figure 2.1: HAR

2.2 Proposed Solution

DVS video dataset is generated by acquiring event streams into a frame over a time

window. Being asynchronous, every video in the dataset has a different number of

event frames. So, we have sampled every input video to a fixed number of frames (5)

to obtain uniformity.

We have proposed a convolutional neural network framework inspired by (Ng et al.,

2015) which processes these event frames and outputs a feature vector. The idea behind

CNN is to learn the spatial event features across the sampled frames in the video.

This 2 layered 2D CNN takes frames of size 96x120 as input (Bicubic interpolation

to reduce the frame size and subsequently, the number of parameters). These frame

are then processed by square convolutional layers of size 5 each followed by max-

pooling and batch normalization. Batch normalization reduces the amount by what the

hidden unit values shift around (covariance shift). BatchNorm also helps each layer of

a network to learn by itself a little bit more independently of other layers.

Finally each sampled frame produces a 5760 feature vector. Now, since the spatial

features are learned, these vectors are passed into a Recurrent network to learn the

temporal dependencies.

Standard recurrent networks have trouble learning over long sequences due to the

problem of vanishing and exploding gradients . In contrast, the Long Short Term Mem-

ory (LSTM) uses memory cells to store, modify, and access internal state, allowing it

to better discover long-range temporal relationships.

We use a deep LSTM architecture in which the output from one LSTM layer is

input for the next layer. We experimented with various numbers of layers and memory
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Figure 2.2: Proposed Architecture

cells, and chose to use two stacked LSTM layers, with 1200 memory cells. Following

the LSTM layers, a Softmax classifier makes a prediction at every frame. In order to

combine LSTM frame level predictions into a single video-level prediction, we returned

the prediction at the last time step T.

2.2.1 Training

We have trained our framework on UCF11 DVS dataset. It comprises of 11 outdoor

activities (Basketball, Biking, Walking with Dog, Tennis Swing etc). The learning rate

has been initially set to 5 × 10−4 scheduled with exponential decay at the rate γ = 0.5

at every alternate epoch.

Instead of classical stochastic gradient we have used adam optimization (Diederik

P. Kingma, 2015) to update our parameters. They offer several advantages like invariant

to diagonal rescale of the gradients and are computationally efficient.
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2.3 Results

We have trained the model on NVidia GeForce 10GB GPU and the total training time is

approximately 10 hours. We observed that there is nice convergence in the classification

loss.

However, classification accuracy between classes vary quite much. The average

classification accuracy obtained is around 75-80%

Figure 2.3: Training Epochs

Figure 2.4: Classification Accuracy
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2.4 Inferences

We have achieved satisfactory accuracy when compared to the previous work in DVS

activity recognition. However, there are many areas which are unexplored and can be

improved upon.

Firstly, the manual sampling is one area which could be done better. Random sam-

pling/Video slicing may be impractical and unrealistic. We could have tried something

called segmented sampling as shown in this work (Wang et al., 2017).

The frames are densely recorded in the videos, the content changes relatively. Seg-

ment based sampling provides a new temporal structure modeling. This strategy is

essentially a kind of sparse and global sampling. Concerning the property of spareness,

only a small number of sparsely sampled snippets would be used to model the temporal

structures in a human action. Therefore, no matter how long the action videos will last

for, our sampled snippets would always roughly cover the visual content of whole video,

enabling us to model the long-range temporal structure throughout the entire video.

In our architecture, ConvNet captures only the spatial information and outputs a

feature vector. We fail to capture the motion feature dynamics. As suggested in (Ma

et al., 2017), they exploit the temporal information using two stream Inception style

ConvNets using raw optical flow images as well. They explore the correlations be-

tween spatial and temporal streams by using two different proposed fusion frameworks.

They focus on two models that can be used to process temporal data: Temporal Seg-

ment LSTMs (TS-LSTM) which leverage recurrent networks and convolution over

temporally-constructed feature matrices (Temporal-ConvNet)

7





CHAPTER 3

Video Intensity Estimation

3.1 Previous Work

Conventional videos have a frame rate of 30fps which captures whole intensity image

frames and are hence temporally sparse. However, in applications of high speed video

they become impractical. Event cameras provide asynchronous events with high dy-

namic range and temporal resolution in the order of µs.

In this work (Scheerlinck et al., 2018), the authors have suggested an asynchronous

and efficient complementary filter which continuously fuses image frames and events

into a single high-temporal-resolution image state. They have implemented a simple

iterative algorithm to estimate image intensity frame L̂o which is a solution to comple-

mentary filter ODE. The proposed complementary flter architecture combines a high-

pass version of LE(p, t) (Events) with a low-pass version of LF (p, t) to reconstruct an

(approximate) all-pass version of L(p, t).

Figure 3.1: Complementary Filter

In the next work (Reinbacher et al., 2016), they propose a variational model that

accurately models the behaviour of event cameras, enabling reconstruction of inten-

sity images with arbitrary frame rate in real-time. They formulate the intensity image



reconstruction problem as the solution of the optimisation problem

un = argmin
u∈C1(Ω,R+)

[E(u) = D(u, fn) +R(u)]

whereD(u, fn) is a data term that models the camera noise andR(u) is a regularisation

term that enforces some smoothness in the solution.

Figure 3.2: Sample results from the method. The image a shows the raw events and b is
the result of our reconstruction. The time since the last event has happened
for each pixel is depicted as a surface in c with the positive and negative
events shown in green and red respectively

We have implemented the complementary filter in Python on our dataset. The sec-

ond work is also a similar algorithm.

After implementing complementary filter we observed two shortcomings. Since

the value of contrast threshold wasn’t defined properly (even the authors had taken a

random constant). Value of the threshold needs to be adaptive to the corresponding

event frame. As a result, it produced a lot of noisy frames. Once the reconstruction is

done, we also observe a discontinuity when moving from one image frame to other. We

observe a sudden jump in frame transition.

3.2 Proposed solution

Videos have a much lesser frame rate when compare to high stream events. W In

our approach, we have tried to estimate an intermediate intensity frame between two

consecutive frames in a conventional video.

Our framework consists of two parts intensity reconstruction followed by Denoising
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autoencoder.

We know that an event is fired when the log-intensity of a certain pixel varies beyond

a threshold.The event firing process can be mathematically expressed as,

et =


1 θ > εp

−1 θ < -εp

0 otherwise

(3.1)

where θ = log(It + b) - log(It + b). Note that et = 0 indicates that the event pixel does

not fire.

We use this formulation to reconstruct raw image frames. At every successive frame,

the pixel intensity v is compared to a reset value r from the previous frame to decide

how many events happened in that frame. The initial reset value r0 for a pixel is the in-

tensity of that pixel in the original image (v0), and is updated as described in Algorithm

1.Repeating this process for every frame gives us pixel estimate at every raw image

frame. Our approach is to iterate from both the sides of the consecutive frames (iterate

backwards from right frame and iterate forward for left frame) to reach midway from

both the sides.

Once we get two raw images in the middle, they are passed through Noise2Noise

autoencoder.

Figure 3.3: Frame intensity reconstruction
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Noise2Noise decoder(Lehtinen et al., 2018) helps us to learn to restore images by

only looking at corrupted examples. The form of the typical training task for a set of

input-target pairs (xi, yi), where the network function fθ(x) is parameterized by θ:

argmin
θ

E{x,y}{L(fθ, y)}

The property of L2 minimization is that on expectation, the estimate remains un-

changed if we replace the targets with random numbers whose expectations match the

targets.

This implies that, in principle, we can corrupt the training targets of a neural network

with zero-mean noise without changing what the network learns. So the formulation

becomes empirical risk minimization task,

argmin
θ

∑
i

{L(fθ(x̂i), ŷi)}

The authors have solved this objective function using modifies Unet.

3.2.1 Modified U Network

Table 3.1 shows the structure of the U-network (Ronneberger et al., 2015). For all basic

noise removal experiments with RGB images, the number of input and output channels

were n = m = 3.

The network weights were initialized following (He et al., 2015). No batch nor-

malization, dropout or other regularization techniques were used. Training was done

using ADAM (Diederik P. Kingma, 2015) with parameter values β1 = 0.9, β2 = 0.99,

ε = 10−8.

Learning rate was kept at a constant value during training except for a brief ramp-

down period at where it was smoothly brought to zero. Learning rate of 0.001 was used

for the experiments. Minibatch size of 4 was used in the experiments.

Let us compute the expected error in L2 norm minimization task when corrupted

targets {ŷi}Ni=1 are used in place of the clean targets {yi}Ni=1, with N a finite number.

Let yi be arbitrary random variables, such that Eŷi = yi. As usual, the point of least

12



NAME Nout FUNCTION

input n
enc_conv0 48 Convolution 3× 3
enc_conv1 48 Convolution 3× 3
pool1 48 Maxpool 2× 2
enc_conv2 48 Convolution 3× 3
pool2 48 Maxpool 2× 2
enc_conv3 48 Convolution 3× 3
pool3 48 Maxpool 2× 2
enc_conv4 48 Convolution 3× 3
pool4 48 Maxpool 2× 2
enc_conv5 48 Convolution 3× 3
pool5 48 Maxpool 2× 2
enc_conv6 48 Convolution 3× 3
upsample5 48 Upsample 2× 2
concat5 96 Concatenate output of pool4
dec_conv5a 96 Convolution 3× 3
dec_conv5b 96 Convolution 3× 3
upsample4 96 Upsample 2× 2
concat4 144 Concatenate output of pool3
dec_conv4a 96 Convolution 3× 3
dec_conv4b 96 Convolution 3× 3
upsample3 96 Upsample 2× 2
concat3 144 Concatenate output of pool2
dec_conv3a 96 Convolution 3× 3
dec_conv3b 96 Convolution 3× 3
upsample2 96 Upsample 2× 2
concat2 144 Concatenate output of pool1
dec_conv2a 96 Convolution 3× 3
dec_conv2b 96 Convolution 3× 3
upsample1 96 Upsample 2× 2
concat1 96+n Concatenate input
dec_conv1a 64 Convolution 3× 3
dec_conv1b 32 Convolution 3× 3
dev_conv1c m Convolution 3× 3, linear act.

Table 3.1: Network architecture used in our experiments. Nout denotes the number of
output feature maps for each layer. Number of network input channels n and
output channels m depend on the experiment. All convolutions use padding
mode “same”, and except for the last layer are followed by leaky ReLU ac-
tivation function with α = 0.1. Other layers have linear activation. Upsam-
pling is nearest-neighbor.
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deviation is found at the respective mean. The expected squared difference between

these means across realizations of the noise is then:

Eŷ[
1

N

∑
i

yi −
1

N

∑
i

ŷi]
2

=
1

N2

[
Eŷ(
∑
i

yi)
2 − 2Eŷ(

∑
i

yi)(
∑
i

ŷi) + Eŷ(
∑
i

ŷi)
2

]
=

1

N2
Var(

∑
i

ŷi)

=
1

N

[
1

N

∑
i

∑
j

Cov(ŷi, ŷj)

]
(3.2)

In the intermediate steps, we have used Eŷ
∑

i ŷi =
∑

i yi and basic properties of

(co)variance. If the corruptions are mutually uncorrelated, the last row simplifies to

1

N

[
1

N

∑
i

Var(yi)

]
(3.3)

In either case, the variance of the estimate is the average (co)variance of the corrup-

tions, divided by the number of samples N . Therefore, the error approaches zero as the

number of samples grows. The estimate is unbiased in the sense that it is correct on

expectation, even with a finite amount of data.

The above derivation assumes scalar target variables. When ŷi are images, N is to

be taken as the total number of scalars in the images, i.e., #images × #pixels/image ×

#color channels.

14



Figure 3.4: UNet

3.3 Results

We have trained our model from DAVIS events and video dataset as shown in the work

(Mueggler et al., 2016). The total training time comes to be around 4 hours.

In denoised results, we have stated PSNR with respect to the final frame. Same in

the case of final reconstruction results.

15



Figure 3.5: Validation loss of UNet

(a)

(b)

Figure 3.6: UNet denoising
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(a)

(b)

Figure 3.7: Final Reconstruction

Figure 3.8: Intensity Gifs at 60fps
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3.4 Inference

Even though we have achieved a good PSNR on the reconstruction there were quite a

few areas that we could have improved upon.

One work we are really inspired with is (Wang et al., 2019). They show us to

differentiable model to approximate the intensity reconstruction process, which enables

stochastic gradient descent optimization using automatic differentiation

The event pixel responds to intensity changes in log scale with very low time latency

(∼ 1µs). That is, as long as the log-intensity increases above a threshold εp or decreases

below a threshold εn, the pixel will report a binary signal (positive or negative). The

event pixels preserve differential information, but the absolute gradient of the intensity

is lost. Thus, the data inference problem is ill-posed and results in many solutions

Figure 3.9: Event model

In our case, we have treated events as step function which makes it a discontinuous

problem. The authors have modeled it as a continuous tangent function.

They show that the reconstruction is performed by minimizing a weighted combi-

nation of loss functions, including the pixel loss (Lpix) and the sparsity loss (LTV ). The

objective function can be formed as,

Ĥ = argmin
H

Lpix(H,F , E) + LTV (H)

18



Pixel loss. The pixel loss includes per-pixel difference loss in `1 form with respect

to the intensity and event pixels, i.e.,

Lpix(H,F , E) = Efpix
[
‖F −A(H)‖1

]
+ λeEepix

[
‖E − B(H)‖1

]
,

over the entire available data range. F and E denote respectively the ground truth of

the frame and event data, and Ex represents expectation with respect to the observed

pixels/events.

Sparsity loss. We employ total variation (TV) sparsity in the spatial and temporal

dimensions of the high-res tensorH. The TV sparsity loss is defined as:

LTV (H) = λxyEhpix
[∥∥∥Ḣxy

∥∥∥
1

]
+ λtEhpix[

∥∥∥Ḣt

∥∥∥
1
],

where Ḣxy =
∂H
∂x

+ ∂H
∂y

and Ḣt =
∂H
∂t

.

By forming the problem into a differentiable physical model, one is enabled to re-

cover the latent high-res tensors using gradient descent based methods in large scale.

They optimized the equations using stochastic gradient descent with TensorFlow im-

plementation.

We could also have tried residual scheme for denoising the images instead of playing

directly with the noisy images. We could have gone for similar residual networks like

ResNet or DCNN similar to the implementation in the work (Wang et al., 2019). They

employ the CNN to find the residualR such that,

R = Ĥ − Hg,

In our case, we have finally achieved a frame rate of 60fps (2x 30). However,

if we iteratively go on, such as denoising frames further at every 25% distance, we

could achieve a higher frame rate. In the current approach, we approach halfway by

multiplicative iteration from both sides. We could further extrapolate by storing raw

image from at every 1
4

th distance. Subsequently, instead of just a pair of images, we’ll

have multiple pairs of images to denoise. Thus, higher framerate could be achieved.
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CHAPTER 4

Conclusion

4.1 Human Activity Recognition

We have obtained a 75-80% accuracy on the UCF11 video activity dataset shot by an

event camera. We have proposed an end to end robust deep network solution (CNN

plus LSTM for spatio temporal feature learning). Unlike the previous method, this new

framework doesn’t need manual feature engineering.

However, there are sectors we could have faired better. Image slicing for sampling

is a novice way for undersampling. As suggested above, there are better ways like

segmentation sampling. Two streams ConvNets could also be explored.

4.2 Video Intensity reconstruction

We were able to reconstruct the intermediate intensity frame reconstruction between

two consecutive image frames of a video. We used event streams/frames to interpolate

raw image frames. The noisy image frames interpolated from both sides are then de-

noised using a Noise2Noise autoencoder. We were able to achieve fairly good results

with good PSNR measurements.

We had modeled events as a step function and as a result, we directly superimposed

multiplicatively. However, as other works show, modelling them using differential ap-

proximations (tanh function), we could obtain better results by solving the objective

function. Our system fails to perform well on highly dynamic videos. Better denoisers

like residual schemes could help our cause.
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