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ABSTRACT

KEYWORDS: captioning, summarization, MSVD, Teacher-Student network,

BLEU

Over the past few years, video understanding has received a lot of attention. It can

be captioning, classification or summarization that requires understanding subjects and

actions in the video. Although the problem statement may seem very abstract, there

have been quite a few works in the past four years. Here, Video captioning has been

discussed in detail.

One of the problem to be tackled in video captioning is summarizing multiple shots.

Mixing of video features from multiple shots will lead to a sub-par caption. One way to

tackle the problem is to separate one shot from another using a shot detector. Another

problem with video captioning is the length of the video. If the video is too long, it can

be difficult to understand everything happening in the video. Solution to this problem

is to use constant number of frames irrespective of the length of the video and train the

network to generate same caption. So, the network should be capable to "interpolate"

the captions from missing frames.

A relatively new paradigm called Teacher-Student networks is used. MSVD and MSR-

VTT are the two datasets used here. There is an improvement of approximately 3%

in BLEU score of generated captions using teacher-student network compared to using

the original network.
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CHAPTER 1

INTRODUCTION

Describing a video using natural language, called Video Captioning, has been an impor-

tant area of research in recent years. This is a crucial part of machine intelligence and

also has a number of potential applications. The problem is to generate a semantically

meaningful sentence that appropriately describes contents and actions taking place in a

video. Since the problem is more abstract than say deblurring, researchers tend to apply

deep learning algorithms.

Image Captioning, describing an image using natural language, also had a recent

surge of interest. Image captioning takes a single image whereas video captioning takes

multiple images(or Frames) for generating a caption. So, the interest lies in generating

as good a caption generated by using all the frames but by only using two frames.

This thesis revolves around video captioning using only first and last frame. It has

been divided into 4 parts. First part deals with basic concepts used in this thesis. Con-

cepts such as Convolutional Neural Network, Recurrent Neural Network, Long short

Term Memory network and some early video captioning networks are discussed. There

is an introduction to word embeddings and how a sentence is created using sequence

modelling networks.

The next part deals with datasets used in the project and various evaluation metrics

commonly used for captioning. The following part presents main ideas of 2 research

papers. Namely, Hierarchical boundary aware neural encoding and Semantic Compo-

sitional Networks. The last part showcases results on the above mentioned datasets and

further directions.





CHAPTER 2

Relevant concepts

Following sections will help in understanding various ideas used in this thesis. CNNs

are used to extract relevant features from images and videos. A brief introduction of

RNNs and how they are used in sequence modelling. Here, LSTMs were used instead

of RNNs to increase the networks capacity to "remember" features.

There is an introduction to word embeddings and sentence formation to familiarize with

sequence modelling. Formation of a sentence is based on maximizing the probability of

words occurring together. Beam search is one such algorithm used in language models.

A brief introduction to attention based sequence modelling is also given. There will be

certain frames in a video that contribute more for the caption than others. So, giving

more attention to that will improve surely improve the quality of captions generated.

2.1 Convolutional Neural Networks

Convolutional Neural Networks(CNNs) introduced by LeCun et al. (1999) have

been very successful in encoding or decoding relevant features from images. Since it

is a deep learning algorithm, there is a scope for using the same network for variety of

problems. Training with the same network and changing only the loss function will still

be able to beat traditional methods by a considerable margin. In recent years, CNNs are

mainly used in image segmentation, enhancement, classification and captioning.

Local connectivity and parameter sharing are the two important points in favour of

CNNs. Local connectivity is a sensible assumption that features around a pixel is af-

fected only by pixels attached locally to it. Two pixels far away cannot affect each

other’s features. Parameter sharing reduces number of parameters to be learnt since

dimensions of an image can be arbitrarily large. Also parameter sharing assumes that

the user is looking for similar features repeated in different areas in an image.

After a convolution layer, pooling of features is carried out. Pooling is an operation

used for reducing the size of feature maps so that the dimension of MLP in the end is

not too large. Two main kinds of pooling are Max pooling and average pooling. These



Figure 2.1: An example of Convolutional Neural Network

layers are followed typically by non-linearities like ReLU, Sigmoid, TanH.

There are a number of pretrained image classification CNN networks trained on Im-

agenet Dataset of 2M images by Deng et al. (2009). It is safe to assume that these net-

works extract distinct enough features to distinguish each image among 1000 classes.

ResNet-152 introduced by He et al. (2016) is one such network that is used in this thesis

for extracting features from videos.

2.2 Recurrent Neural Networks

Recurrent Neural Network(RNN) introduced by Rumelhart et al. (1986) is used if

the data to be encoded or decoded is sequential. The most common sequential data is a

natural language sentence. RNNs have been successful in solving sequence to sequence

problems. Converting a sentence in one language to a meaningful sentence in another

language is one such problem.

Referring to the figure above, xt is the input, ot is the output and st is the intermedi-

ate output at time t. Intermediate output st serves as a memory unit for RNNs. Since in

a sequential data, unlike CNNs, there can be global connectivity in data(only local con-

nectivity in CNNs), there is a necessity to carry features along with time. Both data(xt)
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Figure 2.2: An example of Recurrent Neural Network

and intermediate output(ht−1) will be inputs for the next RNN unit to produce ot. Back

Propagation Through Time(BPTT) is used for training RNNs.

Main problem with RNNs is vanishing and exploding gradients with increasing se-

quence length during BPTT. RNNs should keep memories to capture long distance re-

lationships in a sequence. Below are the equations that govern a Vanilla RNN. U,V,W

are learnt weights during BPTT.

st = tanh(Wst−1 + Uxt + b1)

ot = softmax(V st + b2)

2.3 Long Short-Term Memory

LSTM introduced by Hochreiter and Schmidhuber (1997) is another type of RNN

that selectively reads, writes and forgets depending on the current input. For example,

there are some words in a normal english sentence such as "an","the","a" that do not

exactly contribute any special meaning to the sentence. These words will be forgotten

along the way in LSTM network. This network can capture memories in a long se-

quence. Below are the gate equations governing a single LSTM cell.

ot = σ(Wost−1 + Uoxt + bo)

it = σ(Wist−1 + Uixt + bi)

ft = σ(Wfst−1 + Ufxt + bf )

5



Below are the equations that hold states st and memory ct

c
′
t = σ(Wct−1 + Uxt+ b)

ct = ft ◦ ct + it ◦ c
′
t

st = ot ◦ tanh(ct)

Figure 2.3: An example of Long Short Term Memory cell

2.4 Video Captioning networks

Focussing on recent deep learning based video captioning networks, one of the first

works to use recurrent neural networks was introduced by Venugopalan et al. (2014)

Video was represented using single frame CNN extracted features mean pooled to-

gether to form one feature map. The feature map will be then fed to a LSTM network

to decode the sentence. The drawback in this case is that mean pooling is independent

of the sequence.

Donahue et al. (2014) overcame this drawback by encoding the sequence by using an-

other LSTM layer instead of a CNN. Then this feature map will be decoded using a

Conditional Random Field to get semantic tuples of activity, object and location. Then

another LSTM layer to form a sentence using these semantic tuples.

Venugopalan et al. (2015) came up with a complete neural network architecture for

both encoding and decoding parts of the network. They used a stacked LSTM to read
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video features and another stacked LSTM conditioned on the previous LSTM for de-

coding captions. Other works have followed this kind of approach. Other important

works such as Yao et al. (2015) propose a temporal attention mechanism that allows to

go beyond local temporal modeling and learns to automatically select the most relevant

temporal segments given the text-generating RNN.

Pan et al. (2015b) Simultaneously explored the learning of LSTM and visual-semantic

embedding. The former aims to locally maximize the probability of generating the next

word given previous words and visual content, while the latter is to create a visual-

semantic embedding space for enforcing the relationship between the semantics of the

entire sentence and visual content.

Venugopalan et al. (2016) improved decoding with the help of a large text corpora.

Rohrbach et al. (2015) tries to learn semantic tuples consisiting of verbs, objects and

places separately using different networks and putting them all together to form mean-

ingful sentence.

Pan et al. (2015a) improved the video encoder by proposing Hierarchical Recurrent

Neural Encoder(HRNE). A second layer of LSTM is introduced to reduce the number

of LSTMs a video representation has to go through before embedded in the output. In

this way, the memory burden on LSTM will be decreased to perform better.

Yu et al. (2015) proposed Video paragraph captioning that produces one simple short

sentence that describes a specific short video interval. It exploits both temporal- and

spatial-attention mechanisms to selectively focus on visual elements during generation.

The paragraph generator captures the inter-sentence dependency by taking as input the

embedding produced by the sentence generator, combining it with the paragraph his-

tory, and outputting the new initial state for the sentence generator.

2.5 Word embeddings and sentence formation

Word embeddings introduced by Mikolov et al. (2013) are used in language mod-

elling for predicting the "next word" in a sentence. A typical language model will be

7



based on a vocabulary of size, say 10,000. Each word can be represented as a one-hot

vector. The problem with one-hot vector is that there cannot be any transfer learning at

a word level since dot product of any two one-hot vector is zero.

Let’s say there is a sentence that ends with "orange juice". If someone wants to pre-

dict the next word of "Apple", unless there is a similarity between orange and apple,

it will be difficult to predict the next word as "juice". So, word embeddings generally

come with a relatively lower dimensions, for example, 300. Each of the 10,000 word

will have a vector of dimension 300 assigned in the word embedding. Generally word

embeddings are packaged with the captioning dataset.

Generally if there is a word in a sentence not present in the vocabulary, it will be rep-

resented as "<UNK>" token. Also, there is a token for end of sentence represented as

"<EOS>". Sentence will be generated till the end of sentence token is generated. While

Training, sentences are appended with "<EOS>" token for learning the pattern of words

used to learn end of sentences.

Word embeddings depend on the vocabulary that is used for training it. The most com-

mon algorithm used for creating an embedding is called Word2Vec by Tomas Mikolov

et.al.. A multilayer perceptron with softmax activation is used to train the word embed-

ding. Each word in the vocabulary is assigned an index. Word2Index and Index2Word

are two dictionaries also packed into the captioning dataset. For example the follow-

ing sentence-"a man is walking on the road" may be encoded as [9,103,1143,4,1,2897].

Each index represents the corresponding column in the word embedding.

There is a slight difference between training and testing a RNN as supposed to training

and testing a CNN. While training, input sequence is given one by one after the other to

RNN. Output loss is back propagated through time for every RNN unit. While testing,

output of a RNN unit is given as input to the next RNN unit. The output of RNN units

is a softmax operation to decide the next word given previous words.

8



2.6 Beam search

Beam search in sequence to sequence learning was used by Wiseman and Rush

(2016). Sentence formation can be achieved by taking softmax at every RNN/LSTM

unit and still get a meaningful sentence. But, there might be a better sentence possible

that was not considered at all. Taking softmax and considering the best word each time

is a type of greedy search. Greedy search may not work all the time. Beam search on the

other hand considers a number of sentences at a time and considers the sentence whose

joint probability is in the top B sentences. B is a hyperparameter and is generally less

than 10.

2.7 Attention based sequence modelling

Attention based modelling was first introduced by Bahdanau et al. (2015) in his

paper regarding neural machine translation. It is observed that translation of long se-

quences generally taken part by part otherwise, BLEU score keeps falling as the length

of the sequence grows.

The idea of attention is that a word in the output sequence is going to depend on only a

few or less words in the input sequence. In the figure below, it can be seen that a linear

combination of features with coefficients as α(·, ·) is used as the context.

Figure 2.4: Attention based sequence modelling
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For predicting a word at time t, context may depend solely on a single word (which

happens in case of nouns). In that case α will be close to one for features of that par-

ticular word and zero for rest of the features since sum of α(t, :) should be 1. These

attention weights are learnt during back propagation. It has been shown that attention

based sequence modelling performs well in case of long sequences.

This idea can be carried over to video captioning. Instead of attention weights for

words, attention can be paid to certain frames more than the others.

10



CHAPTER 3

Evaluation Metrics and Datasets

In the previous chapter, types of networks that are used in this thesis were introduced.

The use of LSTMs in captioning is ubiquitous. This chapter revolves around metrics

and datasets used in video captioning. Evaluating if two sentences are same can be

difficult. It can happen that the meaning of two sentences are same but the words are

jumbled. There are several evaluation metrics that are used in the literature. Some of

the important metrics being BLEU, METEOR and ROUGE.

3.1 BLEU

Bilingual Evaluation Understudy introduced by Papineni et al. (2002) is one of the

most popular evaluation criteria in Natural Language Processing. BLEU score is often

calculated as the geometric mean of 4 BLEU-n scores(n being from 1 to 4). BLEU-i is

calculated by dividing the number of times an i-words subsequence in generated sen-

tence occurs in reference sentence by number of times it occurs in generated sentence.

BLEU is always between 0 and 1.

BLEU = min(1, output−length
reference−length)(

i=4∏
i=1

BLEU − i)
1
4

If the generated sentence is very short, it will easy to get high BLEU score even if

the sentence is not good enough. Therefore there is a brevity penalty multiplied to

geometric mean to discourage generation of short sentences.

3.2 METEOR

METEOR introduced by Lavie and Agarwal (2007)is another metric for machine

translation evaluation, and it claims to have better correlation with human judgement.

We try to find the largest subset of mappings that can form an alignment between the

candidate and reference translations. For this, we look at exact matches, followed by

matches after Porter stemming, and finally using WordNet synonymy. After such an



alignment is found, suppose m is the number of mapped unigrams between the two

texts. Then, precision and recall are given as m
c

and m
r

, where c and r are candidate and

reference lengths, respectively. F is calculated as,

F = PR
(αP+(1−α)R)

To account for the word order in the candidate, penalty function is introduced.

P = γ( c
m
)β

Here, c is the number of matching chunks and m is the total number of matches. As

such, if most of the matches are contiguous, the number of chunks is lower and the

penalty decreases. Finally, the METEOR score is calculated as (1− Penalty)F

3.3 ROUGE

ROUGE was introduced by Lin (2004)There are various types of ROUGE score.

ROUGE-N/L/W/S are types commonly seen. ROUGE-N will be explained here. This is

based on n-grams. For example, ROUGE-1 counts recall based on matching unigrams,

and so on. For any n, we count the total number of n-grams across all the reference

summaries, and find out how many of them are present in the candidate summary. This

fraction is the required metric value.

Suppose A and B are candidate and reference summaries of lengths m and n respec-

tively. Then, we have

P = LCS(A,B)
m

, R = LCS(A,B)
n

Where LCS is Longest Common Subsequence. That can be calculated efficiently using

dynamic programming. F is calculated as,

F = (1+b2)PR
R+b2P

Here, b is a hyperparameter.

12



3.4 Datasets

3.4.1 MSVD

MicroSoft Video Description corpus is a set of 1970 youtube videos with multilingual

captions. Average length of the videos is 10 seconds with an average of 8 words in

English captions. Following are the example videos and reference captions.

Figure 3.1: Example videos and captions in MSVD dataset

3.4.2 MSR-VTT

MicroSoft Research Video To Text dataset presented by Xu et al. (2016)is a video cap-

tioning dataset with 10,000 videos of generic day-to-day activity. Average duration of

the videos being 20 seconds and average number of words is 10. These video clips

last for 41.2 hours in total, covering the 20 representative categories and diverse visual

content collected with 257 queries in the video engines. The dataset contains 200K clip-

sentence pairs, and each clip is annotated with about 20 natural sentences. Compared

to MSVD, MSR-VTT is more challenging, due to the large variety of videos.

3.4.3 Problems associated with the above datasets

The above datasets provide a variety of videos for captioning. The problem we are

trying to solve is to generate captions given only first and last frame. The above two

datasets which we have used are not a cause-effect type videos. Repetitive tasks in the

13



Figure 3.2: Example videos and captions in MSR-VTT dataset

video rendering video captioning unnecessary. Image captioning can be used instead to

find better captions.

Figure 3.3: An arbitrary first and last frame with respect to the main activity i.e, water
skiing

Since we are only going to use features of first and last frame, a video will be useless

if either first and/or last frame is arbitrary or completely different from the subject of

the video. Many of the datasets only contain a single sentence for the whole video

although it can be described better with a paragraph. There are no video to paragraph

with cause-effect type video datasets currently accessible to public.
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CHAPTER 4

Relevant Video captioning models

In this chapter, relevant video captioning papers are discussed. Specifically, the teacher

networks that are tried for Teacher-Student paradigm are examined. Loss function and

network architecture used in each paper is discussed. Results of captioning MSVD

and MSR-VTT datasets using 2 networks are compared and best of them is selected as

Teacher network.

4.1 Teacher-Student network

Video captioning using only first and last frame can be interpreted as captioning

with limited information. There is a class of algorithm that deals with limited infor-

mation or limited network complexity. Those algorithms come under Teacher-Student

paradigm.

Bhardwaj and Khapra (2018) focuses on the task of video classification and aim to

reduce the computational time by using the idea of neural network distillation. Specifi-

cally, first train a teacher network which looks at all the frames in a video and computes

a representation for the video. Then train a student network whose objective is to pro-

cess only a small fraction of the frames in the video and still produce a representation

which is very close to the representation computed by the teacher network. This smaller

student network involving fewer computations can then be employed at inference time

for video classification.

The student network takes every jth frame as the input. Video classification and video

captioning both have the same cross-entropy loss. Therefore, the same architecture can

be used for video captioning while feeding features of only first and last frame.

Lteacher = −
∑C

i=1 yi log y
′
i

Lstudent = −
∑C

i=1 y
′
i log y

”
i + λ | IT − IS |2



Figure 4.1: The Teacher-Student Video classification model

Teacher-Student network needs a teacher network that is able to generate captions with

high BLEU score since student network is trying to have same features as that from the

teacher network. The loss function for training such a network can be a cross entropy

loss between representation computed by teacher network and representation computed

by student network.

Loss in student network is computed by taking y′
i, softmax output of parent network

as the true label and y”i , softmax output of student network as the predicted label. Addi-

tion to that there is another loss between the intermediate representation computed by

both networks.

The teacher network can be any of the state of the art models. Following are such mod-

els chosen for Teacher network. Details of experiments on those models are as follows.

4.2 Sequence to Sequence- Video to Text

This paper presented by Venugopalan et al. (2015) is the first to use LSTMs for

both encoding video and decoding captions. Video captioning is analogous to machine

translation between natural languages, where a sequence of words in the input language

is translated to a sequence of words in the output language. The main idea to handle

variable-length input and output is to first encode the input sequence of frames, one at

a time,representing the video using a latent vector representation,and then decode from

that representation to a sentence, one word at a time.
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This is an important model that was followed by all other models for video captioning.

Figure 4.2: Sequence to Sequence- Video to Text model

The token "<pad>" is a zero input since some input should be given to LSTM. Encod-

ing stage extracts relevant features for captioning and passes on to the decoding stage.

The latent feature vector that is passed from encoding stage to decoding stage is known

as the "context". A token "<BOS>" or beginning of sentence is given by the user to

indicate that captioning should begin after this word.

4.2.1 Video and Text feature representation

Each Video frame is passed through a pretrained CNN model. Here, a variant of

AlexNet and also VGG16 is used. Each frame is scaled to 256x256 and cropped to

227x227 before feeding it to the above CNN models. The result is a 500 dimension

linear embedding formed at the last but one layer of the CNNs.

In addition to CNN outputs from RGB frames, optical flow is also incorporated that

measures as input sequences to the architecture. Many papers have shown that incorpo-

rating optical flow information to LSTMs improves activity classification. As many of

the descriptions are activity centered, it is bound to improve the captioning task as well.

Text input is one-hot encoded and converted to a lower dimension of 500 using an-

other neural network. Word embedding were not used in this case. SO this embedded

word vector is concatenated with feature vector ht created by the first LSTM layer is

sent to the second LSTM.
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4.2.2 Training

While training, the ground truth will be given to the LSTMs as an input and loss is

calculated with respect to the ground truth. While testing, words generated in current

LSTM unit is given to the subsequent LSTM as the input. While training in the decoding

stage, the model maximizes for the log-likelihood of the predicted output sentence given

the hidden representation of the visual frame sequence, and the previous words it has

seen.

θ∗ = argmax
θ

m∑
t=1

log p(yt|hn+t−1, yt−1; θ)

During the decoding stage, the most possible word is selected using softmax and not

using beam search.

p(y|zt) = expWyzt∑
y′εV expWy′zt

4.3 Hierarchical Boundary-Aware Video Captioning

Proposed by Baraldi et al. (2017) the core idea of this network is to prevent mix-up

of memory passed by LSTMs if there is a shot change. So, if there is a shot detector,

Summarizing the features of one shot and passing that to a new LSTM will prevent the

mix-up of those features. If there is a shot change, there will be reinitialization of state

and memory in old LSTM.

Given an input video, there is a recurrent video encoder which takes as input a sequence

of visual features(x1, x2, ..., xn) and outputs a sequence of vectors(s1, s2, ..., sm) as the

representation for the whole video. The following figure only depicts the encoder part.

Decoder consists of traditional LSTM network generating the sentence one word at a

time.

Time boundary-aware recurrent cell is built on top of a LSTM unit. Update operations

on the memory cell are modulated by three gates it, ft and ot, which are all computed

as a combination of the current input xt and of the previous hidden state ht−1, followed

by a sigmoid activation.
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Figure 4.3: Difference between a traditional LSTM and Boundary aware LSTM net-
work

At each time step, we select whether to transfer the hidden state and memory cell

content to the next time step or to reinitialize them, interrupting the seamless update

and processing of the input sequence. This depends on a time boundary detection unit,

which allows our encoder to independently process variable length chunks of the input

video.The boundaries of each chunk are given by a learnable function which depends

on the input, and are not set in advance.

Formally, the boundary detector stε{0, 1} is computed as a linear combination of the

current input and of the hidden state, followed by a function f which is the composition

of a sigmoid and a step function:

st = f(V T
s · (Wsixt +Wshht−1 + bs)

f(x) =

0 σ(x) ≤ 0.5

1 otherwise

where vTs is a learnable row vector andWsh,bs are learned weights and biases. Given the

current boundary detection st, before applying the memory unit update equations, the

following substitutions are applied to transfer or reinitialize the network hidden state

and memory cell at the beginning of a new segment, according to st:

ht−1 = ht−1 · (1− st)

ct−1 = ct−1 · (1− st)
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The resulting state and memory are now employed to recompute the gates values, which

will in turn be used for advancing to the next time step. The encoder produces an output

only at the end of a segment. Ifst= 1, the hidden state of time step tâĹŠ1 is passed to

the next layer. If st =0, ht and ct will be initialized to 0.

4.3.1 Training and Preprocessing details

Preprocessing involves extracting visual features from videos using standard pretrained

models. Not every frame is necessary since there will be very high correlation between

two adjacent frames. Uniform sampling of frames was used to pick certain frames and

ignore all other. If a video is divided into frames, 16 uniformly spaced frames were

picked from those. Also 20 clips of 16 frames each were picked starting from the ear-

lier 16 uniformly spaced frames.

The 16 frames are then fed to ResNet-152 for feature extraction. A vector of dimension

2048 is created by Resnet-152. Frames will encoder the appearance or static component

of the frame. For encoding the motion, another network called 3D convolution network

or C3D is used. Clips instead of frames are fed to C3D to obtain a feature vector of

dimension 4096. Then both these feature vectors are concatenated to form a feature of

dimension 6144. This vector will then be fed to the encoder for caption generation.

There is another round of feature extraction where only first and last frames are con-

sidered. Resnet-152 was used to extract appearance features from the two frames to

create a feature vector of size 2048. These two frames were concatenated to form a clip

of size 2 frames and fed to C3D to get a feature vector of 4096. Then these two were

concatenated to form a vector of size 6144.

MSVD dataset is divided into 1200 videos for training, 100 for validation and remain-

ing 670 videos for testing. MSR-VTT dataset is divided into 6500 videos for training,

1000 for validation and remaining 2500 videos for testing. Training is performed with

minimizing cross entropy using adadelta optimizer. Learning rate is 0.0003 and used

a dropout probability of 0.5 for regularization on input and hidden layer. Training was

run for 100 epochs or until the improvement on validation set stops.

20



4.3.2 Results

MSVD and MSR-VTT datasets were used to train and test the above network. Follow-

ing is the results on these datasets. Two types of data- one was representing every frame

and the other was representing only first and last frame. Intuitively, there will be a drop

in accuracy since network is not shown everything that is happening in the video.

Dataset B@4 METEOR CIDEr
MSVD 0.44 0.33 0.65

MSR-VTT 0.36 0.25 0.31

Table 4.1: Using encoded data representing every frame

Dataset B@4 METEOR CIDEr
MSVD 0.34 0.25 0.45

MSR-VTT 0.30 0.21 0.31

Table 4.2: Using encoded data representing first and last frame

Generated caption Reference caption
a woman is holding a baby a man and a woman are talking

a man is pouring water into a pot the person is cooking
a cat is playing with a ball a cat walks across the grass

a man is doing exercise a man is doing bench press
a man is drinking water a tired man is drinking juice
a man is shooting a gun a man is shooting a gun

a baby is crying woman is trying to calm the baby
a man is doing exercise a man is jumping

a woman is talking on a phone a mobile phone commercial
a frog is eating A frog is eating a lizard

Table 4.3: Generated and reference captions. Generated captions are using features rep-
resenting every frame

From the above results, it is clear that there is a significant drop in accuracy between

the two type of generated captions. It will be difficult to bridge a gap that large using

teacher-student network. So, we tried another network that gave better results, close to

state of the art and does not have a huge gap the two types of generated captions.
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4.4 Semantic Compositional Network for Visual Cap-

tioning

Proposed by Gan et al. (2016) Semantic Compositional Network takes visual tags

along video features for caption generation. Detecting explicit semantic concepts en-

coded in an image, and adding this high-level semantic information into the CNN-

LSTM framework, has proven to improve performance significantly.

Similar to the conventional CNN-LSTM based image captioning framework, a CNN

is used to extract the visual feature vector, which is then fed into a LSTM for gener-

ating the image caption . However, unlike the conventional LSTM, the SCN extends

each weight matrix of the conventional LSTM to an ensemble of tag-dependent weight

matrices, subject to the probabilities that the tags are present in the image.

Figure 4.4: Semantic Compositional Network

4.4.1 Semantic tags generation

In order to detect a tag from an image, we first select a set of tags from the caption

text in the training set. We use the K most common words in the training captions to

determine the vocabulary of tags, which includes the most frequent nouns, actions or

verbs.

Here K=300 is a user’s choice. In order to predict semantic concepts given a test image,

we treat this problem as a multi-label classification task. Suppose there are N training
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examples, and yi = [yi1, ..., yiK ]0, 1
K is the label vector of the ith image, where yik= 1

if the image is annotated with tag k, and yik = 0 otherwise. Let viand sirepresent the

image feature vector and the semantic feature vector for theithimage, the cost function

to be minimized is

1
N

∑N
i=1

∑K
k=1(yik log sik + (1− yik) log(1− sik))

where si = σ(f(vi)) is a K-dimensional vector with si = [si1, ..., siK ], σ()is the logistic

sigmoid function and f(Âů)is implemented as a multilayer perceptron. In testing, for

each input image, we compute a semantic-concept vectors, formed by the probabilities

of all tags,computed by the semantic-concept detection model.

Figure 4.5: Generated tags with their respective probabilities

4.4.2 Incorporating tags into the network

The SCN creates each weight matrix of the conventional LSTM to be an ensemble

of a set of tag-dependent weight matrices, subjective to the probabilities that the tags
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are present in the image. Specifically, the SCN-LSTM computes the hidden states as

follows,

ht = σ(W (s)xt−1 + U(s)ht−1 + z)

z = I(t = 1) · Cv

W (s)and U(s) are ensembles of tag-dependent weight matrices, subjective to the prob-

abilities that the tags are present in the image. Every weight matrix in a conventional

LSTM will be a 2D slice of the weight matrix being trained in this network. There is

a weight matrix for each tag and is a linear combination of these matrix that is evalu-

ated for each image with coefficients being the probability of these tags present in that

particular image. Following are the formulas governing tag dependent weight matrices.

W (s) =
∑K

k=1 skWT [k]

U(s) =
∑K

k=1 skUT [k]

Here, s ∈ RK , we define two weight tensors WT ∈ Rnh×nx×K and UT ∈ Rnh×nh×K ,

where nh is the number of hidden units and nx is the dimension of word embedding.

Observing the above tag dependent weight matrices indicate that training this network

is equivalent to training K independent LSTMs.

4.4.3 Results

MSVD and MSR-VTT datasets were used to train and test the above network. Follow-

ing is the results on these datasets.

Dataset B@4 METEOR CIDEr
MSVD 0.51 0.59 0.78

MSR-VTT 0.39 0.45 0.37

Table 4.4: Using encoded data representing every frame

Dataset B@4 METEOR CIDEr
MSVD 0.48 0.33 0.53

MSR-VTT 0.35 0.24 0.28

Table 4.5: Using encoded data representing first and last frame
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Generated caption Reference caption
a man and a woman are talking a family is having conversation

a man is surfing in the water a woman surfing in the ocean
a man is showing how to use a toy a chef cutting bell pepper and crushing garlic

a scene from a movie is shown a trailer for a movie is shown
a man is talking about makeup man getting nose treatment

two men are wrestling boys are wrestling in front of a crowd
someone is playing a game a cartoon jumping on flowers
a man is running on a track a woman is running in a meet
a man is being interviewed two men are talking about something

Table 4.6: Generated and reference captions. Generated captions are using features rep-
resenting every frame

25





CHAPTER 5

Teacher-Student Network results

In the last chapter, two networks were tested for captioning accuracy when each frame is

fed and when only first and last frame is fed. Choosing the best of two networks(SCN)

as a teacher, following results were generated.

5.1 Results

The loss function given in the original paper Bhardwaj and Khapra (2018) wasn’t

appropriate for captioning. L2 loss with the feature representation of teacher and student

network was employed. But it turned out to give a low BLEU score of 0.25. Following

is the cost function plot while using L2 loss.

Figure 5.1: Cross entropy loss(Teacher) and L2 loss(Student)



The next loss function employed was cross entropy loss with softmax predictions

of student and teacher network. Along with that, the intermediate features encoded in

LSTMs was taken with a hyperparameter λ to make the two losses comparable. The

result was a BLEU score of 0.36. A slight improvement over absence of Teacher-

Student network. Following is the plot of cost function. So, there was an improvement

of ≈ 3% in BLEU score.

Aim of this thesis was to generate captions with better BLEU-4 score using a

teacher-student network. SCN was chosen as the teacher network since it had com-

parable to state of the art results on both MSVD and MSR-VTT datasets. Following

is the training loss of teacher-student network with MSR-VTT dataset. Student loss is

Figure 5.2: Cross entropy loss(Teacher) and cross entropy loss(student)

less than teacher loss since the loss function is different for student network. Following

Dataset B@4 METEOR CIDEr
MSVD 0.49 0.33 0.75

MSR-VTT 0.36 0.244 0.297

Table 5.1: Using encoded data representing first and last frame
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is the comparison between reference captions and generated captions on MSVD and

MSR-VTT datasets.

5.2 Contribution

The core idea of Teacher-Student network was adopted for video captioning. As

a result, there was a need to choose a teacher network that is able to generate quality

captions even with less number of frames. Two networks were tested through captioning

by feeding each frame and feeding only two frames. Semantic Compositional Network

seemed to give good BLEU score even when only two frames were fed as input. So,

SCN was chosen as the teacher network. There is an improvement of approximately

3% in BLEU score on the two datasets used.

5.3 Conclusion and Future directions

Video captioning using only first and last frame is advantageous mainly for mobile

devices(processing power is limited) since preprocessing is reduced tremendously and
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Figure 5.3: Generated and reference captions
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also number of LSTM computations is reduced. The current Video captioning datasets

are not suitable for captioning using few frames. In order to caption the "interpolated"

visual features, the dataset should have a cause-effect relationships. There are basically

no datasets that ensure such property in videos and hence the network cannot reach to

its full potential with current datasets.

Loss function for Teacher-Student network can be improved for better performance.

Trying out different loss functions might improve BLEU score. Teacher-Student net-

work can also be used with a more compact student network. Measuring accuracy Vs

complexity of neural network can give an insight regarding actual complexity required

for a given task. Spacial attention mechanisms can be used to improve the results since

temporal attention is not possible with only two frames.

Boundary aware network can be used to generate Video to Paragraph captioning since

it summarizes one shot and reinitializes LSTM for next shot. Semantic Compositional

Network can be modified with spatial attention mechanisms to further improve accu-

racy.
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