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ABSTRACT

KEYWORDS: Deep Learning, Networks, Chemical Reaction Prediction,
Protein-Protein Interaction Prediction, Graph Convolutional

Networks, Drug Design

In many real life systems, we find entities are influenced by each other, rather
than being independent. Such systems can be effectively modeled as graphs, with
the entities forming nodes, and the interaction being represented with edges. In
recent times, there has been a surge in research applying learning algorithms to
such network data. We find many chemical and biological data which can be
effectively modeled using graphs. We review the applications of deep learning
on such data. We discuss the benefits of such applications in optimising the drug

design pipeline.

We also demonstrate state of the art results for the problem of chemical reaction
prediction using an optimised graph convolutional network architecture. Our

model beats the baseline, while having 25x lesser learning parameters.

We also propose a novel setup for protein-protein interaction prediction which
is able to effectively combine information from multiple noisy incomplete graphs
with node attribute information. We believe that our setup will allow us to predict

co-functioning as well as co-evolving pairs of proteins.

We hope that this report informs the reader regarding the various applications

of deep learning to network biology and network chemistry. Further, we hope
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that our work in the area of reaction prediction and protein interaction prediction

inspires researchers to work on these problems.
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NOTATION

Graph

Set of Vertices. The number of vertices is given by |V] or n.

Edge set. The number of edges is given by |E| or m.

Adjacency Matrix. A € R™".

Degree Matrix. It is diagonal matrix with degree of node as diagonal entries.
Identity Matrix.

Feature vector for atom u after i layers of GCN.

Feature vector for bond between atoms u and v.

Set of neighbors of node v.

A non-linear function, typically a fully-connected neural network
State of a system.

Action taken by an RL agent.

Transition function dependent on previous state and action.
Reward function.

Training set of molecules.

Set of valid molecules generated.

Set of valid and unique molecules generated.
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CHAPTER 1

INTRODUCTION

We have seen the tranformational impact of deep learning in many domains. In
domains such as computer vision and speech recognition, deep learning has be-
come so ubiquitous, that majority of researchers have shifted their primary focus
from conventional methods to deep learning methods [Voulodimos et al., 2018].
Deep learning has been applied to different types of data. Most commonly, deep
learning has been applied to images, time series data and text data. More recently,
there has been an increasing interest in the application of deep learning to data
which can be represented as graphs. Graphs can be used to represent molecules,
protein interaction networks, social interactions and many other common systems.
In this thesis, we will focus on the application of methods which lie at the intersec-
tion of deep learning and networks to the fields of biology and chemistry. Further,
we will provide state of the art results in the treatment of two problems, namely,

chemical reaction prediction and protein-protein interaction prediction.

1.1 Deep Learning on Networks

In the last few years, many papers have visited the problem of applying neural
networks to arbitrary networks [Kipt and Welling, 2016; Grover and Leskovec,
2016; Abu-El-Haija et al., 2017; Vijayan et al., 2018]. The goal of deep learning
on networks can be node classification, link prediction, community detection,

clustering of nodes or graph classification.



Graph data consists of nodes and links. Nodes and links may or may not
have attributes. For example, in the case of molecules, both nodes (atoms) and
links (bonds) have attributes. In case of PPI networks, only nodes have attributes.
Applying deep learning to graph data is difficult, because we need to learn the
network information along with the attribute information. Furthermore, in some
networks the global properties of the network are more important, while in others
the local network properties are more important. The challenge is to learn an
appropriate feature vector representation for each node, that encodes both, the

attribute information and relevant network information.

Traditional machine learning algorithms on networks required hand-crafted
features. These hand-crafted features could be summary node statistics such as
degree and clustering coefficients [Henderson et al., 2012; Bhagat et al., 2011] or
graph kernels [Vishwanathan et al.|, 2010]. The problem with these approaches is
the same problem as with typical machine learning approaches: they require one to
design these features for each problem. If one set of features give abysmal results
for a particular problem, then one must understand why given set of features
fail and come up with new features. This whole process can be taxing and time
consuming. Therefore, we require a solution which can automate the feature

engineering process.

Scarselli et al.|[2009] introduced graph neural networks, which allow propa-
gation of information between adjacent nodes. However, this model was limited
to graphs which can be fitted into memory. This becomes a problem for larger
networks. Graph Convolution Networks (GCNs) [Kipf and Welling, 2016] re-
cursively convolves one-hop neighborhood information with a symmetric graph

Laplacian allowing them to handle larger networks as well. Vijayan et al.| [2018]]



extended GCN architecture to regulate attribute and network information from
different distances independently. Schlichtkrull et al. [2018] extended GCNs for
multi-relational graphs,i.e for graphs with multiple types of edges. |Velickovi¢
et al. [2018] add self-attention [Bahdanau ef al., 2015] to GCNs for node classifica-

tion problems.

Many recent state of the art papers on network data make use of GCNs or some
variation of GCNs for various tasks. Primarily, GCNs are used to learn an efficient
representation of nodes. This node representation is then used to learn the task
at hand which maybe node classification, link prediction, community detection,

clustering of nodes or graph classification.

1.2 Networks in Chemistry

Chemistry is the branch of science concerned with the substances of which matter
is composed, the investigation of their properties and reactions, and the use of such
reactions to form new substances. Essentially, chemistry is the study of molecules,

molecular properties and reactions between molecules.

In 2012, a team of deep learning researchers won the Merck Molecular Activity
Challenge [Dahl et al., 2014], without having a single chemist or biologist on their
team. Since then, there has been an exponential rise in the application of deep

learning to chemistry [Goh et al., 2017a].



1.2.1 Molecular Networks

Any molecule can be represented as a graph, with atoms as nodes and bonds as
edges. Molecules can also be represented as strings using the SMILE representation
of molecules. However, this representation is not robust. A single character
perturbation in the SMILE representation can lead to a significant change in the
graph [You et al,, 2018a]. Hence, a graph based representation of molecules is
preferred for computational methods. In general there are three applications of
analysing molecular networks, namely, reaction prediction, Quantitative structure

activity relation (QSAR) and generation of molecules with desired properties.

Reaction Prediction

Efficient and accurate chemical reaction prediction is essential for any drug design
pipeline [Engkvist et al.|, 2018]. Chemical reaction prediction is also useful for dis-
covering cheaper pathways to any molecule. Computational methods for chemical
reaction prediction can help reduce the cost of manufacturing various chemicals.
The reaction prediction problem is two-fold. The first problem is to predict the
product of a reaction, given the reactant molecules. The second problem is to find
reactant molecules, given a product molecule. This second problem is referred to
as the retro-synthesis problem. Both problems can be attempted by applying deep

learning methods to molecular networks.

Quantitative Structure Activity Relationship

Quantitave Structure Activity Relationship (QSAR) models are regression or clas-

sification models to predict certain properties of a molecule. Common properties



of interest are toxicity, solubility, boiling points, drug-likeness and so on. Machine
learning approaches to QSAR require feature engineering based on the molecule
structure. Deep learning papers for QSAR models generally apply a convolutional
network on the molecular graph, and learn a classifier or regressor on top of the

node embeddings learned [Li et al., 2018; Wu et al., [2017].

Molecule Generation

One of the many challenges in drug design is the sheer size of the search space
for novel molecules. It has been estimated that 10° drug-like molecules could
possibly be synthetically accessible [Ruddigkeit et al., 2012]. The process of drug
design relies heavily on existing datasets of drug-like molecules, which form a

very small subset of the large molecular space.

Generative models can help us traverse the space of novel molecules not avail-
able in existing databases. The process of molecule generation can be goal-directed
or un-directed. In un-directed molecule generation, the modelisjust trying to learn
the space in which drug-like molecules lie. We can then sample from this space to
generate new molecules. These molecules are unlikely to be useful as they do not
have the properties desired by us. Goal-directed molecule generation generates

molecules with specific desirable properties.

Inrecent times, researchershaveapplied GRUs [Chungetal.,2014], VAEs [Kingma
and Welling|, 2014] and GANs [Goodfellow et al.,2014] for molecule generation. In

Chapter 2, we cover each of these approaches in more detail.



1.2.2 Reaction Networks as Hypergraphs

Another way to model reactions using networks, is by denoting molecules as
nodes, and reactions as directed hyperedges [Fagerberg et al., 2018]. In this ap-
proach the reactants and product form a directed hyperedge, with the reactants on

one side, and the products on the other side of the directed hyperedge.

This method of modelling is generally used when the goal is to search for
synthesis pathway for a given molecule. It can also be used to search for specific
chemical reactions, which can be useful for reaction prediction for some systems.
However, such a system will fail if the input is not present in the dataset. This
method of modelling can also be used to pose the problem of reaction prediction
as a link prediction problem [Yadati et al., 2019]. Such a system is very useful

for modelling systems such as metabolic networks, where all nodes are known

beforehand.

1.3 Networks in Biology

Network biology involves the study of the complex interactions of bio-molecules
that contribute to the structures and functions of living cells [Camacho et al., 2018].
In recent times, there has been an increase in the amount and complexity of data
collected in biology and health-care. We require efficient algorithms to analyze

this data and extract useful insights from it.

The most common types of networks in biology are:



1.3.1 Protein-Protein Interaction Networks

Protein-protein interactions are physical contacts between two or more proteins.
Proteins allow organisms to function. However, proteins do not function indepen-
dently of each other. Proteins interact with genes and other proteins in order to
perform their functions. PPI networks are used to represent interactions among
proteins in a cell or a tissue. PPI networks have been used to identify novel pro-
tein functions [Peng et al., 2014]. Further, PPI networks can be used to identify
mechanisms for various processes which can help identify progression of various

diseases [Fionda, [2018]].

Typically protein interactions are represented using dyadic connections. How-
ever, very often protein complexes comprise of more than two proteins. In such
cases a hypergraph representation of protein complexes maybe more accurate [Ra-

madan et al.|, 2004].

Another network, very similar to PPI network is the Domain-Domain interac-
tion (DDI) network. Domains are building blocks of proteins. They are blocks
that fold independently. A DDI network represents exactly which domains be-
tween two proteins are interacting with each other. DDI networks are much larger

compared to PPI networks as they contain more number of nodes [Kim et al.,2012].

1.3.2 Metabolic Networks

Metabolic networks are used to represent the complete set of metabolic and phys-
iological processes that occur in a cell. Some common data sources for metabolic
networks are KEGG [Morishima et al., 2018], Ecocyc [Kothari et al., 2016] and

BioCyc [Karp et al}, 2017]. Analysis of metabolic networks can help us find new



metabolic pathways. This helps us improve our understanding of biological func-

tioning.

One of the ways to model metabolic networks is using hypergraphs as in
Mithani et al.|[2009]. In the hypergraph representation, nodes represent substances
(molecules), and hyperedges represent reactions. Another method of modelling
metabolic networks is by using molecular networks as in Sankar et al. [2017]. In
this method the molecules in the reaction are treated as graphs. In either case, the
analysis of metabolic networks allows us to find new metabolic pathways. Another
goal metabolic network analysis can be community detection. Generally metabolic
networks are highly modular, and the various communities can be indicative of the

functional significance of the reactions as shown in |Guimera and Amaral [2005].

1.3.3 Gene Regulatory Networks

Some types of proteins interact with mRNA. These types of proteins are referred to
as transcription factors. This interaction between mRNA and protein is essential
for gene expression in organisms. Gene regulatory networks allow us to capture
this information. A gene regulatory network (GRN) is a collection of molecular
regulators that interact with each other and with other substances in the cell to
govern the gene expression levels of mRNA and proteins. The regulator can be

DNA, RNA, protein and complexes of these.

Gene regulatory networks can be represented using boolean networks [Martino
et al} 2007], i.e the edges are un-weighted in the graph. However, this causes loss
of information since the experiments used to form the network return probabilistic

values. To overcome this some papers use Bayesian networks as in |Friedman et al.

[2000].



1.3.4 Cell Signaling Networks

Cells are generally specialised to perform a specific function. In order for an
organism to perform biological processes, cells must work together. In order to
collaborate cells must be able to signal each other. This signalling generally takes

place with the help of proteins.

Cell signaling networks are modelled using molecules as nodes and interactions
as edges. These molecules are generally proteins, but can be lipids, substrates or
metabolites. The interactions between two molecules may lead to activation or

deactivation of certain substances |Fiondal|[2018)].

Generally cell signaling network to be spatially uniform and model the time
variation of concentrations with the help of ordinary differential equations Szabo

et al. [2011]. Some models divide the cell into compartments as in Paun|[2000] .

1.3.5 Drug Target Interaction Networks

A drug is a substance which when taken in (intake maybe inhalation, oral, absorp-
tion by patch or injection) by a person, alters the functioning of the body. Drugs
generally bind to a specific protein site. The use of computational methods to
identify novel drug target interactions is of great interest. This can help us cure

certain types of diseases and design better drugs for existing diseases.

Conventional methods for drug design are time taking and expensive. Recently,
there has been an interest in applying deep learning for designing drugs as in [ztrk
et al 2018} |Vilar et al., 2016; Ragoza et al., 2017]. These methods model proteins
and drugs as molecular networks and try to determine binding affinity between

the two. These methods will be covered in more detail in chapter 4 of this thesis.



In this thesis, I will focus on research which applies deep learning methods
to network biology. Primary focus will be on PPI networks, metabolic networks
and drug target interaction networks. There is a lack of papers which apply deep
learning models to other types of biological networks. This could be a fruitful
direction for future research. I will also be providing novel results and analysis for

the Escherichia coli protein-protein interaction network.

1.4 Contributions of this Thesis

The contributions of this thesis are three-fold:

1. We provide areview of the current methods and applications of deep learning
to network biology and network chemistry. With an increasing amount of
work being done in the field, this review summarises previous works done
in the field. This thesis does not provide a comprehensive review of deep
learning architectures on networks. The reader is referred to [Hamilton et al.,
2017b; Yang et al., 2015; Wu et al., 2019b] for the same.

2. We provide state of the art results for the chemical reaction prediction prob-
lem. We attempted the chemical reaction prediction for Lowe’s USPTO
reaction database [Lowe, 2012].

3. We provide a new setup and state of the art results for the PPI prediction
problem. We provide results for the PPI network corresponding to Escherichia
coli organism.

1.5 Outline of this Thesis

The remainder of this thesis is structured a follows. In Chapter 2, we provide a
survey of literature which applies deep learning to network chemistry. Focus will

be on three problems, namely, reaction prediction, QSAR and molecule generation.

10



In Chapter 3, we analyse the chemical reaction prediction problem in more detail.
We give special attention to [Jin et al.| [2017b], and improve on their result by
providing a better neural architecture. In chapter 4, we provide a survey of the
papers which apply deep learning on biological networks. Special focus will be
on PPI networks. In Chapter 5 we provide a novel setup for PPI link prediction,
by making use of multi-graphs. In the final chapter, we provide a brief discussion

of future works in this area and the potential impact of research in this field.

11



CHAPTER 2

Survey of Deep Learning Applications in Network

Chemistry

In the previous chapter we had a brief look at the methods and applications of deep
learning in network chemistry. In this chapter, we will provide a comprehensive
survey of the same. This chapter also sets the stage for the next chapter, where we

will provide state of the art results for chemical reaction prediction.

Before jumping into the applications of deep learning to network chemistry, we

would like to make a comment on the graph representation of molecules.

Network Representation of Molecules: While the network representation of
molecules is a powerful abstraction, it still loses some information. Molecules are
3-dimensional in nature. However, graphs only capture a 2-dimensional projection
of molecules. Further, information regarding bond strength and electron clouds
is also lost. Such information maybe crucial in some cases and it is important
to capture this information to build more general models. The exploration of
methods which capture the 3-D structure of molecules is an important direction

for future work.

2.1 Chemical Reaction Prediction

Over the past 40 years many tools have been developed to aid in material design

and synthetic planning. The first computational tool for the task of retro-synthetic



planning was LHASA [Corey, [1971]. The software used a large number of subrou-
tines and encoded rules. It took a decade to build. In the 1980s and 90s, various
new softwares like SOPHIA [Satoh and Funatsu, 1996], CAMEO [Jorgensen et al.,
1990] and EROS [Gasteiger et al.,|1987] were developed. Though each of these had
their differences, they all functioned based on hand coded rules for chemical reac-
tions. They would identify important functional groups in the molecular graph,
and try to match this to existing reaction templates. The first drawback of such
models is that their accuracy depends largely on the encoded knowledge base.

The second drawback is that we cannot learn anything new from such models.

Another approach for chemical reaction prediction is the use of physical chem-
istry principles. Softwares such as ROBIA [Socorro et al., 2005] use quantum
mechanical calculations for reaction prediction. While such approaches have a
wider reach than template based approaches, they are expensive as they require a
new set of computations for each reaction family. Hence, they are limited in the

size of the dataset and reaction types they can handle.

A third approach for reaction prediction requires predicting the reaction mecha-
nism. These approaches model chemical reactions as interactions between electron
donors and electron acceptors. The works which follow this approach are [Kayala
and Baldi, 2011} Fooshee et al., 2018]]. Both these papers predict the reaction prod-
uct with the help of two sequential models. The first model identifies potential
electron sources and sinks. The second model ranks all combinations of sources
and sinks. This approach is template-free. However, it can predict only one step
at a time, and needs to be requires multiple iterations for multi-step reactions.
Further, it requires a dataset which contains information regarding mechanism of

the reaction.

13



Another template-based approach to reaction prediction makes use of machine
learning. In this approach, molecules are represented with the help of molecular
descriptors such as morgan fingerprints [Morgan, 1965]. These fingerprints are
used to classify the type of reaction. Then, based on the reaction type, a transfor-
mation is applied to the reactants to obtain the product [Wei et al., 2016; Gelernter
et al.,1990]. Such an approach would however fail for complex reactions which
cannot be clearly classified. It would also fail for certain reactants where there

maybe multiple reaction centres for the same type of reaction.

All of the papers mentioned above operate on different datasets, and it is diffi-
cult to compare the various approaches. In recent times, most papers on reaction
prediction make use of the USPTO dataset [Lowe, 2017]. The dataset consists
of reactions mined from US patents filed between 1976 and 2016. After remov-
ing duplicates and erroneous reactions, the dataset consists of 400K reactions. One
drawback of this dataset is that it does not contain the physical conditions in which
the reaction takes place. Another point to note, is that the dataset does not denote
which molecules take part in the reaction, and which molecules act as reagents or
catalysts for the reaction. A detailed analysis of this dataset will be presented in

the next chapter.

[Jin et al.|2017a;/Schwaller et al., 2018} Bradshaw et al.,[2019;| Do et al.,2019; Coley
et al.,2017] all make use of the USPTO dataset for the forward reaction prediction

problem. We will cover each of these approaches in some detail here.

14



Paper Summary: Prediction of Organic Reaction Outcomes Using Machine

Learning

Coley et al| [2017] uses a template based machine learning approach on the
USPTO dataset. The authors automatically extract reaction templates from the
given dataset. They then train a neural network to rank the various reaction tem-
plates for a given reactant. This approach differs from previous template based
approaches like (Wei et al.|[2016] as it automatically extracts templates from reac-
tions. Further, for the purpose of ranking, rather than using molecular descriptors,
this paper uses an edit based model, i.e they take the difference between the candi-
date product and the reactant. Another ranking model which the paper proposes,
makes use of just the candidate product (disregarding the reactants), ranking it
based on its stability. The final ranking model the paper proposes, ensembles the

two approaches.

Paper Summary: Found in Translation: predicting outcomes of complex organic

chemistry reactions using neural sequence-to-sequence models

Schwaller et al.|[2018] uses the SMILE representation of molecules for reaction
prediction. The idea is to translate from the reactant SMILE to the product SMILE
using a state-of-the-art translation model. This is similar to the work of Nam and
Kim| [2016], which directly uses the Tensorflow translate model [Abadi et al., 2015
to predict chemical reactions. However, [Nam and Kim), 2016] restrict themselves
to textbook reactions, and can be considered to be a toy dataset in comparison to
the USPTO dataset. Schwaller et al.| [2018] uses the neural machine translation
algorithm taken from |[Luong et al. [2017] for reaction prediction, and uses the

much larger and noisier USPTO dataset. However, they make use of SMILE

15



representations, which can be brittle.

Paper Summary: Predicting Organic Reaction Outcomes with Weisfeiler-Lehman

Network

Jin et al. [2017a] proposes two-step template free model for reaction prediction.
The first step uses a graph convolutional network to aggregate node embeddings.
These embeddings are used to compute atom pairs which are likely to react with
each other. The second part of the model runs a combinatorial search over the
candidate pairs to identify likely products and ranks them. Let G be the graph
corresponding to the reactant molecule. The initial node embedding (CE,O)) for an
atom (u) is a concatenation of features such as atomic number, valency, charge and
aromaticity. The edge embedding (c,,) for a bond between a pair of atoms (1 and
v) is a one hot encoding of the type of bond. To aggregate the neighbourhood

information, the model uses a GCN:

C§}i+1) — (ulc"l() + uz Z T(V[C;/ Cuv])) (2.1)
ueN(v)

where 7 can be any non-linear function. The GCN helps aggregate neighbourhood
information. The final representation of atoms comes from mimicking the set
matching function in the WL isomorphism test [Douglas, 2011]. The resulting
equation is :

=Y WO W, WA 2.2)

(%
ueN(v)
To aggregate information from global nodes the model computes the attention

between each pair of atoms according to

Qyy = G(uTT(MaCuN + Maczl;] + Myb,,)) (2.3)
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where a,,, represents the attention between atoms u and v, and N is the number of

layers of GCN applied. Global node embeddings are computed according to

G = Z QoCy (2.4)

Using global node embeddings, the likelihood of reaction between any pair of

atoms can be computed according to
Sup = 0(U T(PoCy + PGy + Pybyo)) (2.5)

where s,, is the probability of reaction between u and v. After identifying the
top K atom pairs and corresponding bond orders, the paper runs a combinatorial
search for the best combination of edits. A graph edit can be represented as a
triple: (1, v,b), where u and v represent atoms and b represents the new bond order
between u and v. In the USPTO dataset, the maximum number of edits in a reaction
is six. Hence, the combinatorial search is restricted to this size. Each combination
of edits less than 6, from the top K edits forms a candidate. To score the candidate,
another network is trained on the difference graph of the candidate product and

the reactant. The difference graph for product p; is computed according to
dg’ho) _ Cgﬂifo) _ CEI,O) (2.6)

After applying L layers of GCN according to (2.I), we obtain the node embedding

for the difference graph. This is used to score the candidate product as per

s(p;) = sigmoid(M Z ALy (2.7)

VEp;
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Figure 2.1: A pictorial summary of Jin et al.|[20174]

The entire model is summarised in Figure

A modification of this paper is presented in (Coley et al.| [2019], where the

reactivity score for a given edit obtained from the first model is added to the
candidate score (s(p;)). The main drawback of this model is that it cannot be trained
end-to-end. The second issue is that the combinatorial search over candidate pairs

is expensive. Despite its drawbacks, it is the current state of the art on the reaction

prediction problem.

Paper Summary: Graph Transformation Policy Network

Do et al|[2019] provides an alternative to the combinatorial search required in

Jin et al.|[20174]. Further, Do et al. [2019] is an end-to-end approach for reaction

prediction. In Do ef al.|[2019], the authors identify the pairs of atoms which are

likely to react, as mentioned in [Jin ef al. [20174]. To identify candidate products,
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the authors propose a reinforcement learning based approach. Instead of running

a combinatorial search, the authors apply the edits in a sequential manner.

The series of graph edits can be represented as a sequence:
(&, u,0,b)°, (&, u,0,b)%, (&, u,0,b)%, ... (& u,0,b)T, (& u,0,b)T
In the above sequence, ¢ is a binary signal indicating end of reaction, and T
represents the maximum number of transformations allowed. At every step 7, the
change (u,v,b)" is applied, provided &* = 1. This transformation allows us to go
from G™ to G™!. This transformation can be viewed as an MDP, characterized by
(5,A,P,R,y), where S is a set of states, A is a set of actions(graph edits), P is a state

transition function, R is reward function and y is the discount factor.

e State: A state is an intermediate graph represented by G*

e Action: An action at any time 7, is give by a* = (§,u,v,b)". If at any time
step £* = 0, then the reaction is considered terminated, i.e, that action and all
subsequent actions are ignored. While performing actions, valency checks
are not performed as an intermediate invalid graph may still lead us to the
correct final graph.

e Reward: Both intermediate and final rewards are given. Intermediate re-
wards are given based on correct sub-actions and the final rewards is depen-
dent on the final product.

The workflow for Do et al. [2019] is summarised in Figure Figure Though
[Do et al| 2019] is proposed for chemical reactions, it can easily be extended to

other graph transformation problems.

Paper Summary: A Generative Model For Electron Paths

Bradshaw et al.|[2019] propose a reaction prediction framework for linear electron
flow(LEF) reactions [Herges, [1994]. Though this reduces the USPTO dataset’s size

by 30%, it allows for a lighter model in comparison to [Jin et al., 20174} Do et al.,
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Figure 2.2: A pictorial summary of Do et al.|[2019]

2019] which can be trained in just 10 epochs. This paper also separates the reactants
from the reagents as a pre-processing step. This is in contrast to other papers using

this dataset.

[Bradshaw et al., 2019] models LEF reactions as a sequence of electron move-

ments. They model the transformation of reactant (Gy) to product (Gr) as a se-
quence of electron movements. Alternate steps will add and remove electrons
from different atoms. At each stage, the model decides whether the reaction con-
tinues or stops. If the reaction continues, then based on the previous action taken,

the model picks an atom to add or remove electrons from.
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Table 2.1: Results of [Jin et al., 2017a; Do et al., 2019} Schwaller et al.,|2018; Coley

et al.,2019]
Paper Top-1 Top-3 Top-5
Jin et al. 7[2017a] 79.6% 87.7% 89.2%
Schwaller et al.| [2018] 80.3% 86.2% 87.5%
Do et al. [2019] 83.2% 86.0% 86.48%
Coley et al.|[2019] 85.6% 92.1% 93.4%

Results of mentioned papers

The results are evaluated on a test set consisting of 40K reactions. Evaluation metric
used is top-K accuracy. Since Bradshaw et al.|[2019] works only on LEF reactions,
and requires separation of reactants from reagents, it cannot be compared fairly to

other models.

Retrosynthetic Planning

The problem of retrosynthetic planning takes a molecule as input, and gives as
output a set of molecules which could potentially react to give that molecule. It
differs from the forward prediction problem as it gets only a subset of products
as input, and the solution may involve other by-products. One approach to the
retrosynthesis problem involves searching through a reaction network as is the
case in [Fagerberg et al., 2018} Segler et al., 2018]. There are also commercial
softwares such as Chematica [Grzybowski et al.,|2018] which take this approach.
Such an approach to building a synthesis planner is time consuming and limited
to the encoded knowledge base, as can be seen in Chemtica which took more than

a decade to build.
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Baylon et al.|[2019] classifies the product molecule based on which reaction
template could have produced it. [Liu et al.|[2017]] proposes a template free seq2seq
model for retrosynthetic planning, and reported results similar to template based

approaches.

2.2 Molecule Generation

The space of drug-like molecules is estimated to contain 10®° molecules [Virshup
et al.,2013]]). Existing datasets of drug-like molecules contain a very small subset
of this space. The process of drug discovery relies heavily on existing datasets of
drug-like molecules. In order to expand the search space of drug design, we can
make use of generative models. These models can also be optimised to generate
molecules with certain desired properties. This can help us search the space of

molecules in a much more efficient manner.

In this section, we will present a brief summary of the use of deep generative
models for molecule generation. These deep generative models include RNNSs,
VAEs, GANSs, and adversarial autoencoders [Makhzani et al., 2015]. Our purpose
here is to give the reader a flavour of the various methods and tasks which are
being solved using generative models for molecules. For a more complete review

of such models, the reader is referred to [Xu et al.,2019; Elton et al., 2019]

2.2.1 Datasets

The commonly used datasets for the purpose of molecule generation are presented

in Table
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Table 2.2: Commonly used molecular datasets

Dataset Molecule type No. of
molecules

ChemBL  [Gaulton Bioactive  drug-like 1.8 million

et al., 2016 small molecules

ZINC [Irwin and Commercially avail- 230  mil-

Shoichet, 2005]]) able compounds for lion
virtual screening

OM9 [Ramakrishnan Up to nine heavy 134K

et al., 2014] atoms

Apart from these, there also exist some other molecule databases. Of particular
interest is the GDB-17 dataset [Ruddigkeit et al., 2012], which enumerates 166

billion organic molecules of up-to 17 heavy atoms.

2.2.2 Evaluation Metrics

Evaluation for molecule generation can be fairly tricky. A good generative model
needs to be able to produce valid molecules as well as mantain diversity in gener-
ated molecules. It also needs to be able to produce novel molecules, which differ
from the training dataset. However, the molecules produced should share some
properties with the training set. Keeping these things in mind, the commonly
used evaluation metrics are novelty, validity, uniqueness, and diversity. Consider
a generative model trained using a set of molecules denoted by T. This model is
used to generate 1, molecules. The valid molecules generated is denoted by V, and
the unique valid molecules is denoted by V,. To measure similarity between two
molecules the Tanimoto co-efficient(T,;) on extended connectivity fingerprints is

commonly used [Rogers and Hahn, 2010]. The Tanimoto co-efficient is equivalent
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to the Jaccard Index, as defined in Table

V]

Validity = — (2.8)
N
V. NT]|
Novelty =1 — 2.9
y Vo (2.9)
, [Vl
Unigueness = — 2.10
7 |V| 210)
Internal Diversity = Z Ta(x,y) (2.11)
IVl
(xy)eVy
1
External Diversity = Ta(x, 2.12
V= v, T 212

Further, Benhenda|[2017] propose the ChemGAN diversity challenge, which re-
quires generative models to have an internal diversity greater than or equal to the
internal diversity of the training set of molecules. This challenge maybe a bit too
restrictive. A better metric along similar lines would be the ratio between internal

diversity of generated set and internal diversity of training set.

2.2.3 SMILE Based Approaches

Here, we present a brief overview of deep generative models for molecule gener-
ation, which use the SMILE representation. Most SMILE based generative models
try to generate molecules in a sequential manner. They one hot encode SMILES

characters, and try to learn them, similar to learning generative models for text.

Segler et al.|[2017] uses an LSTM [Hochreiter and Schmidhuber, 1997]. The
LSTM is trained using the ChemBL dataset first. This model can be used to
generate molecules similar to the ones it is trained on. The authors also fine-tune

the model by training it on a set of molecules which are known to have some affect

24



on the Malaria virus. Before training, the Malaria dataset is split into training and
hold-out. The hold-out data has 1240 molecules. The model is used to generate
128K molecules. The authors report that the generated molecules contained 14%

of the held out data.

[Olivecrona et al., 2017} Jaques et al., 2016] are similar to that of Segler et al.
[2017]. These paper also proposes using an RL network on top of the existing LSTM
network to generate molecules with some desired properties. [Gémez-Bombarelli
et al., 2018] propose using a VAE to represent molecules in a continuous space.
This approach not only allows them to generate new molecules, but also optimise
molecules using Gaussian processes [Rasmussen and Williams)| 2005] by traversing
through the continuous representation of molecules. Further, they can also use the
continuous representation of molecules for QSAR models. Another paper which
follows a similar approach is Blaschke et al.| [2017]. The only difference is that
Blaschke et al.|[2017] uses an adversarial autoencoder instead of a VAE. Dai et al.
[2018] propose a context free grammar for generating SMILES. Their model ensure
checking of syntax and semantic rules. They train a VAE based model to generate
molecules which learns under the restrictions of the grammar. |Yu et al|[2016]
proposes SeqGAN which is a framework for generating sequences with policy
gradient. The paper by-passes the problem of gradient update for generators(for
discrete data) in GANs, by directly performing gradient policy update on the
generator. Guimaraes et al.|[2017] propose an extension of SeqGAN titled ORGAN.

ORGAN can optimise on any desired property for the molecule.
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2.2.4 Graph Based Approaches

Here, we will cover papers which rely on the graph representation of molecules
for generation. Samanta ef al.| [2018] propose NeVAE, which is a VAE based
model for graph generation. In NeVAE, the encoder uses a GCN to learn a vector
representation of the molecule. This feature vector is passed through a neural
network to ensure that the resulting output follows a standard normal distribution.
The decoder, first samples from a distribution the number of atoms to be generated.
For each node it samples which node type it is, i.e a feature vector for the node.
Based on this feature vector, it calculates the probability of various bond types
between all pairs of nodes. NeVAE uses masking to ensure the generation of
valid molecules. NeVAE can also search through the latent space using Bayesian

optimisation to find molecules which have desired properties.

Jin et al| [2018] propose JT-VAE, which decomposes a molecule using the
junction tree algorithm. The junction tree algorithm is used to decompose a graph
into a tree scaffold. The generative model works in two steps. It first generates the
tree scaffold and node labels. Then, it labels the various nodes and tries various
connectivity variations, scoring them based on difference from the starting graph.
For the junction tree algorithm to operate, a vocabulary of atom clusters is learned.
Then using sub-graph matching between the vocabulary and the molecule, the
molecule is decomposed into a junction tree. JT-VAE can also seek molecules
optimising on a specific property globally or locally, i.e in the neighbourhood of a

given molecule.

Simonovsky and Komodakis| [2018] propose GraphVAE, which generates
molecules in a one shot manner using a VAE. GraphVAE outputs a fully connected

probabilistic graph. However, this approach is constrained to small molecules.
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The paper sticks to molecules containing 9 heavy atoms. Further, the model archi-
tecture needs to be designed keeping in mind the maximum molecule size in the

dataset.

Liu et al.|[2018a] propose a variation of graphVAE. Instead of predicting a fully
connected adjacency matrix, this model predicts the edge labels in a sequential
manner. Cao and Kipf [2018] propose MolGAN, which is a GAN based ap-
proach to generating molecules. MolGAN consists of a discriminator, generator
and reward network. The generator generates a graph from a random vector. The
generator outputs a fully connected probabilistic adjacency matrix. The discrimi-
nator attempts to discriminate between real and fake inputs. The reward network

rewards an input molecule based on a desired property.

You et al.|[2018D] proposes GraphRNN, which generates a graph in a sequential
manner. The key driver of the paper is a sequential representation of the graph. At
the time of generation of each node, the node is classified, and edge probabilities

between the new node and previously generated nodes are predicted.

You et al.| [20184] proposes graph convolution policy network (GCPN) for
molecule generation. GCPN is a reinforcement learning framework for molecule
generation. At each stage of the generation process, the action taken can be adding
a new cluster (clusters maybe taken as individual atoms or similar to JT-VAE)
maybe connected to the existing graph, or a new edge maybe added between

existing clusters.

Finding the right drug for a disease is like finding a needle in a haystack. While
we cannot replace the entire drug design process with deep generative models,
deep generative models can help us search the molecular space in a much more

structured and efficient manner.
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2.3 Deep Learning on Networks for QSAR

QSAR or quantitative structure activity relation models are models which predict
activities or properties of chemicals using just the chemical structure information.
Typically QSAR models rely on molecular descriptors as feature vectors, on which
a classification or regression model is learned. This model maybe a simple machine
learning model or a deep learning model. Our focus here, will be on the application
of deep learning to learn these feature vectors in an automated fashion using deep

learning.

Goh et al[[2017b] convert a 2-D representation of a molecule into an image and
make use of CNNs for QSAR prediction. With this simple approach they are able

to achieve decent results.

Gomez-Bombarelli et al.|[2018] proposed a differentiable molecular fingerprint
for end-to-end learning on QSAR tasks. They draw inspiration from the commonly
used, but non-differentiable circular fingerprints for molecules. The algorithm they
propose for building the feature vector is in essence a GCN. They demonstrate
improved results on a variety of tasks such as solubility and drug efficacy from the

use of differentiable fingerprints as compared to standard circular fingerprints.

Li et al.|[2017] use GCNs along with a super-node to learn graph level features
to achieve state of the art results on a variety of datasets including the Tox21
dataset. For predicting any property of a molecule, the model needs to learn a
vector representation of the molecule from node features. Prior works sum up
node features to learn a graph level representation of the molecule. In this paper,
the authors make use of a super node and learn a weighted sum of individual

nodes to learn a better graph level representation.
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Li et al.|[2018] introduces a graph learning metric prior to applying GCNs on
the molecular network. They propose a new spectral convolutional layer, which
allows them to learn a distance metric for the graph, depending on the task at

hand.

While there is some work on automatically learning molecular features us-
ing GCNs, there is a need for a comparative study of various GCN architecture
variants. This could include variation of depth of GCN, graph pooling layers,
variations of atom and bond features, among other things. Another interesting
research direction in this field could be for the identification of cliff points. This
boils down to removing one atom from the molecule and identifying the variation
of various molecular properties. Significant changes due to small variations of

molecular properties can help in identifying important functional groups.
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CHAPTER 3

Case Study: Reaction Prediction Using GCN on

USPTO Dataset

In2.T]we looked at a survey of methods being applied for chemical reaction predic-
tion. In this chapter we will take a deeper look into the USPTO dataset. Further, we
will analyse the works of [Jin et al., 2017a;Coley et al., 2019] and suggest improve-
ments for them. We present state of the art results on this dataset, even though our
model has 25x lesser training parameters than the prvious baseline [Coley et al.,

2019].

3.1 USPTO Data Analysis

We present an analysis of the USPTO dataset. This would help us get an idea of
the size of the data, and the various neural net architectures we can use to attack

this problem.

The dataset consists of 479,035 reaction samples. In [Jin et al.|[2017a] the dataset
is split into training(409,035), validation(40K) and test(30K) samples. We follow
the same split to compare results. Each reaction sample consists of the reaction
SMILE, and the edits needed to re-create the reaction sample. An edit is is a
three tuple representation of changes in bond order. It contains the two atom ids
between which there is a change in bond order in the course of the reaction, and

the bond order in the product. Next, we take a look at the distribution of the size
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Figure 3.1: A sample reaction.
The corresponding reaction SMILE is [C:1][N:2](=[O:3])=[O:4]>>[C:1][N+:2](=[O:3])[O-

:4].  There is only one bond order change in the above reaction, and the
corresponding edit is (2,4,1.0)

of the reactions, i.e the number of components in the reactions.

0.175 - —

0.150 - [ 1 I.

B Train (N=409035)
Il Valid (N=30000)
B Test (N=40000)

Frequency [-]
o o
o =
~ o
u o
—
I
—
I
—
I
[N N R —
[ I O N
[N N
N N O

1 2 3 4 5 6 7 8 9 10+
Number of reactant fragments [-]

0.025 A

0.000 -

Figure 3.2: Distribution of number of fragments in the reactants
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Figure 3.3: Distribution of number of fragments in the products

There are two reasons for the large differences between Figure [3.2|and Figure
The first reason is that a large number of reactions are combination reactions
and lead to a reduction in the number of components. The second reason is that
products do not contain reagents and catalysts. These are molecules which though
present in the reactants, do not undergo any transformation themselves in the

course of the reaction.

Next we look at the distribution of number of atoms in the reactants and

products.

As we see from Figure the maximum number of atoms in the reactants are
150. Thus the maximum size of the adjacency matrix can be 150. However, we
also see that majority of the reactants contain less than 60 atoms, and keeping the
adjacency matrix to contain 150 nodes for all cases will be an overkill. Instead, we

bin the reactions based on the number of atoms it contains, and in each training

32



Percentage of reactions

0.030

0.025 ~

0.020 ~

0.015 ~

0.010 ~

0.005 ~

E Train
mm valid
Il Test

0 20 40 60 80 100 120 140
Number of reactant atoms

Figure 3.4: Distribution of number of atoms in the reactants

33




Percentage of reactions

0.035 ~

0.030 ~

0.025 ~

0.020 ~

0.015 ~

0.010 ~

0.005 ~

E Train
mm valid
Il Test

0.000 -

T T T T
0 20 40 60 80 100 120 140
Number of product atoms

Figure 3.5: Distribution of number of atoms in the products

34



epoch pick reactions from one bin.

Next, we look at the distribution of number of changes in a reaction. This is

depicted in We see that the maximum number of changes in any reaction is 6.
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Figure 3.6: Distribution of number of edits

This is a very small number of reactions, and we can choose to restrict ourselves to

reactions with 5 changes as the number of reactions with 6 changes is very small

(< 0.2%).
Next, we look at the various atoms present in the reactants and products.

We find that there are 63 types of atoms present in the dataset. To represent
atom type, we append a one-hot encoding of the atoms to the node features. We

also see that the most common types of atoms are carbon, oxygen and nitrogen.
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This is to be expected, as we are dealing with organic reactions.

3.2 Identification of Candidate Edits

The works of [Jin et al., 2017a; Coley et al., 2019] split the reaction prediction
problem into two parts. The first part requires scoring each possible edit during
the reaction. The second part takes the top-K edits from the first model, and runs
a combinatorial search through them to obtain a set of candidate products and
identifies the most likely candidates. Despite the drawbacks of this approach, it is

the current state of the art.

We present an analysis of the first part in this section, and the second part in
the next section. We already presented an overview of [Jin et al.,2017a;|Coley et al.,

2019] in subsection 2.1

3.2.1 Effect of Global Features

We first analyse the effect of global features on the model. The global features of

the graph are aggregated according to Equation [2.4]

The evaluation metric used is coverage. Coverage at some K is the percentage

of reactions for which the reaction edits are a subset of the top-K candidate edits.
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Figure 3.9: Effect of global features on training accuracy

We find a drop of around 10% in accuracy while using only local features.

3.2.2 Effect of Fusion GCN

We propose two changes to the original model of [Jin ef al| [2017a]. Firstly, we

do away with the final layer proposed by them as per equation This is
because carrying out this operation leads to a significant increase in the number
of parameters and loss of information. It requires the network to broadcast both
the edge information and node information to the same dimension which is very

inefficient as the nodes contain much more information than the edges.
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Secondly, we add a fusion component to the network. |Vijayan et al.| [2018]

propose a fusion GCN which allows the network to regulate information flow

from different depths. The fusion operation can be represented by

N
N = Z Wic! (3.1)

We find that these changes allow us to improve on the baseline.
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Figure 3.10: Effect of fusion on training accuracy
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Table 3.1: Comparison of coverage results for test data

Model Acc@7 Acc@10 Acc@12 Acc@16 Acc@20 Acc@80
Coley et al. [2019] 72.8% 84.7% 86.9% 90.4% 91.9% 97.1%
Our Model 74.5% 87.9% 87.9% 90.9% 92.3% 97.1%

We present the top-K accuracy of reaction centre identification in table We
count a reaction as correctly identified if all correct edits are present in the top-K

edit predictions.

3.2.3 Effect of Depth
Next, we look at the effect of the depth of the GCN. All above mentioned experi-
ments were carried out for a depth of 2.

We carried out experiments for depths 1,2 and 3. We did not find any significant
improvement when we increased the depth from 2 to 3. Our results are shown in

From this we can say that it is optimal to choose a depth of 2 for the model.
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Figure 3.11: Effect of depth on training accuracy

3.2.4 Effect of Additional Node Features

Typically the model takes the following features:

e Atom type
e Explicit Charge
e Valency

e Aromaticity

We try to add the following node features as well to see if it improves model

performance:
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Chemical group

Partial charge

Aromaticity of neighbours

Whether the atom is in a ring

Our results are shown in We do not find any significant improvements by

using these additional features.
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Figure 3.12: Effect of additional features on training accuracy
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3.3 Predicting Reaction Products from Candidate Ed-
its

The first part of the model scores each possible edit for the reaction. We now take
the top-K(K = 16 for sake of comparison with |Coley et al.|[2019]) edits based on the
score and run a combinatorial search of subsets of upto size 5. Each subset gives

a candidate product. The invalid candidates are discarded and the valid ones are
scored using

The baseline model makes use of an atom embedding size of 500, which leads
to a fairly large model. The large size of the model, in combination with the
combinatorial search needed make the second part of the model somewhat difficult
to train. We reduce the embedding size for our model, cutting our training time

by a factor of 5, as a result.

We present the accuracy results of the reaction prediction problem in We
count a reaction as correctly predicted if the correct product is present in the top-K

predictions.

While we achieve only a small improvement in comparison to the baseline, our

model is 25 times smaller and much easier to train.

3.4 Conclusion and Future Work

We find that using a more advanced GCN architecture allows us to learn faster
and more accurately. We were not able to experiment with a large number of GCN

architectures due to long training times. To avoid this problem, there is a need for
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a smaller dataset for quick prototyping of an efficient architecture, which can be

later tested on the complete dataset.

The current research for reaction prediction relies heavily on the USPTO dataset.
However, this dataset does not contain any information regarding physical condi-
tions and reagents/catalysts needed. There is a need for a dataset which contains

this information.

While the current models which solve this problem are powerful, there is a lot
of scope for improvement in terms of training time as well as accuracy. Here, we
have demonstrated that it is possible to do both simultaneously. It is also possible
to do both these things by considering an entirely different pipeline as some recent
works have done, which we discussed in Chapter 2l However, none of them are
able to match the accuracy of our model. Furthermore, these papers do not report
the time taken and hardware used to train the model, making it difficult to compare

the efficiency of such models.
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CHAPTER 4

Survey of Deep Learning Applications in Network

Biology

In Section [1.3) we introduced the various types of networks commonly present in

biology. Here, we focus on the application of deep learning to these networks.

4,1 Protein-Protein Interaction Networks

Conventional methods for identifying protein-protein interactions are either ex-
perimental in nature or are based on co-functionality or co-evolution. For a review
of conventional methods used to identify protein interactions the reader is referred

to [Raman! [2010]].

However, the network built by such methods is noisy and incomplete. Com-
putational methods can help us not only fill in the gaps in the network, but also

help us extract valuable insights from the network.

We focus our attention on the application of deep learning to PPI networks,
where the task at hand is either node classification (identification of function) or

link prediction (identifying new protein interactions).



4.1.1 Identifying Protein Functions Using PPI Networks

Hamilton et al. [2017a] introduce a new dataset for classification of proteins based
on their cellular functions. The dataset consists of 24 graphs, each corresponding
to a different human tissue. They propose the use of 20 graphs for training, 2 for
validation and 2 for testing. The same split has now become commonplace [Vijayan
et al., 2018; Liu et al., 2018b]] for the task of function classification on PPI networks.
The general approach followed for this task is to aggregate network information
to the node attribute information using GCNs and using these aggregated node

attributes for node classification to identify protein function.

Most works use positional gene sets, motif gene sets and immunological sig-
natures as features and gene ontology sets as starting node attributes for the node
classification task. While this approach is powerful, it would be interesting to try

a richer set of starting features such as sequence information.

Zitnik and Leskovec|[2017] proposes OhmNet, which makes use of multi-layer
networks for identification of tissue specific functionality of proteins. Each layer
contains information regarding a different tissue. OhmNet encourages sharing of
information across layers through the multi-layer network. This is an interesting
direction of research, which leverages the fact that the same protein can be present
in different tissues, and different information regarding it can be extracted from

each tissue’s PPI network.

4.1.2 Link Prediction for PPI Networks

PPI networks are highly modular in nature and links are highly affected by the

local network structure. This is because of the formation of functional clusters
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in PPI networks, i.e proteins which are functionally related will form a cluster in
the graph. Most PPI data available to us is incomplete and noisy. Computational
methods can help in building a more accurate PPI network. Conventional methods
have been applied to the problem of link prediction [Hulovatyy et al., 2014; Lei
and Ruan, 2012]. While these methods are of significant value, our focus is on the

application of deep learning to this problem.

Zhang and Chen| [2018] proposes the use of graph neural networks for link
prediction, treating PPI network as a case study. They delete half the existing links
from the graph and attempt to predict the deleted links. Similar approaches using

GCNs have been attempted as well for a variety of PPI datasets.

Khan et al.| [2018] rely on protein sequences to determine binding affinity of
a pair of proteins. It applies a sequence of convolutional layers on the sequence
of amino acids to obtain a vector representation of a protein. Then, it takes the
hadamard product of the vector embeddings before training a classifier for learning
protein links. Such an approach, however, fails to capture the inherent network

information present in the dataset.

Richoux et al.|[2019] compares deep learning based methods which rely on
the sequence information of proteins. They take extra care to prevent data leaks
between the train and test data by ensuring that no common proteins exist in the

two sets. However, they also fail to utilise network information in their approach.

The current approaches for link prediction for PPI are fairly basic in nature as
most papers dealing with this problem treat it only as a case study. The prob-
lem of link prediction in proteins is a fairly complex one, and requires dedicated
algorithms and research. Further, there needs to be research in the direction of

efficiently building node and edge attribute information for the PPI prediction
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problem.

4,2 Metabolic Networks

All cells are able to perform their functions through a series of chemical reactions.
The substances directly or indirectly participating in these reactions are called
metabolites. Generally, the product of one reaction acts as the substrate for the
next reaction. The set of chemical reactions that occurs in the cell can be modelled
as a network. This network of chemical reactions can be used to identify various
metabolic pathways, which in turn can help us gain insight into the working of

cells, and identify crucial reactions and metabolites.

Sankar et al.|[2017] propose modelling metabolic reactions as a transformation
of molecular networks, and build a model to predict chemical reactions. Dale et al.
[2010] propose a model for identifying metabolic pathways using a data-driven

approach.

4.3 Drug Target Interaction

The interaction between drug and target is modelled using 3-D molecular simula-
tion techniques such as docking at the virtual screening to identify potential drug
candidates. However, docking is a computationally expensive technique. Further
, such methods cannot be applied in case the 3-D structure of the protein is not
known. Recently, attempts have been made to apply deep learning methods to

compute binding affinity between proteins and drugs.
Various computational approaches have been tried in order to identify positive
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interactions between a set of molecules and protein targets. One simple method
proposed by Keiser et al.|[2007] is to use similarity to known ligands to identify
potential ligands. However, such an approach will fail if the key functional group
is the only difference between two ligands. [Prado-Prado ef al.|[2011] pose the
problem of identifying drug target binding affinity as a QSAR problem, generalised
across proteins and ligands. They build 3D structure features for proteins and
ligands, and use these features to train a classifier, which learns the binding affinity
between the molecules. [Tian et al.| [2016] uses a similar approach, but uses an
Artificial neural network (ANN) to learn the classifier. Oztiirk et al. [2018] propose
the use of ligand and protein sequence information to predict binding affinity
between them. Unlike previous papers, [Oztiirk et al|[2018] does not treat the
prediction of binding affinity as a binary classification problem, but as a regression
problem. Oztiirk et al.|[2018] also learns molecular features and protein features in
an automated manner using a CNN, unlike previous literature. They apply a CNN
on the SMILE representation of the molecule and and the 2-D protein sequence, to

learn the feature vector in an automated manner.

Ragoza et al. [2016] propose to leverage the 3-D nature of proteins and ligands

by using a 3-D CNN.

Fout et al.| [2017] propose the use of GCNs to identify the interface at which
interaction between two proteins occurs. They represent a protein as a graph,
where constituent amino-acids form the nodes, and the k-closest amino-acids are
neighbours. Using this representation, they apply a GCN to learn a feature vector
for each of the proteins. To find the interface between the two proteins, they

classify whether any pair of amino-acid residues interact with each other.

Wau et al.|[2019a] propose a unified RNN-CNN pipeline, which uses an RNN
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to learn the feature vector for proteins and ligands in an unsupervised manner,
and the CNN to predict the binding affinity between the protein and the ligand
in a supervised manner. They compare between a fingerprint representation of
molecules [Wang et al., 2009] and the SMILE representation. They also compare be-
tween various methods of representation of proteins, such as pfam domains [Wang

et al., 2009 and 3-D structure.

Wang and Zeng|[2013] propose the use of a restricted Boltzman Machine [Rumel+
hart et al., 1986] to predict drug target binding affinity and mode of action of bind-
ing. An RBM is a two-layer graphical model that can be used to learn a probability

distribution over input data.

Feng et al.|[2018] propose PADME (name inspired from the original trilogy),
which is a deep learning framework for predicting drug target binding affinity.
They learn ligand features using GCNs, and protein features using protein se-
quence composition. They feed these features into a DNN to predict the binding

affinity between the protein and the ligand.

Ozturk et al.|[2019] propose wideDTA, which uses textual representation of
proteins and ligands to predict the binding affinity between them. WideDTA uses
four text-based information sources, namely the protein sequence, ligand SMILES,
protein domains and motifs, and maximum common substructure words to predict

binding affinity.

There is still need for more powerful and accurate methods for predicting ligand
protein binding affinity. However, before further technical advancements can be
made, there is a need for standardisation of datasets and evaluation metrics. We
need an analysis of the various protein and ligand representations. Further, there

is also a need for comparison between automatically learning protein and ligand
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features against using a pre-defined set of features.
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CHAPTER 5

Case Study: Using Experimental Measures for PPI

Prediction

In the previous chapter, we had a brief look at the various computational methods
which are generally used to predict protein-protein interactions. Most approaches
are either experimental in nature or computational. Common experimental ap-
proaches are yeast to hybrid screen [Terentiev ef al., 2009] and mass spectroscopy.
However, experimental approaches are expensive and noisy [Rajagopala et al.,
2012]. Computational methods rely on the hypothesis that two proteins which
share a link are likely to share a common function or have evolved together. There
are also machine learning methods which rely on either the sequence information

of proteins or the 3-D structure of the protein.

While such approaches have been successful to some extent, we believe, that
there should be a more effective way to combine the information presented by
various computational methods. We present a framework which allows to com-
bine various metrics between protein pairs. Further, our method work even for

incomplete set of scores between protein pairs.

The work presented in this chapter has been done in collaboration with Baker
Lab in University of Washington. It is primarily contributed by Aakash Srini-

vasan(CS14B060), and is also presented in his B.Tech project report.

Before describing our approach to the link prediction problem, we present the

original approach, which has not yet been published, taken by our collaborators



at Baker lab.

5.1 Prior Approach

The original motivation of our collaborators behind taking this approach was to
validate co-evolution as a predictor for protein protein interactions. Hence, they
identify a set of protein pairs which score highly in terms of co-evolution, and
check the overlap with a gold standard of known protein pair interactions. They
essentially filter out pairs of proteins at every stage which score below a certain
threshold. To do this they use three scores, namely mutual information (MI),
Gremlin and docking. This approach is applied on the E. Coli proteome which
comprises 3583 proteins. For the E. Coli dataset, there exists a set of protein pairs
which are known to interact with each other, based on prior studies. Hence we
can say that this method is reliable if there is a significant overlap between the
positive set we identify and the gold standard. They use MI as the initial filter
as it is easy to compute, though less accurate compared to Gremlin and docking.
The initial MI filter is followed by a filter based on Gremlin scores, which is less
accurate compared to docking, though easier to compute. This is then followed
by a Docking filter to obtain a set of protein pair interactions. Docking is the most
accurate metric for predicting interactions between protein pairs among the three.

Below we describe the data that we have.

5.1.1 Mutual Information

Mutual information (MI) is an inexpensive metric which indicates co-evolution

between a pair of proteins. Since MI is inexpensive, it is computed for 5.2 million
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pairs. The scores were pre-processed and smoothed using Average Product Corre-
lation (APC) [Dunn et al.,2007]. From this set of scores, the top 50k are considered
to be likely pairs which may interact with each other. Further, we add 10k pairs

which belong to a noisy experimental positive PPI set.

5.1.2 Gremlin [Kamisetty et al.,2013]

Gremlin (generative regularized models of proteins) is defined as a statistical model
that captures co-evolution from multiple sequences. It does so by optimizing a
pseudo likelihood objective. One of the problem with MI is that they are very
noisy. Gremlin scores are less noisy, but very expensive and hence we do not have
scores for all pairs. We are given two variations of Gremlin scores - Gremlin 1 and
Gremlin 2. For Gremlin 1, we have scores for 22k pairs and for Gremlin 2, we have

35k pairs. These scores are correlated with a pearson correlation of 0.301.

5.1.3 Docking

Docking is an expensive but accurate co-evolution prediction method that uses
3D model of proteins to come up with the score. They are extremely expensive
and are available for only 6k pairs. We are given 4 variations of Docking scores -
Dockingl, Docking2, Docking3, Docking4. These variations are correlated with a

pearson correlation of around 0.7.

5.1.4 Positive Control

Positive control is a set of protein pairs which we know with high confidence

interact with each other. This set consists of 3.6k pairs.
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Figure 5.1: Intersection Analysis of various metrics

5.1.5 Negative Control

Negative control set consists of 283k protein pairs, which we know with high con-
fidence do not interact with each other. shows that all variations of Docking
are well correlated with each other. Secondly, we find almost no correlation be-
tween MI and any other metric. Thirdly, we also find high amount of correlation
between Gremlin and Docking scores, though we do not see a high amount of

correlation among the Gremlin scores. In Figure[5.1jwe see the intersections across
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MI, GREMLIN, Docking and PDB (positive control). This figure essentially sum-
marises the filter out process followed by the approach taken by our collaborators
at Baker Lab. Finally, 738 protein pairs are identified based on highest Docking
scores. The overlap with the positive control set is 66 pairs, which is higher than
the baseline (mass spectrometry), despite the predicted set having a much smaller
size in this case. Using this result, we can conclude that co-evolution can act as a

good predictor for PP

5.2 Owur Approach

The approach described above helps us identify some novel protein interactions.
However, it becomes difficult to identify an interaction if the interaction gets
filtered out at the first step, as it has alow MI score. In such a case, the local network
of MI scores around that protein pair might be able to help us classify the protein
pair correctly. Further, the approach described above gives us no information
about the likelihood of interaction between any of the filtered out pairs. We
propose to build a multi-graph with the nodes as proteins, and weighted edges
containing information about the various scoring metrics. We experiment with
both unattributed nodes and using gene ontology (GO terms) [Ashburner et al.,
2000] information as node attributes. GO terms are indicative of the functionality of
a particular protein. On this network, we wish to learn a link prediction algorithm.
Our approach is summarised in Figure[5.2] Our link prediction algorithm relies on
various heuristics between node pairs. We train a classifier on this set of heuristics
to predict the likelihood of interaction between a pair of proteins. We experiment
with both weighted and un-weighted graphs. To construct the un-weighted graph,

we consider a link between a pair of nodes if the metric exists for a pair of nodes.

59



MI GREMLIN 1 GREMLIN 2 DOCKING 4

\/\l S

Link Prediction Algorithm ‘

Protein Features

P1 - G3, G4, GG, ..., G3000 ‘

P2 -G2,G11, G999, ..., G2000 lhl

‘ Pos Control ‘ ‘ Neg Control ‘

P3583 - G10, G50, ..., G500

Ground Truth

Figure 5.2: Proposed pipeline for the PPI prediction problem

This becomes especially useful for noisy networks such as the filtered MI network,
where we consider the top 50k MI scores along with 10k experimental pairs. The
heuristics for both weighted and un-weighted graphs are summarised in Table
For a more detailed treatment of these heuristics, the reader is referred to [Zhu
and Xia, 2016} Lichtenwalter et al., 2010]. In the above table, nodes are denoted by
u and v. N(u) denotes the set of neighbours of node u. ¢;; denoted the wight of the
edge between nodes i and j. Propflow for a pair (1, v) is defined as the probability

that the random walk starts at 1, ends at v in [ steps or fewer.

Each of these heuristics tries to capture information regarding the similarity of
the neighbourhoods of a pair of nodes. Before we present our results in the next

section, we discuss the evaluation metric used:

5.2.1 Evaluation Metric

We are interested in seeing how accurate our most confident positive predictions
are. We focus on the area under precision recall curve within <20% recall. Similarly,

we are interested in True Positive Rate (TPR) within 0.2% False Positive Rate (FPR).
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This means that we want to know how many positive controls are recovered within
0.002* 1.8 million = 3600 negative control pairs wrongly predicted as positive. We
normalize the area under the curves by the maximum possible area (i.e max FPR <
0.2%) and report these normalized scores. Note that the threshold of 20% is chosen

somewhat arbitrarily.

5.3 Results

5.3.1 Using Plain Scores

In this setup, we try to predict interaction between a pair of proteins using just
the scores we have(MI, Gremlin and Docking). This does not involve using any
network information or learning. It is very similar to the approach described
in section We essentially place a threshold value on the score and classify
everything above that threshold to be a positive link. These results give us an
indicator of how reliable the scores are. Note that, this method is not generalisable,
as it cannot make predictions for a pair of proteins for which we do not have a
given score. For example, predictions for docking can be made only on the 5k
pairs for which we have docking scores. In Table (MI (with expt pairs)) refers
to the union of top 50k MI scores and 10k pairs of proteins which are more likely to
interact from previous experiments. The columns (Pos Control) and (Neg Control)
contain the overlap between the score and the positive and negative control sets
respectively. From the results, we see that Gremlin and Docking scores are fairly
reliable. We also see that MI scores by themselves are an unreliable predictor. The
only advantage of MI is that it is easy to compute and we have MI scores for a

large number of protein pairs.
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Score Pos Control | Neg Control | AUROC <(0.002 FPR) | AUPR <(0.2 - recall)

MI (with expt pairs) 1373 16969 0.00134 0.03537
GREMLIN1 631 5642 0.23965 1
GREMLIN2 847 8953 0.24894 1
DOCKING1 337 1232 - 1
DOCKING2 330 1120 0.41212 1
DOCKING3 370 767 - 1
DOCKING4 364 813 0.43407 1

MI top 50000 261 16824 0.00623 0.11806

MI - all 911 808524 0.04612 0.05548

Table 5.3: Baseline models - Results

5.3.2 Using Weighted and Un-weighted Networks

Next we wish to use the network information presented to us by various metrics.
We construct multiple graphs. Each graph contains the set of proteins as nodes, and
a particular metric as the set of edges. We consider a weighted and an un-weighted

variation of each of the graphs.

We have 8 networks, 4 corresponding to Docking, 2 for Gremlin and 2 for ML
We first consider all scores we have for MI. The second network built from MI
considers only the top 50k pairs based on the MI scores. To this we add MI scores

for 10k additional pairs, which are chosen from a noisy experimental setup.

For a particular graph, we compute the heuristics described in[5.2l Using these
heuristics as input features, we try to learn a classifier. For training the classifier,
we consider 1800 positive pairs, and 1.8 million negative control pairs. We use
the remaining 1800 positive control pairs and 1.8 million negative control pairs for
testing purposes. We choose the ratio between positive and negative control pairs
to be 1000, as a randomly selected pair of proteins is 1000 times more likely to not

interact than it is to interact with each other.
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Scores Weighted? | AUROC <(0.002 FPR) | AUPR <(0.2 - recall)
Yes 0.08243 0.13442
MI - all

No 0.03673 0.04897

Yes 0.15364 0.3246
MI - exp

No 0.20874 0.48646

Yes 0.11377 0.22739
Gremlinl

No 0.09295 0.12262

Yes 0.13512 0.21523
Gremlin2

No 0.13977 0.25433

Yes 0.07827 0.12015
Dockingl

No 0.07785 0.10329

Yes 0.07506 0.11766
Docking?2

No 0.07675 0.10644

Yes 0.08856 0.15055
Docking3

No 0.09534 0.15986

Yes 0.09622 0.17647
Docking4

No 0.09632 0.15691

Table 5.4: Results - Link Prediction Heuristics

There are a lot of interesting insights we get about our data from these results.
Firstly, we find that the best performing dataset is using the top MI scores along

with experimental data on an un-weighted graph. We believe that in this case the
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un-weighted graph performs better than the weighted graph simply because the
weights of the pairs corresponding to the experimental set is very noisy. This is
because these pairs do not have high Ml scores, even though they are highly likely

to interact. Considering an un-weighted graph helps us get rid of this noise.

We find that while using all MI scores the weighted graph performs better.
Hence, we can say that having MI scores does help us in this task. We also find
that we are able to beat the prediction of links using MI scores without network
information (5.3). Hence, we can say that network information can help us predict

network information in a better manner.

We find that Gremlin scores perform better than docking scores. This is prob-
ably because the size of the network formed by docking scores is small, and it

becomes harder to learn due to paucity of data.

5.3.3 Watch Your Step

Next we attempt to use the watch your step(WYS) algorithm for the link prediction
algorithm [Abu-El-Haija ef al.,2017]. Watch Your step is a state of the art algorithm
for link prediction, which optimises random walk hyperparameters in an auto-
mated fashion by converting them into differentiable parameters. We try using
the WYS algorithm for the complete set of MI scores and see an improvement in

performance.
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Scores Weighted? | AUROC <(0.002 FPR) | AUPR <(0.2 - recall)

Yes 0.1284 0.22449

5 Hop - MI all
No 0.01612 0.02389
Yes 0.13642 0.32607

3 Hop -MlIall
No 0.01914 0.0092
Yes 0.14983 0.35335

1 Hop - MI all
No 0.04203 0.03453

Table 5.5: Results - Watch Your Step - Weighted and Un-weighted

Hence, we can say that WYS is able to learn network information in a better
manner than the classifier learned on top of network heuristics. Again,we see a
better performance for weighted graphs against un-weighted graphs. We also find
a decrease in performance with an increase in number of hops for random walks.

This is probably because of the lack of transitivity for MI.

5.3.4 GO Terms

Next, we try to use information from GO terms. These terms indicate the function
performed by a protein. Hence, for each protein, we know a set of terms indicating
whether the protein contributes to a particular function. Hence, prediction using
GO terms relies on the hypothesis that a pair of proteins is more likely to interact

if they share a common function.

Our approach for prediction using GO terms is summarised in Figure For

each pair of proteins, we combine the features using a hadamard product, and
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Figure 5.3: Algorithm for prediction using GO terms
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train a classifier on this feature vector. We also experimented with concatenation
of features, but obtained better results using a hadamard product. We find that,
using just GO terms, we are able to obtain a significant jump in performance as

compared to the MI network.

Scores AUROC <(0.002 FPR) | AUPR <(0.2 - recall)

GO terms 0.34746 0.99119

Table 5.6: Results - GO Terms for link prediction

Since GO-terms are able to predict links better than any of our co-evolution
metrics, we believe there is a need to include this information in our models. We
believe that combining information from MI network and GO terms should be

able to beat GO term predictions by a significant margin.

5.3.5 Positive Control Network

Here, we pose a very important baseline which our models also need to beat. In this

setup we consider an un-weighted network consisting of 1800 links, taken from
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the positive control set. On this network, we attempt to train a classifier for link
prediction using heuristics and WYS. We find that WYS on this setup outperforms
all previous setups. Since, we are able to learn from such a small graph, we can say
that the network is highly modular in nature, as is characteristic of PPI networks.
t the moment, we are unable to beat this baseline. This essentially means that
though network information is significant, the various co-evolution scores such as
MI are not very helpful. We are however skeptical about making this conclusion
as there are a lot of things we have not been able to try yet, which we describe

briefly in the next section.

Method AUROC <(0.002 FPR) | AUPR <(0.2 - recall)

Heuristics 0.32321 0.9414

WYS 0.35883 0.57994

Table 5.7: Results - Network from Positive Control

5.4 Conclusions and Future Work

We proposed a novel framework for PPI prediction which allows us to use sim-
ilarity metrics between protein pairs. Our method allows us to predict for any
arbitrary pair of proteins, from an incomplete network of metrics. Further, we
can also combine the various metrics by building a multi-graph, and training our

classifier on a combination of heuristics from each layer of the multi-graph.

We also propose two baseline models to highlight the utility of our approach.
The first baseline we propose is to use just the metric scores, omitting any network

information. Comparison to this baseline will help us understand how useful net-
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work information is. We have already beaten this baseline by a significant margin,
and it is safe to say that network information can help us predict protein interac-
tions more accurately. The second baseline we propose is to use just the positive
links as a network, and attempt to predict the remaining links. Comparison to this
approach will help us understand whether our model is able to learn from various
metrics, namely, MI, Gremlin and Docking. Our current approach is unable to beat
this baseline. However, there are plenty of experiments which may help us beat

this baseline.

Firstly, we need to run the heuristics and WYS based approaches for the com-
plete multi-graph of metrics, comprising MI, Gremlin and Docking. We can also
add another layer to the multi-graph, comprising information of GO terms. How-
ever, information regarding GO terms maybe more effectively captured with the
help of a GCN. Further, we believe that adding attention over edge weights in the

GCN can also give significant as the edge metrics we have our very noisy.

We have clearly defined the framework and objective of this problem. However,
due to paucity of time we were unable to attempt all of these experiments, and

leave them for future work.
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CHAPTER 6

Conclusion and Directions for Future Work

In this thesis, we looked at the various applications of deep learning to network
biology and network chemistry. We also provided state of the art results for
chemical reaction prediction on the USPTO dataset. Further, we also looked at the
problem of predicting interactions between proteins from noisy and incomplete
co-evolution metrics between protein pairs. We also looked at the shortcomings of
each of our methods, and possible methods to overcome those. Current research
helps us understand the extent to which applying deep learning to network data
can be beneficial in reducing the cost of healthcare and material design. In this
chapter, we wish to take a look at the broad direction of research for the application

of deep learning methods in drug design.

The cost of drugs is often high not because of manufacturing costs, but rather
because of developmental costs. Companies often spend 10-15 years and 600-900
million dollars on designing one drug. Further, many trials never see the light of
day, and the loss incurred by this research needs to be recovered from the sale of
successfully developed drugs. We believe that deep learning methods can help us
speed up and reduce the cost of drug design significantly. For example, molecule
generation can help us design molecules with some specific desirable properties.
This is very useful for the problem of drug design, where efficiently traversing
through the space of molecules is a significant challenge. Another example where
deep learning can help optimise cost for drug design, is using a retro-synthesis

prediction algorithm for finding the most efficient pathway for prediction of a



molecule. Identifying novel protein interactions helps us improve our knowledge
of the functioning of the body. All these methods contribute to our ability to design

drugs at a faster pace and at a cheaper cost.

We understand that much of the academic research done currently is restricted
to specific datasets, and may not be easily deployable in the field. To address this
issue, we believe that industry-academia collaborations are of utmost importance.
Another issue with academic research is that it deals with many small components
of the drug design process, and there needs to be research which tries to bring
together at least some of these works into one pipeline for designing new drugs.
While the task of animal and human testing is irreplaceable, many of the other
processes in drug design can be automated. We hope to see deep learning making
a real difference in the field of drug design in the near future and not remain an

exciting direction for future work.
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