
Effect of various CORDIC algorithms on DFT

implementation

A Project Report

submitted by

PRANIT J. THAKUR

in partial fulfilment of the requirements

for the award of the degree of

DUAL DEGREE IN ELECTRICAL ENGINEERING(B.TECH AND M.TECH)

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

May 2019

THESIS CERTIFICATE

This is to certify that the thesis titled Effect of various CORDIC algorithms on DFT

implementation, submitted by Pranit J. Thakur, to the Indian Institute of Technology,

Madras, for the award of the degree of Dual degree, is a bona fide record of the research

work done by him under our supervision. The contents of this thesis, in full or in parts,

have not been submitted to any other Institute or University for the award of any degree

or diploma.

Dr.K.SRIDHARAN
Research Guide
Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Place: Chennai

Date: 12th May 2019

ACKNOWLEDGEMENTS

I would like to thank Prof.Dr.K.SRIDHARAN for being an excellent mentor and a

teacher. This project has given me a chance to experience a significant side of academic

research. I am sure it will be helpful in my further endeavours.

I would like to thank IIT Madras for giving this great opportunity. It was a good learning

experience to have worked on this project.

Finally, I would like to thank my family and friends who have been supportive all along

i

ABSTRACT

KEYWORDS: FPGA; CORDIC; Discrete Fourier Transform.

The DFT is central to digital signal processing. It is one of the most important tools to

analyze signals and systems in the digital world and is a corner stone of the language

that we use to describe and manipulate signals. The resources for processing and the

timing are both a constraint. When the input data becomes to large, there is a need of

different methods in order to eliminate the complexity.In this thesis, we have tried to

solve this above mentioned problem.

Different methods of CORDIC and DFT are synthesized and implemented in order

to get the data on resource utilization. The experimental validation was done using

Quartus simulation tool, where the numerical synthesis and the post and route described

in Verilog, was realized using ISE Design Suite 14.7.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT iii

LIST OF TABLES vii

LIST OF FIGURES ix

ABBREVIATIONS xi

1 INTRODUCTION 1

1.1 FPGA and LUT’s . 1

1.2 Problem statement . 2

2 Literature review 3

2.1 Cooley Tukey FFT algorithm . 3

2.2 FPGA:-SPARTAN 6 . 6

3 DFT with CORDIC 9

3.1 Overview of CORDIC algorithm 9

3.2 Implementation . 10

3.3 Simulations . 11

3.4 results . 12

4 DFT with multiplexer based CORDIC 15

4.1 Algorithm for MUX based CORDIC 15

4.2 Calculation for further stages . 16

4.3 Simulations . 20

4.4 Results . 21

5 DFT with CORDIC without barrel shifter 23

5.1 Overview of algorithm . 23

v

5.2 Simulations . 25

5.3 Results . 25

6 Conclusion 27

LIST OF TABLES

3.1 Resource Utilization for DFT with CORDIC 12

3.2 Resource Utilization for DFT with Twiddle factor in RAM Block . 12

3.3 Resource Utilization for Cooley tukey Algorithm 13

4.1 Resource Utilization for DFT with MUX based CORDIC 21

5.1 Values of k0 and k1 with corresponding angles 23

5.2 Resource Utilization for DFT for CORDIC without barrel shifter . . 25

6.1 Resource Utilization . 27

vii

LIST OF FIGURES

1.1 4 Input LUT . 2

2.1 Flow graph of the decimation in time decomposition of an N point DFT
computation into two N/2 point DFT computation 4

2.2 Flow graph of the decimation in time decomposition of an N/2 point
DFT computation into 2 N/4 point DFT computation 5

2.3 Result of substituting structure of figure 2.3 in figure 2.1 5

2.4 A basic FPGA . 6

2.5 A basic slice diagram . 7

3.1 CORDIC operation for 8 iterations 11

3.2 8 point DFT . 12

4.1 MUX operation for the first 2 stages 16

4.2 Output of MUX bases CORDIC Module 20

4.3 Output of FFT module with MUX based CORDIC 21

5.1 Architecture for above mentioned algorithm 24

5.2 Output of CORDIC module for angle=90◦ 25

ix

ABBREVIATIONS

LUT Lookup Table

FPGA Field Programmable Gate Array

MUX Multiplexer

FFT Fast Fourier Transform

CORDIC COordinate Rotation DIgital Computer

DFT Discrete Fourier Transform

PLD Programmable Logic Device

GCLK Global Clock

ACLK Asynchronous Clock

BUFG Global Clock Buffer

FF Flipflops

xi

CHAPTER 1

INTRODUCTION

1.1 FPGA and LUT’s

A field-programmable gate array (FPGA) is an integrated circuit (IC) that can be pro-

grammed in the field after manufacture. FPGAs are similar in principle to, but have

vastly wider potential application than, programmable read-only memory (PROM) chips.

FPGAs are used by engineers in the design of specialized ICs that can later be produced

hard-wired in large quantities for distribution to computer manufacturers and end users.

Ultimately, FPGAs might allow computer users to tailor microprocessors to meet their

own individual needs.

A LUT, which stands for LookUp Table, in general terms is basically a table that deter-

mines what the output is for any given input(s). In the context of combinational logic,

it is the truth table. This truth table effectively defines how your combinatorial logic

behaves.

In other words, whatever behavior you get by interconnecting any number of gates (like

AND, NOR, etc.), without feedback paths (to ensure it is state-less), can be imple-

mented by a LUT.

The way FPGAs typically implement combinatorial logic is with LUTs, and when the

FPGA gets configured, it just fills in the table output values, which are called the "LUT-

Mask", and is physically composed of SRAM bits. So the same physical LUT can

implement Y=AB and Y=AB’, but the LUT-Mask is different, since the truth table is

different. We can also create your own lookup tables. For example, we could build a

table for a complex mathematical function, which would work much faster than actually

calculating the value by following an algorithm. This table would be stored in RAM or

ROM.

LUT is built out of SRAM bits to hold the comfiguration memory(CRAM) LUT mask

and a set of multiplexer to select the bits of CRAM that is to drive the output.A k input

LUT can implement k input function with 2kSRAM bits and 2k to 1 multiplexer:-

Figure 1.1: 4 Input LUT

1.2 Problem statement

FPGA have a limited amount of LUT’s and also the number of inputs to these LUT’s is

fixed. If the function is small(less no. of input) then that function can easily be imple-

mented on the FPGA but as the number of input increases the function becomes more

and more complex to be implemented on FPGA. Here we are implementing CORDIC

algorithm in different ways and observing its effect on DFT in terms of resource utiliza-

tion and timing constraints. Each method can be divided into modules with which we

implement them. The difference between them is we are either replacing these module

with something else or in some case removing it all together. The effect of which is

shown in later chapters.

2

CHAPTER 2

Literature review

2.1 Cooley Tukey FFT algorithm

The DFT of a finite length sequence of length N:-

X[k] =
N−1∑
n=0

x[n]e−j
2π
N

kn

where k=0 to N-1 and the inverse of DFT is:-

x[n] =
1

N

N−1∑
n=0

X[k]ej
2π
N

kn

,where n=0 to N-1.

The cooley tukey algorithm exploits the symmetry and periodicity of complex exponen-

tial ej
2π
N

kn. This can easily be shown forN = 2k.Since N is an even integer, X[k] can be

computed by separating x[n] into N/2 point sequences consisting of the even numbered

points in x[n] and odd numbered points in x[n].

X[k] =
N−1∑
n=0

x[n]W kn
N

, where k=0 to N-1 and separating x[n] into its even and odd numbered points, we get:-

X[k] =
∑
neven

x[n]W kn
N +

∑
nodd

x[n]W kn
N

Substituting of variables n=2r for n=even and n=2r+1 for n=odd,

X[k] =

N/2−1∑
r=0

x[2r](W 2
N)

rk +W k
N

N/2−1∑
r=0

x[2r + 1](W 2
N)

rk

and as W 2
N = WN/2 ,it can be rewritten as

X[k] =

n/2−1∑
r=0

x[2r]W rk
N/2 +WK

N

N/2−1∑
r=0

x[2r + 1]W rk
N/2

= G[k] +W k
NH[K]

(2.1)

each of the sums in 2.1 is N/2 point DFT,the first sum N/2 DFT of even numbered points

of the original sequence and second being N/2 point DFT of odd numbered points od

original sequence.G[k] and H[k] are each periodic in k with period N/2.After the DFT

are calculated, they are combined to form DFT X[k] of original signal.

Figure 2.1: Flow graph of the decimation in time decomposition of an N point DFT
computation into two N/2 point DFT computation

This N/2 DFT can further be broken down into 2 N/4 DFT in the same way as shown

below:-

Similarly the N/4 DFT can be decomposed further leading to just multiplication with

constant 1 and -1 (in case N=8).

So at the end we only need N/2 twiddle factor which can be stored in ROM block instead

of computing them at each stage and this will reduce execution time by a lot.

4

Figure 2.2: Flow graph of the decimation in time decomposition of an N/2 point DFT
computation into 2 N/4 point DFT computation

Figure 2.3: Result of substituting structure of figure 2.3 in figure 2.1

5

2.2 FPGA:-SPARTAN 6

We are using XC6SLX150 to implement our code. This section will elaborate the re-

sources this board has and how an algorithm will be analyzed on the basis of utilization

of these resources:-

Figure 2.4: A basic FPGA

1. Slices are the basic unit in a FPGA. These are the configurable blocks which are
programmed to give the result we want. Each of them contain LUT’s, registers,
multiplxers, switches (are programmed to make or break a connection within a
slice and also outside it and are usually implemented using MOSFET’s).

2. Slice register:- As mentioned above,every slice contains a specific numbers of
register. SPARTAN XC6SLX150 board has 184304 registers.A register is a group
of flip-flops that stores a bit pattern. A register on the FPGA has a clock, input
data, output data, and enable signal port. Every clock cycle, the input data is
latched, stored internally, and the output data is updated to match the internally
stored data. FPGA VIs use registers to perform the following functions:-

6

Figure 2.5: A basic slice diagram

(a) Holding state between iterations of a loop

(b) I/O synchronization

(c) Handshaking data between clock domains

(d) Pipelining

3. Slice LUT:-This board has 92152 LUTs.LUTs store a predefined list of outputs
for every combination of inputs and provide a fast way to retrieve the output of
a logic operation. LUTs have constant delay, regardless of implemented function
(LUTs delay can be small but routing delay can be large).

4. LUT FF pair:-This tells us how much, For every LUT in the design you have also
used the adjacent flip-flop within that slice. Normally designs will have some
logic that uses only the LUT of the pair, for example when you have multiple
logic levels between registers. It can also use only the flip-flop of the pair, for
example when you have multiple pipeline stages with no combinatorial logic in
between.

5. Bonded IOBs:-An IOB is an Input/Output Buffer. In effect it is the number of
pins you are using on your device.

6. DSP48A1:-This is the digital signal processing element in the FPGA.The DSP48A1
slices are organized as vertical DSP columns. Within the DSP column, a single
DSP slice is combined with extra logic and routing. The vertical column con-
figuration is ideal to connect a DSP slice to its two adjacent neighboring slices,
hence cascading those blocks and facilitating the implementation of systolic DSP
algorithms.

7. BUFG/BUFGCTRLs:- An architecture-independent global buffer, distributes high
fan-out clock signals throughout a PLD device. The Xilinx implementation soft-
ware converts each BUFG to an appropriate type of global buffer for the target

7

PLD device.e.g For an XC3000 design, you can use a maximum of two BUFG
symbols (assuming that no specific GCLK or ACLK buffer is specified).

8

CHAPTER 3

DFT with CORDIC

3.1 Overview of CORDIC algorithm

The CORDIC algorithm is an iterative method of performing vector rotations by ar-

bitrary angles using shifts and adds. In the rotation mode, CORDIC may be used for

converting a vector in polar form to rectangular form. In the vector mode, it converts a

vector in rectangular form to polar form. Both the modes are derived from the general

rotation transform.

xnew = xcos(θ)− ysin(θ) (3.1)

ynew = xsin(θ) + ycos(θ) (3.2)

which rotates a vector in a cartesian plane by angle θ. These can be rearranged so that:-

xnew = cos(θ)(x− ytan(θ)) (3.3)

ynew = cos(θ)(y + xtan(θ)) (3.4)

In order to accommodate this algorithm in hardware the rotation is restricted so that

tan(θ)=±2i, the multiplication by tangent term is reduced to shift operation.Arbitary

angles of rotation are obtained by performing a aeries of smaller rotation. If the decision

at each iteration i, is which direction to rotate rather than whether or not to rotate, then

cos(θ) term becomes constant.

xi+1 = ki[xi − yidi2−i] (3.5)

yi+1 = ki[yi + xidi2
−i] (3.6)

where,

Ki =
1√

1 + 2−2i

di = ±1

di is depended on the direction in which angle rotation is taking place at each stage.

This Ki becomes equal to 0.6073 as iterations go to infinity. The iterations are done till

the angle Zi reaches 0. So,

zi+1 = zi − ditan−i(2−i) (3.7)

3.2 Implementation

The algorithm is implemented using a verilog module which is called from the fft mod-

ule and each stage is performed at the positive edge of the clock.Here we are calculating

a 8 point DFT so at each calculation we need 4 twiddle factor and the remaining 4 are

the negative of first 4.For the tan−1 a table is stored in ROM for 8 stages.

Given x[n] as input function for n=0 to 7(N=8), the DFT is

X[k] =
7∑

n=0

x[n]ej
2π
N

kn (3.8)

here twiddle factors areW kn
N , and we are storing only 4 of these values i.e W 0

N ,W 1
N ,W 2

N

and W 3
N and using those and CORDIC, we calculate the remaining ones.

The angles received as an input to is first brought in the 1st and 4th quadrant, only then

the CORDIC will work properly.The correction in angle and the input values is shown

below:-

In 2nd quadrant x0 = −yin, y0 = xin and z0 = angle − π/2 and for third quadrant,

x0 = yin, y0 = −xin and z0 = angle + π/2.After these corrections, we can use above

mentioned algorithm properly.

The input in fixed point notation Q1.7 is given serially and stored in a 2D array.As

we are doing 8 point FFT the no. of W kn
N term we need to calculate is 4 and multiplied

10

with respective input index and the remaining 4 exponential values are negative of first

4.

At each DFT e.g X[1],

X[1] =
N−1∑
n=0

x[n]W n
N

X[1] = x[0]W 0
N+x[1]W 1

N+x[2]W 2
N+x[3]W 3

N+x[4]W 4
N+x[5]W 5

N+x[6]W 6
N+x[7]W 7

N

and as W r+N/2
N = −W r

N

X[1] = x[0]W 0
N+x[1]W 1

N+x[2]W 2
N+x[3]W 3

N−x[4]W 0
N−x[5]W 1

N−x[6]W 2
N−x[7]W 3

N

These 4 values are called from main FFT module 4 times for each different angle in

order to calculate the cos(θ)(real part) and sin(θ)(imaginary part) of the corresponding

angle and as we are using 8 iterations for completion of CORDIC(to get an accuracy

upto first decimal point), it takes 8 clock cycle for it to finish and hence we have to slow

down the FFT calculation clock(minimum 8 times slower). This is the problem that

is solved in the next chapter where the sequential CORDIC calculating module is

transformed into combinatorial circuit.

3.3 Simulations

Here we are ginving the angle of 3pi/4 in (Q3.7) format in the CORDIC module which

is run for 8 iteration. It can be seen in the figure3.1 that the output(Q2.7) cos value is
−1√
2

and sin value is 1√
2

Figure 3.1: CORDIC operation for 8 iterations

The DFT(simulation) for the above mentioned algorithm is shown in 3.2:-

11

Figure 3.2: 8 point DFT

3.4 results

The synthesis and implementation of the above mentioned algorithm is done on Spar-

tan 6 XC6SLX75 Board.

Table 3.1: Resource Utilization for DFT with CORDIC

Logic Utilization Used Available Utilzation
Number of slice registers 573 93296 <1%
Number of slice LUT’s 589 46648 1%
Number of fully used LUT FF pairs 496 607 81%
Number of bonded IOBs 61 280 21%
Number of BUFG/BUFGCTRLs 2 16 12%
Number of DSP48A1s 16 132 12%

The timing summary for the Table 3.1 is given below:-

1. Maximum Frequency :- 278.145 MHz.

2. Minimum input arrival time before clock:- 4.570ns.

3. Maximum output required time after clock:- 24.98 ns

Table 3.2: Resource Utilization for DFT with Twiddle factor in RAM Block

Logic Utilization Used Available Utilzation
Number of slice registers 448 93296 <1%
Number of slice LUT’s 509 46648 <1%
Number of fully used LUT FF pairs 445 512 86%
Number of bonded IOBs 73 280 26%
Number of BUFG/BUFGCTRLs 1 16 6%
Number of DSP48A1s 24 132 18%

12

The timing summary for the Table 3.2 is given below:-

1. Maximum Frequency :- 97.88 MHz.

2. Minimum input arrival time before clock:- 4.225ns.

3. Maximum output required time after clock:- 3.634 ns

Table 3.3: Resource Utilization for Cooley tukey Algorithm

Logic Utilization Used Available Utilzation
Number of slice registers 422 93296 <1%
Number of slice LUT’s 863 46648 4%
Number of fully used LUT FF pairs 403 865 45%
Number of bonded IOBs 37 280 13%
Number of BUFG/BUFGCTRLs 1 16 6%
Number of DSP48A1s 4 132 3%

The timing summary for the Table 3.3 is given below:-

1. Maximum Frequency :- 125 MHz.

2. Minimum input arrival time before clock:- 4.97ns.

3. Maximum output required time after clock:- 3.57 ns

NOTE:-All the above mentioned algorithms are calculating 8 point DFT of real

input.

Out of Table 3.1, 3.2 and 3.3, the DFT calculation with twiddle factor in ROM block

uses maximum no. of DSP48A1 as it has maximum no. of multiplications as DSP48A1

has 18×18 bit multiplier and 48 bit accumulator. LUTs are maximum in DFT with

cooley tukey algorithm, it has maximum number of function(different bit adders) unlike

the other 2 where we are reusing the same module more than once (at different clock

edges) and hence the complexity of program to be implemented using LUT is less. DFT

which uses CORDIC for twiddle factor calculation(Table 3.1) has the highest maximum

allowable clock frequency.

13

CHAPTER 4

DFT with multiplexer based CORDIC

4.1 Algorithm for MUX based CORDIC

CORDIC here is used in the same way in previous chapters in order to calculate cosine

and sine of different angles involved while calculating twiddle factor for DFT. The

scheme for reducing the area of the CORDIC using multiplexer is proposed for the

FPGA implementation.

The area is reduced by removing all the stages and replacing them with multiplex-

ers.As shown in chapter 3, the calculation of cos and sin of each angle takes a minimum

of 8 iteration in order to get a precision of 1 decimal point and each iteration takes place

at the positive edge of clock which hinders the ability to speed up the DFT calculation

upto a point.The entire sequential circuit of chapter 3 is replaced by a combinational

circuit.

The first stage output of original unrolled CORDIC architecture is equal to xi,therefore

we can directly write the output of first stage as

y1 = xi (4.1)

x1 = xi (4.2)

If the first stage output is positive, then

y2 = y1 − x1/2 = x1/2 (4.3)

x2 = x1 + y1/2 = 3x1/2 (4.4)

The vector coordinates corresponding to negative output is

x2 = x1 − y1/2 = x1/2 (4.5)

y2 = y1 + x1/2 = 3x1/2 (4.6)

Figure 4.1: MUX operation for the first 2 stages

4.2 Calculation for further stages

Given xin and yin, we have calculate the constant multipliers for each multiplexer.Here

we are using 2 multiplexer:-one 8 to 1 multiplexer and other 16 to 1 multiplexer.The se-

lection input are actually the direction of rotation at each stage,so for 8 to 1 multiplexer

first 3 rotation direction are selector input(0 for clockwise and 1 for anti clockwise) and

for 16 to 1 next 4 direction act as selector input. NOTE:- The constant multiplier for

both the multiplexer are stored in fixed point notation of Q2.7 and output of both

multiplexer is Q5.14 which is truncated to Q2.7

The 8 to 1 multiplexer is shown below:-Input Z2Z1Z0=

for 000,

X = 0.125Xin − 1.625Yin

16

X = 1.625Xin + 0.125Yin

for 001,

X1.625Xin + 0.125Yin

X = −0.125Xin + 1.625Yin

for 010,

X = 1.375Xin − 0.875Yin

X = 0.875Xin + 1.375Yin

for 011,

X = 0.875Xin + 1.375Yin

X = −1.375Xin + 0.875Yin

for 100,

X = 0.875Xin − 1.375Yin

X = 1.375Xin + 0.875Yin

for 101,

X = 1.375Xin + 0.875Yin

X = −0.875Xin + 1.375Yin

for 110,

X = 1.625Xin − 0.125Yin

X = 0.125Xin + 1.625Yin

for 111,

X = 0.125Xin + 1.625Yin

X = −1.625Xin + 0.125Yin

We can see here only for values are needed to be stored in ROM for above calculation:-

1. 0.125

2. 1.625

17

3. 1.375

4. 0.875

The output of this multiplexer is taken and given as input for the 16 to 1 multi-

plexer(Selector input are Z6Z5Z4Z3:- for 0000,

Xout = 0.9829X − 0.2339Y

Yout = 0.2339X + 0.9829Y

for 0001,

Xout = 1.01X + 0.0152Y

Yout = −0.0152X + 1.01Y

for 0010,

Xout = 1.004X − 0.109Y

Yout = 0.1097X + 1.004Y

for 0011,

Xout = X + 0.1408Y

Yout = −0.1408X + Y

for 0100,

Xout = 0.995X − 0.1720Y

Yout = 0.172X + 0.995Y

for 0101,

Xout = X + 0.078Y

Yout = −0.078X + Y

for 0110,

Xout = X − 0.046Y

Yout = 0.046X + Y

18

for 0111,

Xout = 0.98X + 0.2030Y

Yout = −0.2030X + 0.98Y

for 1000,

Xout = 0.98X − 0.2030Y

Yout = 0.2030X + 0.98Y

for 1001,

Xout = X + 0.046Y

Yout = −0.046X + Y

for 1010,

Xout = X − 0.078Y

Yout = 0.078X + Y

for 1011,

Xout = 0.995X + 0.1720Y

Yout = −0.172X + 0.995Y

for 1100,

Xout = X − 0.1408Y

Yout = 0.1408X + Y

for 1101,

Xout = 1.004X + 0.109Y

Yout = −0.1097X + 1.004Y

for 1110,

Xout = 1.01X − 0.0152Y

Yout = 0.0152X + 1.01Y

for 1111,

Xout = 0.9829X + 0.2339Y

19

Yout = −0.2339X + 0.9829Y

There is a pattern in the above calculations and hence the values that needed to be stored

in ROM are:-

1. 0.9829 and 0.2339

2. 1.01 and 0.0152

3. 1.004 and 0.875

4. 1 and 0.1408

5. 0.995 and 0.1720

6. 1.007 and 0.078

7. 1 and 0.046

8. 0.98 and 0.2030

The FFT module gets a real input of notation Q1.7 and it stores 4 twiddle factor

mentioned in 3 and for calculation of each DFT the multiplexer modules give out the

first 4 W kn
N value and the remaining 4 will be negative of first 4.

4.3 Simulations

Here in figure:4.2, we are giving π/4 as an input angle and the gain is 1.6, the output

we got is 1√
2
in fixed point notation Q2.7.

Figure 4.2: Output of MUX bases CORDIC Module

The input given is :-

x[0]=0.5, x[1]=0.2, x[2]=0.1, x[3]=0.25, x[4]=0.3, x[5]=0.2, x[6]=0.7 and x[7]=0.6,

We can see in the simulation(figure:4.3 is that the output DFT we get is serial after

all serial input data is written in the memory.Output is of format Q11.14 and can be

truncated.

20

Figure 4.3: Output of FFT module with MUX based CORDIC

4.4 Results

Table 4.1: Resource Utilization for DFT with MUX based CORDIC

Logic Utilization Used Available Utilzation
Number of slice registers 244 93296 <1%
Number of slice LUT’s 3789 46648 8%
Number of fully used LUT FF pairs 184 3818 4%
Number of bonded IOBs 61 280 21%
Number of BUFG/BUFGCTRLs 2 16 12%
Number of DSP48A1s 16 132 12%

The timing summary for the Table5.1 is given below:-

1. Maximum Frequency :- 286 MHz.

2. Minimum input arrival time before clock:- 4.05ns.

3. Maximum output required time after clock:- 42 ns

We can see the MUX based CORDIC is faster than the CORDIC in chapter 3 as the

entire sequential circuit is converted into combinatorial. But using a tree like structure

used for decision making (which in real life circuit is realized by multiplexers) at each

stage has led to high usage of Slice LUTs.Number of multiplications are almost same.

The LUT here are not just used for logic but also as a shift register , carry load and

a combination of 06 and 05 are also used in order to realize the complex logic unlike

other 2 algorithm where most of the LUT used is O6.

21

CHAPTER 5

DFT with CORDIC without barrel shifter

5.1 Overview of algorithm

The objective of this algorithm is to eliminate the use of barrel shifter.The basic idea

is to fix the angles by which the rotation is done at each iteration such that the need

of barrel shifter is eliminated. The 2 angles were selected using trial and error method

which gives the minimum error.

The 2 angles were chosed to represent all the angles in [-180,180] range, that are

tan−1(2−1) and tan−1(2−3),corresponding rotations provide architecture for X and Y

with merely shifters and adder/subtractors.

Z = k0tan
−1(2−1) + k1tan

−1(2−3)

. such that |k0|+ |k1| is minimized.The following are the few values of k0 and k1:-

Table 5.1: Values of k0 and k1 with corresponding angles

Angles k0 k1 Total iterations
1 0 0 0
2 -1 4 5
3 2 -7 9
4 2 -7 9
5 1 -3 4
-2 1 -4 5
-3 -2 7 9
-4 -2 7 9
-5 -1 3 4

As we can see for negative angle, the absolute values of k0 and k1 remain same, hence

the number of iterations remain same but the sign of k0 and k1 are changed.So, we only

need to store 180 values.The maximum no. of iteration 13 is for 170◦ and -170◦.

Figure 5.1: Architecture for above mentioned algorithm

The Architecture for the algorithm is shown above.

The state machine runs |ko|+|k1| times. It has two outputs:m and stop bit.the bit m is set

for 0 for k0 times and set to 1 for k1 times.The angle for rotation is sgn(k0)tan−1(2−1),

when m is 0 while it is sgn(k1)tan−1(2−1), when m is 1. The values of X nad Y is

chosen by the multiplexer M0 and M1 as shown in the 5.1.The MUX M2 selects the

direction of rotation. This operation can be represented in form of equation:-

1. If the angle of rotation is tan−1(2−1):-

X = K(X − (−1)sgn(k0).Y.2−1)

Y = K(Y + (−1)sgn(k0).X.2−1)

2. If the angle of rotation is tan−1(2−3):-

X = X − (−1)sgn(k1).Y.2−3

Y = Y + (−1)sgn(k1).X.2−3

Here K = 0.8944 is a correction in order to nullify the gain we incur in rotation

from x = 1 and y = 0.

24

5.2 Simulations

Here in figure:5.2, we are giving π/2 as an input angle , the output we got is cos=0 and

sin= 1 in fixed point notation Q2.7.

Figure 5.2: Output of CORDIC module for angle=90◦

NOTE:-there is an error of 1◦ present for few angles

5.3 Results

Table 5.2: Resource Utilization for DFT for CORDIC without barrel shifter

Logic Utilization Used Available Utilzation
Number of slice registers 163 93296 1%
Number of slice LUT’s 373 46648 1%
Number of fully used LUT FF pairs 152 374 40%
Number of bonded IOBs 61 280 21%
Number of BUFG/BUFGCTRLs 2 16 12%
Number of DSP48A1s 16 132 12%

The timing summary for the Table5.2 is given below:-

1. Maximum Frequency :- 167.675 MHz.

2. Minimum input arrival time before clock:- 4.247ns.

3. Maximum output required time after clock:- 25.08 ns

The combinatorial logic corresponding rotation by angle tan−1(2−1) includes mul-

tiplication (for the correction of gain incurred by rotation) with shifting and adding and

hence the LUT in a slice might not be enough and need another LUT. In this way the FF

corresponding to the first LUT remain unused and hence the percentage of fully used

LUT-FF pair is less than normal CORDIC based DFT.

But the absence of barrel shifter led to less number of LUT used.

25

CHAPTER 6

Conclusion

The resource allocation for the 3 different implementation of CORDIC algorithm after
synthesis and implementation on Spartan 6 board is shown below:-

Table 6.1: Resource Utilization

Logic Utilization DFT with nor-
mal CORDIC

DFT with MUX
based CORDIC

DFT with CORDIC
without barrel shifter

Slice registers 573 244 163
Slice LUT’s 589 3789 373
Number of fully used
LUT FF pairs

81% 4% 40%

Maximum frequency 278 MHz 286 MHz 167.675MHz
Bonded IOBs 61 61 61
BUFG/BUFGCTRLs 2 2 2
DSP48A1s 16 16 16

The following are the noticeable points in the above shown data:-

1. LUT used:-MUX based CORDIC uses most LUTs as tree like logic is used to
implement it and that logic is implemented in a form of 2 multiplexer (one 8 to
1 MUX and other 16 to 1 MUX).
The no. of LUT in CORDIC without barrel shifter is lesser than normal CORDIC
as there is no shifting more than 3 bits.

2. Fully used LUT-FF pair:- MUX based CORDIC has the least percentage as
most of the logic is combinatorial not sequential and hence only LUT are used
not the FF in the slices.
Normal CORDIC has the highest percentage as the every calculation is done at
positive edge of clock so there is a proper proportion of combinatorial logic and
the Flipflops.

3. Slice Registers:- These are used to implement state machines in form of flipflops.

4. Maximum frequency:-It can be seen that CORDIC without barrel shifter is
slower compared to other 2 as the average no. of iterations are higher than other 2
(but no. of LUTs and registers are significantly less because use of barrel shifter
is eliminated).
The maximum frequency of normal CORDIC and MUX based CORDIC are same
as in both we have to wait 7 iteration in order to get the direction of rotation at
each iteration. The speed of MUX based CORDIC can be significantly in-
creased by eliminating the sequential logic used for calculation of direction

of rotation and actually saving the direction for each angle(total 360) in Block
RAM as we did in third algorithm but this can’t be done for normal CORDIC
as the remaining logic for calculation of cos and sine value is sequential un-
like MUX based CORDIC which is purely combinatorial.

28

REFERENCES

1. Leena Vachhani, K. Sridharan, and Pramod K. Meher Efficient CORDIC Al-
gorithms and Architectures for Low Area and High Throughput Implementation
IEEE Transactions on circuits and systems,January 2009

2. V.Naresh , B.Venkataramani and R.Raja An area efficient multiplexer based
CORDIC 2013 International Conference on Computer Communication and In-
formatics (ICCCI -2013),Jan 04, 2013.

3. Renu Bala, Shamim Aktar Fast Fourier Transformation Realization with Dis-
tributed Arithmetic International Journal of Computer ApplicationsVolume 102
No.15, September 2014

4. Muzhir Shaban Mohammed, Santiago Lorenzo Matilla and LUISNozal Fast 2D
convolution filter based on look up table FFT

5. Robert J FrancisA tutorial on logic synthesis for lookup table

6. G. William Slade,The Fast Fourier Transform in Hardware ,20 May 2014

29

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	INTRODUCTION
	FPGA and LUT's
	Problem statement

	Literature review
	Cooley Tukey FFT algorithm
	FPGA:-SPARTAN 6

	DFT with CORDIC
	Overview of CORDIC algorithm
	Implementation
	Simulations
	results

	DFT with multiplexer based CORDIC
	Algorithm for MUX based CORDIC
	Calculation for further stages
	Simulations
	Results

	DFT with CORDIC without barrel shifter
	Overview of algorithm
	Simulations
	Results

	Conclusion

