
LUT optimization for Fast Fourier Transform

A Project Report

submitted by

MOHANKUMAR R

in partial fulfilment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

MAY 2019

THESIS CERTIFICATE

This is to certify that the thesis titled LUT optimization for Fast Fourier Transform,

submitted by MOHANKUMAR R, to the Indian Institute of Technology, Madras, for

the award of the degree of Master of Technology, is a bonafide record of the research

work done by him under our supervision. The contents of this thesis, in full or in parts,

have not been submitted to any other Institute or University for the award of any degree

or diploma.

Dr.K.SRIDHARAN
Research Guide
Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Place: Chennai

Date: 5th May 2019

ACKNOWLEDGEMENTS

I would like to express my profound gratitude to my project guide, Dr.K.SRIDHARAN

, for giving me the opportunity to work under him, on this project. His vast knowledge,

outlook towards research, patience and willingness to help, was instrumental in helping

me complete my project.

I would also like to thank my friends, my parents and the faculty at IIT Madras for

being a great source of motivation and encouragement.

i

ABSTRACT

KEYWORDS: LUT optimization, Fast Fourier Transform, Field Programmable

Gate Array

Fast Fourier Transform (FFT) remains of a great importance due to its substantial role in

the field of signal processing and imagery. Multiple designs of 8 point FFT is proposed

using various algorithms . The material resources of the FPGA are limited, particu-

larly the integrated DSP blocks, hence different approaches are used using the Verilog

description with the aim to reduce the resource usage.

The experimental validation was done using ISIM simulation tool, where the nu-

merical synthesis and the post and route described in Verilog, was realized using ISE

Design Suite 14.7. The FFT modules of all the implementations were tested using a

python script against various corner input test cases.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES v

LIST OF FIGURES vi

ABBREVIATIONS vii

1 Introduction 1

1.1 What is FPGA? . 1

1.2 What is FFT? . 1

1.3 What is a LUT? . 2

1.4 Problem Statement . 2

2 Literature Review 3

2.1 LUT Optimization for Memory-Based Computation 3

2.2 CORDIC algorithm based on FPGA 4

2.3 Cooley-Tukey FFT Algorithms . 5

2.4 Doing Hartley Smartly . 6

3 Direct Cooley-Tukey algorithm using DSP based multiplier 8

3.1 Algorithm . 8

3.2 Calculation . 9

3.3 Simulation . 11

3.4 Result . 11

4 Modified Cooley-Tukey algorithm reusing single DSP based multiplier 12

4.1 Algorithm . 12

4.2 Calculation . 12

iii

4.3 Simulation . 14

4.4 Result . 15

5 Modified Cooley-Tukey algorithm using LUT based multiplier 16

5.1 Algorithm . 16

5.2 Calculation . 18

5.3 Simulation . 19

5.4 Result . 19

6 Modified Cooley-Tukey algorithm using CORDIC based multiplier 21

6.1 Algorithm . 21

6.2 Calculation . 22

6.3 Simulation . 23

6.4 Result . 23

7 Python Validation Script 25

8 Conclusion 26

A Appendix 27

A.1 Code for direct Cooley-Tukey algorithm implementation 27

A.2 Code for modified Cooley-Tukey algorithm with one multiplier reused 30

A.3 Code for modified Cooley-Tukey algorithm with LUT based multiplier 34

A.4 Code for modified Cooley-Tukey algorithm with CORDIC based mul-
tiplier . 39

A.5 Python Code for Verifying fft8 blocks 48

LIST OF TABLES

2.1 Comparison of total operations performed by computing FFT directly
and by computing FHT first and then FFT. 7

3.1 resource utilization for direct implementation of Cooley-Tukey algo-
rithm with DSP481As . 11

4.1 resource utilization for Cooley-Tukey algorithm by reusing same DSP481A
multiplier. 15

5.1 resource utilization for Cooley-Tukey algorithm by using LUT based
multiplier. 19

6.1 resource utilization for Cooley-Tukey algorithm by using CORDIC based
multiplier. 23

8.1 Comparison of resource utilization for different implementations shown 26

v

LIST OF FIGURES

2.1 Conventional LUT based multiplier 3

2.2 CORDIC algorithm showing rotation through an angle θ. 5

2.3 Butterfly structure for Cooley-Tukey Algorithm 6

3.1 Butterfly structure used for calculating 16 length FFT 9

3.2 ISIM simulation for Direct Cooley-Tukey algorithm using DSP based
multiplier . 11

4.1 Block diagram representing DSP48A1s coupled with multiplexer . . 12

4.2 ISIM simulation for Modified Cooley-Tukey algorithm reusing single
DSP based multiplier . 14

5.1 Shift-Add multiplier circuit . 16

5.2 Shift-Add multiplier Algorithm . 17

5.3 Shift-Add multiplier coupled with multiplexer 18

5.4 ISIM simulation for Modified Cooley-Tukey algorithm using LUT based
multiplier . 19

6.1 ISIM simulation for Modified Cooley-Tukey algorithm using CORDIC
based multiplier . 23

7.1 Sample working of Python validation script 25

vi

ABBREVIATIONS

FPGA Field-Programmable Gate Array

HDL Hardware Description Language

ASIC Application-Specific Integrated Circuit

FFT Fast Fourier Transform

FHT Fast Hartley Transform

DFT Discrete Fourier Transform

OMS Odd Multiple Storage

APC Anti-Symmetric Coding

CORDIC COordinate Rotation DIgital Computer

VHDL VHSIC Hardware Description Language

LUT Look-Up Table

vii

CHAPTER 1

Introduction

1.1 What is FPGA?

A field-programmable gate array (FPGA) is an integrated circuit designed to be con-

figured by a customer or a designer after manufacturing âĂŞ hence the term "field-

programmable". The FPGA configuration is generally specified using a hardware de-

scription language (HDL), similar to that used for an Application-Specific Integrated

Circuit (ASIC). Circuit diagrams were previously used to specify the configuration, but

this is increasingly rare due to the advent of electronic design automation tools.

FPGA contains an array of programmable logic blocks, and a hierarchy of "re-

configurable interconnects" that allow the blocks to be "wired together", like many

logic gates that can be inter-wired in different configurations. Logic blocks can be con-

figured to perform complex combinational functions, or merely simple logic gates like

AND and XOR. In most FPGAs, logic blocks also include memory elements, which

may be simple flip-flops or more complete blocks of memory. Many FPGAs can be

reprogrammed to implement different logic functions, allowing flexible re-configurable

computing as performed in computer software.

1.2 What is FFT?

A fast Fourier transform (FFT) is an algorithm that computes the discrete Fourier trans-

form (DFT) of a sequence. Fourier analysis converts a signal from its original domain

(often time or space) to a representation in the frequency domain and vice versa. The

DFT is obtained by decomposing a sequence of values into components of different

frequencies. This operation is useful in many fields, but computing it directly from the

definition is often too slow to be practical. An FFT rapidly computes such transforma-

tions by factorizing the DFT matrix into a product of sparse (mostly zero) factors.

As a result, it manages to reduce the complexity of computing the DFT fromO(n2),

which arises if one simply applies the definition of DFT, to O(n log n), where n is the

data size. The difference in speed can be enormous, especially for long data sets where

N may be in the thousands or millions. In the presence of round-off error, many FFT

algorithms are much more accurate than evaluating the DFT definition directly. There

are many different FFT algorithms based on a wide range of published theories, from

simple complex-number arithmetic to group theory and number theory.

1.3 What is a LUT?

A LUT is a Look-Up Table. Modern FPGA’s are built out of large arrays of these lookup

tables. Using a lookup table, we can build any logic we want ,as long as we don’t exceed

the number of elements in the lookup table. As an example, the 7-series Xilinx FPGAs

are composed of "configurable logic blocks", each of which contain two "slices", of

which each of those "slices" contain four 6-input LUTs. Each of these LUT’s can

handle either one six input lookup, or two five input lookups-as long as the two share

the same inputs. The Altera Cyclone IV, on the other hand, has only 4-input LUTs.The

point being that every FPGA implements our logic via a combination of LUTs. Chips

differ by the capability of their LUTs, as well as by the number of LUTs on board. In

general, the more LUTs we have, the more logic your chip can do, but also the more our

FPGA chip is going to cost. It’s all a trade off. To get the most logic for a given price,

the FPGA design engineer needs to be able to code efficiently, and pack their code into

the fewest LUTs possible.

1.4 Problem Statement

FPGAs are an efficient hardware target when only small series are needed, or for rapid

prototyping. The FPGAs are complex enough to implement more than glue logic, in-

cluding complex designs up to several thousands gates. As the logic capacity of FPGAs

increases, LUT optimization is becoming more important. FPGA’s resources are lim-

ited , hence optimal utilization of resources is important. FFT units can be optimized in

various ways by compromising on factors like speed , input type , etc.. .

2

CHAPTER 2

Literature Review

2.1 LUT Optimization for Memory-Based Computation

Semiconductor memory has become cheaper, faster, and more power-efficient. The

transistor packing density of memory components is not only higher but also increasing

much faster than those of logic components. Apart from that, memory-based comput-

ing structures are more regular than the multiply - accumulate structures and offer many

other advantages, e.g., greater potential for high-throughput and low-latency implemen-

tation and less dynamic power consumption. Memory-based computing is well suited

for many digital signal processing (DSP) algorithms, which involve multiplication with

a fixed set of coefficients.

Figure 2.1: Conventional LUT based multiplier

Fig. 2.1 shows a conventional memory based multiplier where every possible com-

bination of input word X of length L is multiplied with a constant A and stored in

memory.The total memory-core size is 2L (all combination of X).Using APC and OMS

technique, and by taking advantage of symmetry, the size of memory core can be re-

duced, thereby reducing the number of LUTs used.

FFT implementation requires multiplication to be performed in various parts of but-

terfly structure. Most multiplications in the FFT algorithm involves one of the operand

being constant (which is sin or cos of some angle). Due to the fact that one of the

operand is constant, memory based multiplier can be used to achieve higher speeds.

This paper discusses anti-symmetric product coding (APC) and odd-multiple-storage

(OMS) techniques for lookup-table (LUT) design for memory-based multipliers to be

used in digital signal processing applications.These techniques are used in the reduction

of the LUT size by a factor of two.In this a different form of APC and a modified OMS

scheme is shown, in order to combine them for efficient memory-based multiplication.

The proposed combined approach provides a reduction in LUT size to one-fourth of the

conventional LUT. It has also suggested a simple technique for selective sign reversal

to be used in the proposed design. It is shown that the proposed LUT design for small

input sizes can be used for efficient implementation of high-precision multiplication by

input operand decomposition.

2.2 CORDIC algorithm based on FPGA

CORDIC algorithm provides an efficient way of rotating the vectors in a plane by simple

shift add operation to estimate the basic elementary functions like trigonometric oper-

ations, multiplication, division and some other operations like logarithmic functions,

square roots and exponential functions.

The CORDIC algorithm is used to evaluate real time calculation of the exponential

and logarithmic functions using the iterative rotation of the input vector. This rotation

of a given vector (xi, yi) is realized by means of a sequence of rotations with fixed

angles which results in overall rotation through a given angle or result in a final angular

argument of zero.

CORDIC algorithm can be used efficiently for realizing a multiplication between

a scalar and vector, by changing the initial magnitude of the rotation vector , thereby

reducing total number of multiplications from two to one. Fig. 2.2 shows the rotation

of the input vector, and by multiplying the scalar operand with the initial magnitude of

vector operand we obtain Min. Now Min is rotated in small steps for the total angle θ

and thereby obtaining the resulting vector.

4

Figure 2.2: CORDIC algorithm showing rotation through an angle θ.

2.3 Cooley-Tukey FFT Algorithms

The direct way of computing the DFT problem of size N takesO(N2) operations, where

each operation consists of multiplication and addition of complex values. While using

Cooley-Tukey FFT Algorithms, the computation time can be reduced to O(Nlog(N)).

A special case of such algorithm when N is a power of 2 is used to calculate the DFT ,

which is otherwise known as FFT.

X(k) =
N−1∑
x=0

x(n)W kx
N , 0 ≤ k ≤ N − 1

W kx
N = e−j2π/N

The above expression is for computing FFT and WN are the twiddle factors.This

expression can be best represented as a butterfly structure shown in Fig. 2.3

Fig. 2.3 shows the butterfly structure implementation for computing FFT using

Cooley-Tukey Algorithm. The inputs x[i] to the first stage of butterfly are complex

numbers and the FFT is computed over 3 stages for 8 point FFT. The total number of

5

Figure 2.3: Butterfly structure for Cooley-Tukey Algorithm

stages is related to the number of inputs N as show below.

Total Stages : log2N

The output X[i] is also a complex number. Twiddle Factors are multiplied in various

stages represented by W i
N

2.4 Doing Hartley Smartly

FFT can also be computed by first computing another transform first, called as Hartley

transform , given by the following expression.

H(f) =
1

N

N−1∑
i=0

X(t)

[
cos(

2πft

N
) + sin(

2πft

N
)

]

Freal(f) = H(f) +H(N − f)

Fimag(f) = H(f)−H(N − f)

Here Freal(f) and Fimag(f) are the real and imaginary parts of FFT. Classically,

6

FFT performance has been evaluated by counting the number of multiplications, addi-

tions, and subtractions that are involved. In these terms, the FHT does very well. If

we disregard the simplicity of the first two rounds, we have each round requiring N

multiplications and 2N additions or subtractions. The number of rounds is log2N. By

comparison, the FFT requires 2N multiplications and 7N/2 additions or subtractions

in each round. In both cases these numbers assume that no redundant operations are

performed.

Table 2.1: Comparison of total operations performed by computing FFT directly and by
computing FHT first and then FFT.

FFT FHT
Multiplication N 2N

Addition or Subtraction 2N 7N/2
Rounds log2N log2N

The biggest disadvantage of this algorithm is that, the input for the FFT needs to be

real valued samples only. In most of the real world DSP applications like image pro-

cessing, audio processing, and so on, the input is real valued samples, and this algorithm

can be used to improve efficiency and speed.

7

CHAPTER 3

Direct Cooley-Tukey algorithm using DSP based

multiplier

3.1 Algorithm

Cooley and Tukey showed that it’s possible to divide the DFT computation into two

smaller parts. From the definition of the DFT we have

Xk =
N−1∑
n=0

xn.e
−i2πkn/N (3.1)

Xk =

N/2−1∑
m=0

x2m.e
−i2πk(2m)/N +

N/2−1∑
m=0

x2m+1.e
−i2πk(2m+1)/N (3.2)

Xk =

N/2−1∑
m=0

x2m.e
−i2πkm/(N/2) + e−i2πk/N

N/2−1∑
m=0

x2m+1.e
−i2πkm/(N/2) (3.3)

We’ve split the single Discrete Fourier transform into two terms which themselves

look very similar to smaller Discrete Fourier Transforms, one on the odd-numbered val-

ues, and one on the even-numbered values. Each term consists of (N2/2) computations,

for a total of N2.

The trick comes in making use of symmetries in each of these terms. Because the

range of k is 0 6 k < N , while the range of n is 0 6 n < N/2, we see from the

symmetry properties above that we need only perform half the computations for each

sub-problem. Our O[N2] computation has become O[M2], with M half the size of N.

As long as our smaller Fourier transforms have an even-valued M, we can reapply

this divide-and-conquer approach, halving the computational cost each time, until our

arrays are small enough that the strategy is no longer beneficial. In the asymptotic limit,

this recursive approach scales as O[NlogN]. Since recursively the scales reduce to half

everytime , FFT can be implemented only if N is in the form of 2k.

Figure 3.1: Butterfly structure used for calculating 16 length FFT

After we reduce the FFT of larger sizes recursively, we reach the smallest unit called

the butterfly unit which is the main building block for FFT. Fig. 3.1 shows the imple-

mentation of a 16 length input FFT. The smallest structure with 2 input and 2 output unit

is called the butterfly unit and the entire computation can be build using these buttefly

structures.

3.2 Calculation

Cooley-Tukey algorithm re-expresses the discrete Fourier transform (DFT) of an arbi-

trary composite size N = N1N2 in terms of N1 smaller DFTs of sizes N2, recursively, to

reduce the computation time to O(N log N) for highly composite N.

This is a direct implementation of Cooley-Tukey Algorithm , and for a 8 point FFT

, it involves 2 multiplications for output calculation. The equations involving the calcu-

lation of FFT in shown below.

9

t1 = D(0) +D(4);m3 = D(0)−D(4);

t2 = D(6) +D(2);m6 = j ∗ (D(6)−D(2));

t3 = D(1) +D(5); t4 = D(1)−D(5);

t5 = D(3) +D(7); t6 = D(3)−D(7);

t8 = t5 + t3;m5 = j ∗ (t5 − t3);

t7 = t1 + t2;m2 = t1 − t2;

m0 = t7 + t8;m1 = t7 − t8;

m4 = sin(π/4) ∗ (t4 − t6);m7 = −j ∗ sin(π/4) ∗ (t4 + t6);

s1 = m3 +m4; s2 = m3 −m4;

s3 = m6 +m7; s4 = m6 −m7;

DO(0) = m0;DO(4) = m1;

DO(1) = s1 + s3;DO(7) = s1 − s3;

DO(2) = m2 +m5;DO(6) = m2 −m5;

DO(5) = s2 + s4;DO(3) = s2 − s4;

where D and DO are input and output arrays of the complex data t1,...,t8, m1,.., m7,

s1,..,s4 are the intermediate complex results. As we see the algorithm contains only

2 multiplications to the non-trivial coefficient sin(π/4) = 0.7071, and 22 real additions

and subtractions. The multiplication to a coefficient j means the negation the imaginary

part and swapping real and imaginary parts.

The implementation of this algorithm is given in Appendix A.1 written in Verilog

and tested with Xilinx ISE design suite 14.7. inp1,...inp8 are the 16 bit signed floating

point inputs of Q format and out1-real , out1-imag, ...,out8-real,out8-imag are the real

and imaginary outputs in 16 bit Q format of the FFT8 module.clk , rst are the clock ,

reset inputs respectively , and output-stb is the output strobe , which is enabled once the

output is calculated.

The implementation was cross verified with the python script shown in Appendix

A.5 , which tests the FFT block against various test vectors and verifying the result with

the default FFT module in numerical python library.

10

3.3 Simulation

Fig. 3.2 shows the simulation of this implementation in ISIM.

Figure 3.2: ISIM simulation for Direct Cooley-Tukey algorithm using DSP based mul-
tiplier

3.4 Result

Table 3.1: resource utilization for direct implementation of Cooley-Tukey algorithm
with DSP481As

Logic Utilization Quantity
Number of Slice Registers 47

Number of Slice LUTs 337
Number of fully used LUT-FF pairs 47

Number of BUFG/BUFGCTRLs 1
Number of DSP48A1s 2

Table. 3.1 shows the resource utilization summary of this current implementation.

In total there are 2 multiplications that is performed in parallel in to improve speed of

calculation. Since 2 multiplications run in parallel , 2 hardware based multiplier are

used as seen in the Table. 3.1.Hardware Multiplier are scarce resources and Spartan-3e

contains only 8 DSP48A1s in total and more power consuming compared to LUT based

multipliers.This implementation gives the maximum speed compared to others shown

here , but compromising on more resource usage.

11

CHAPTER 4

Modified Cooley-Tukey algorithm reusing single DSP

based multiplier

4.1 Algorithm

From the chapter 3 , it is seen that 2 multiplications are necessary for calculating 8 point

FFT. In this algorithm those 2 multiplications are performed serially one by one , hence

reusing a single multiplier. Fig. 4.1 shows the basic block diagram , representing multi-

plexers combined with hardware multipliers.both the multiplication operands are given

as inputs to multiplexer , where Operand-1A,Operand-2A and Operand-1B,Operand-

2B are the input operands and a select is used to select which multiplication to be

performed. This way the number of hardware multipliers used can be reduced.

This block diagram is used for 8 point FFTs since only 2 multiplications are involved

, this can be extended to any other input size by using large multiplexers of different

size.

Figure 4.1: Block diagram representing DSP48A1s coupled with multiplexer

4.2 Calculation

Cooley-Tukey algorithm for 8 point FFT involves 2 multiplication , hence using 2 mul-

tiplicative blocks as seen in the first implementation.In this modified algorithm , the

multiplications are pipe lined to run one by one , by reusing the same multiplier. The

calculations of various intermediate complex numbers is divided into groups and ex-

ecuted group by group.The equation involving different groups are mentioned below.

Group− 1

t1 = D(0) +D(4);

m3 = D(0)−D(4);

t2 = D(6) +D(2);

m6 = j ∗ (D(6)−D(2));

t3 = D(1) +D(5);

t4 = D(1)−D(5);

t5 = D(3) +D(7);

t6 = D(3)−D(7);

t8 = t5 + t3;

m5 = j ∗ (t5 − t3);

t7 = t1 + t2;

m2 = t1 − t2;

m0 = t7 + t8;

m1 = t7 − t8;

m4 = sin(π/4) ∗ (t4 − t6);

Group− 2

m7 = −j ∗ sin(π/4) ∗ (t4 + t6);

s1 = m3 +m4;

s2 = m3 −m4;

s3 = m6 +m7;

s4 = m6 −m7;

DO(0) = m0;

DO(4) = m1;

DO(1) = s1 + s3;

DO(7) = s1 − s3;

DO(2) = m2 +m5;

DO(6) = m2 −m5;

DO(5) = s2 + s4;

DO(3) = s2 − s4;

13

where D and DO are input and output arrays of the complex data t1,..,t8, m1,.., m7,

s1,..,s4 are the intermediate complex results. As we see the algorithm contains only

2 multiplications to the non-trivial coefficient sin(π/4) = 0.7071, and 22 real additions

and subtractions. The multiplication to a coefficient j means the negation the imaginary

part and swapping real and imaginary parts.

The implementation of this algorithm is given in Appendix A.2 written in Verilog

and tested with Xilinx ISE design suite 14.7. inp1,...inp8 are the 16 bit signed floating

point inputs of Q format and out1-real , out1-imag, ...,out8-real,out8-imag are the real

and imaginary outputs in 16 bit Q format of the FFT8 module.clk , rst are the clock ,

reset inputs respectively , and output-stb is the output strobe , which is enabled once the

output is calculated.

The implementation was cross verified with the python script shown in Appendix

A.5 , which tests the FFT block against various test vectors and verifying the result with

the default FFT module in numerical python library.

4.3 Simulation

Fig. 4.2 shows the simulation of this implementation in ISIM

Figure 4.2: ISIM simulation for Modified Cooley-Tukey algorithm reusing single DSP
based multiplier

14

4.4 Result

Table 4.1: resource utilization for Cooley-Tukey algorithm by reusing same DSP481A
multiplier.

Logic Utilization Quantity
Number of Slice Registers 317

Number of Slice LUTs 374
Number of fully used LUT-FF pairs 138

Number of BUFG/BUFGCTRLs 1
Number of DSP48A1s 1

Table. 4.1 shows the resource utilization summary of this current implementation.

In total there are 2 multiplications that is performed in one after another . Since 2

multiplications run one by one , 1 hardware based multiplier are used as seen in the

Table. 4.1.Hardware Multiplier are scarce resources and Spartan-3e contains only

8 DSP48A1s in total and more power consuming compared to LUT based multipli-

ers.This Algorithm takes twice the time taken by Algorithm 3, but uses less power

since single multiplier is used. Also we save 12.5 percent of the resource utilization of

hardware multiplier compared to Algorithm 3, and this Algorithm can be used in places

where the DSP multiplier are very less. Also since the DSP48A1s are connected with

multiplexer to run computation in stages , more number of LUTs are used compared to

that of Algorithm 3.

15

CHAPTER 5

Modified Cooley-Tukey algorithm using LUT based

multiplier

5.1 Algorithm

Chapter 4 shows the Cooley-Tukey algorithm implemented to perform multiplication

sequentially using hardware based multipliers.This chapter discusses the same algo-

rithm being implemented using LUT based multiplier. More precisely a shift and add

based multiplier is used here.

Shift-and-add multiplication is similar to the multiplication performed by paper and

pencil. This method adds the multiplicand X to itself Y times, where Y denotes the

multiplier. To multiply two numbers by paper and pencil, the algorithm is to take the

digits of the multiplier one at a time from right to left, multiplying the multiplicand by

a single digit of the multiplier and placing the intermediate product in the appropriate

positions to the left of the earlier results.

Figure 5.1: Shift-Add multiplier circuit

A version of the multiplier circuit, which implements the shift-and-add multiplica-

tion method for two n-bit numbers, is shown in Fig. 5.1. The 2n bit product register

(A) is initialized to 0. Since the basic algorithm shifts the multiplicand register (B) left

one position each step to align the multiplicand with the sum being accumulated in the

product register, we use a 2n-bit multiplicand register with the multiplicand placed in

the right half of the register and with 0 in the left half.

Figure 5.2: Shift-Add multiplier Algorithm

Fig. 5.2. shows the basic steps needed for the multiplication. The algorithm starts

by loading the multiplicand into the B register, loading the multiplier into the Q register,

and initializing the A register to 0. The counter N is initialized to n. The least signifi-

cant bit of the multiplier register (Q0) determines whether the multiplicand is added to

the product register. The left shift of the multiplicand has the effect of shifting the in-

termediate products to the left, just as when multiplying by paper and pencil. The right

17

shift of the multiplier prepares the next bit of the multiplier to examine in the following

iteration.

Figure 5.3: Shift-Add multiplier coupled with multiplexer

Now the shift-add multiplier is coupled with multiplexer as shown in Fig. 5.3, which

is very similar to chapter 4. Based on the input sizes of the FFT block, Multiplexer of

various sizes can be used to run multiplications serially.

5.2 Calculation

This is implemented by using a Shift-Add based multiplier using purely LUTs in FPGA.This

algorithm requires lot of area in an FPGA since multiplier block is complex and it con-

sumes most of the LUTs, but highly power efficient and slower in speed compared to

that of DSP based multipliers. The calculation are same as shown in section 4.2.

The implementation of this algorithm is given in Appendix A.3 written in Verilog

and tested with Xilinx ISE design suite 14.7. inp1,...inp8 are the 16 bit signed floating

point inputs of Q format and out1-real , out1-imag, ...,out8-real,out8-imag are the real

and imaginary outputs in 16 bit Q format of the FFT8 module.clk , rst are the clock ,

reset inputs respectively , and output-stb is the output strobe , which is enabled once the

output is calculated.

The implementation was cross verified with the python script shown in Appendix

A.5 , which tests the FFT block against various test vectors and verifying the result with

the default FFT module in numerical python library.

18

5.3 Simulation

Fig. 5.4 shows the simulation of this implementation in ISIM

Figure 5.4: ISIM simulation for Modified Cooley-Tukey algorithm using LUT based
multiplier

5.4 Result

Table 5.1: resource utilization for Cooley-Tukey algorithm by using LUT based multi-
plier.

Logic Utilization Quantity
Number of Slice Registers 357

Number of Slice LUTs 456
Number of fully used LUT-FF pairs 188

Number of BUFG/BUFGCTRLs 1
Number of DSP48A1s 0

Table. 5.1 shows the resource utilization summary of this current implementation.This

Implementation is purely using LUTs and hence number of LUTs used is comparatively

higher is number than that of Chapter 3 and Chapter 4. Also as seen , the number of

hardware multipliers used are zero, therefore saving it for other blocks in the DSP ap-

plications like filters, etc...This implementation is slower compared to the Chapter 3

and Chapter4 , since LUT based multiplier use shift-add algorithm which is slower and

19

each multiplication takes more number of clock cycles to compute which is also equal

to the length of the operand. Hence this algorithm is slower than Chapter 4 in terms of

two times the length of input since 2 multiplications are performed serially.

20

CHAPTER 6

Modified Cooley-Tukey algorithm using CORDIC based

multiplier

6.1 Algorithm

Chapter 5 shows the Cooley-Tukey algorithm implemented to perform multiplication

sequentially using LUT based multipliers.This chapter discusses the same algorithm

being implemented using CORDIC based multiplier. The CORDIC multiplier is imple-

mented by using LUTs and one DSP48A1.

The CORDIC algorithm is a clever method for accurately computing trigonometric

functions using only additions, bitshifts and a small lookup table. It’s well known that

rotating the vector (1,0) anticlockwise about the origin by an angle θ gives the vector

(cosθ, sinθ). We will use this as the basis of our algorithm. When we replace the initial

vector (1,0) with (a,0) , we will get (acosθ, asinθ).

Every iteration calculates a rotation, which is performed by multiplying the vector

vi−1 with the rotation matrix Ri:

vi = vi−1 ∗Ri (6.1)

where Rotation matrix Ri is given by

Ri =

cos(γi) −sin(γi)
sin(γi) cos(γi)

 (6.2)

by solving above equations we get ,

vi =
1√

1 + tan2(γi)
∗

 1 tan(γi)

tan(γi) 1

 ∗
xi−1
yi−1

 (6.3)

where xi−1 and yi−1 are the components of vi−1. Restricting the angles γi so that tan(γi)

takes on the values ±2−i, the multiplication with the tangent can be replaced by a divi-

sion by a power of two, which is efficiently done in digital computer hardware using a

bit shift. The expression then becomes:

vi = Ki ∗

 1 −σi2−i

σi2
−i 1

 ∗
xi−1
yi−1

 (6.4)

where

Ki =
1√

1 + 2−2i
(6.5)

and σi can have the values of âĹŠ1 or 1, and is used to determine the direction of

the rotation; if the angle γi is positive then σi is +1, otherwise it is âĹŠ1.

Ki can be ignored in the iterative process and then applied afterward with a scaling

factor:

K(n) =
n−1∏
i=0

Ki =
n−1∏
i=0

1√
1 + 2−2i

(6.6)

K = lim
n→∞

K(n) ≈ 0.6072529350088812561694 (6.7)

This initial constant K is now multiplied with a scalar a to give acos(θ) and asin(θ)

and hence this can be used as a multiplier.Now as seen in Chapter 5, its coupled with

multiplexer to be reused for other computations.You can see that , the approximation

is more true as limit N tends to infinity , meaning the value of cosθ and sinθ are more

accurate when the step angle for rotation tends to zero.

6.2 Calculation

This Algorithm implements the same algorithm as shown in Chapter 5 , but instead of

LUT based shift-add multiplier , CORDIC multiplier is used. Since the Multiplications

in Cooley-Tukey Method are multiplications with one operand scalar and another being

sin or cos of some angle θ , CORDIC based multiplier can be used.

In CORDIC method , the initial magnitude is multiplied with the scalar operand and

rotated in small steps covering angle θ , thereby giving the result.The obtained result is

used in Cooley-Tukey algorithm for computing FFT.

22

The implementation of this algorithm is given in Appendix A.4 written in Verilog

and tested with Xilinx ISE design suite 14.7. inp1,...inp8 are the 16 bit signed floating

point inputs of Q format and out1-real , out1-imag, ...,out8-real,out8-imag are the real

and imaginary outputs in 16 bit Q format of the FFT8 module.clk , rst are the clock ,

reset inputs respectively , and output-stb is the output strobe , which is enabled once the

output is calculated.

6.3 Simulation

Fig. 6.1 shows the simulation of this implementation in ISIM

Figure 6.1: ISIM simulation for Modified Cooley-Tukey algorithm using CORDIC
based multiplier

6.4 Result

Table 6.1: resource utilization for Cooley-Tukey algorithm by using CORDIC based
multiplier.

Logic Utilization Quantity
Number of Slice Registers 458

Number of Slice LUTs 942
Number of fully used LUT-FF pairs 263

Number of BUFG/BUFGCTRLs 1
Number of DSP48A1s 1

23

Table. 6.1 shows the resource utilization summary of this current implementation.

This Algorithm is implemented with mixture of LUTs and DSP48A1s. The hardware

multiplier is used to multiply the initial vector in the CORDIC rotation with the scalar

operand. The number of LUTs are high because , the CORDIC multiplier is complex

in terms of implementing the rotation. This Algorithm is more useful if accuracy is the

primary concern. Its easier to increase accuracy to large extent by reducing the step size

in CORDIC rotation.

24

CHAPTER 7

Python Validation Script

A python Validation script is written to validate the Verilog FFT Blocks. The python

script below uses Numpy library to generate 100 random floating point test inputs and

using ISIM command line options, it simulates all the inputs and validates them with

the standard FFT function present in the numpy library of python.

The script is written in Python 2.x version and requires ISIM to be pre installed in

the system for working.Fig. 7.1 shows the sample working of the script.The complete

script can be found in Appendix A.5.

Figure 7.1: Sample working of Python validation script

CHAPTER 8

Conclusion

All the four Algorithms shown have different resource utilization and Table. 8.1 com-

pares the various resources used by different algorithm. FPGAs available today vary

in terms of available resources like Slice Registers, LUTs, LUT-FF pairs, Hardware

Multiplier, etc...

Table 8.1: Comparison of resource utilization for different implementations shown

Logic Utilization Algo-1 Algo-2 Algo-3 Algo-4
Number of Slice Registers 47 317 357 458

Number of Slice LUTs 337 374 456 942
Number of fully used LUT-FF pairs 47 138 188 263

Number of BUFG/BUFGCTRLs 1 1 1 1
Number of DSP48A1s 2 1 0 1

Based on the resource utilization shown in Table. 8.1 and FPGA used , appropriate

algorithm can be used to optimally fit and use less area for FFT blocks , and use most

of the resources for other DSP blocks like Filters, etc.. .Out of all the resources , the

most scarce resource is DSP48A1s which are hardware multipliers and its required for

most of the DSP applications. Algo-3 can be used for applications where hardware

multiplier are less and required for other blocks.When speed is the primary concern

Algo-1 can be used since its faster and running all multiplications in parallel with mul-

tiple hardware multipliers. Hardware Multipliers use more power in general compared

to LUT based multiplier.Hence Algo-3 can be used for applications where the power is

primary concern and required for long endurance. Algo-4 implements CODRIC based

multiplier, hence accuracy of the FFT can be increased by reducing the step angle for

rotation.Hence it can be used for application requiring high precision by changing the

step angle as per the requirement.

APPENDIX A

Appendix

A.1 Code for direct Cooley-Tukey algorithm implemen-

tation

1 ‘timescale 1ns / 1ps

2

3 module fft8(

4 input signed [15:0] inp1,

5 input signed [15:0] inp2,

6 input signed [15:0] inp3,

7 input signed [15:0] inp4,

8 input signed [15:0] inp5,

9 input signed [15:0] inp6,

10 input signed [15:0] inp7,

11 input signed [15:0] inp8,

12 input clk,

13 input rst,

14 output signed [15:0] out1_real,

15 output signed [15:0] out1_imag,

16 output signed [15:0] out2_real,

17 output signed [15:0] out2_imag,

18 output signed [15:0] out3_real,

19 output signed [15:0] out3_imag,

20 output signed [15:0] out4_real,

21 output signed [15:0] out4_imag,

22 output signed [15:0] out5_real,

23 output signed [15:0] out5_imag,

24 output signed [15:0] out6_real,

25 output signed [15:0] out6_imag,

26 output signed [15:0] out7_real,

27 output signed [15:0] out7_imag,

28 output signed [15:0] out8_real,

29 output signed [15:0] out8_imag,

30 output out_stb

31);

32

33 localparam signed sin_45 = 16’b00000000_10110101;

34 localparam signed sin_315 = 16’b11111111_01001011;

35 reg signed [31:0] t1_46,t2_46;

36 reg signed [15:0] t1,t2,t3,t4,t5,t6,t7,t8,m0,m1,m2,m3,m4;

37 reg signed [15:0] m7_imag,s1,s2,s3_imag,s4_imag;

38 reg signed [15:0] m5_imag,m6_imag

39 reg output_stb;

40

41 initial

42 begin

43 output_stb = 1’b0;

44 end

45

46 always @(posedge clk)

47 begin

48 if (rst == 1’b1)

49 begin

50 output_stb = 1’b0;

51 end

52 else

53 begin

54 t1 = inp1 + inp5;

55 t2 = inp7 + inp3;

56 t3 = inp2 + inp6;

57 t5 = inp4 + inp8;

58 m3 = inp1 - inp5;

59 m6_imag = inp7 - inp3;

60 t4 = inp2 - inp6;

28

61 t6 = inp4 - inp8;

62 t8 = t5 + t3;

63 t7 = t1 + t2;

64 m0 = t7 + t8;

65 t1_46 = sin_45 * (t4 - t6);

66 m4 = t1_46 [23:8];

67 m5_imag = t5 - t3;

68 m2 = t1 - t2;

69 m1 = t7 - t8;

70 t2_46 = sin_315 * (t4 + t6);

71 m7_imag = t2_46 [23:8];

72 s1 = m3 + m4;

73 s2 = m3 - m4;

74 s3_imag = m6_imag + m7_imag;

75 s4_imag = m6_imag - m7_imag;

76 output_stb = 1’b1;

77 end

78 end

79 assign out1_real = m0;

80 assign out1_imag = 16’b0000000000000000;

81 assign out2_real = s1;

82 assign out2_imag = s3_imag;

83 assign out3_real = m2;

84 assign out3_imag = m5_imag;

85 assign out4_real = s2;

86 assign out4_imag = ~s4_imag + 1’b1;

87 assign out5_real = m1;

88 assign out5_imag = 16’b0000000000000000;

89 assign out6_real = s2;

90 assign out6_imag = s4_imag;

91 assign out7_real = m2;

92 assign out7_imag = ~m5_imag + 1’b1;

93 assign out8_real = s1;

94 assign out8_imag = ~s3_imag + 1’b1;

95 assign out_stb = output_stb;

29

96 endmodule

A.2 Code for modified Cooley-Tukey algorithm with one

multiplier reused

1 ‘timescale 1ns / 1ps

2

3 module multiplier(

4 input signed [15:0] inp1,

5 input signed [15:0] inp2,

6 output signed[15:0] out

7);

8 reg signed [31:0] inp12;

9 always @ (*)

10 begin

11 inp12 = inp1*inp2;

12 end

13 assign out = inp12 [23:8];

14 endmodule

15

16

17 module fft8(

18 input signed [15:0] inp1,

19 input signed [15:0] inp2,

20 input signed [15:0] inp3,

21 input signed [15:0] inp4,

22 input signed [15:0] inp5,

23 input signed [15:0] inp6,

24 input signed [15:0] inp7,

25 input signed [15:0] inp8,

26 input clk,

27 input rst,

28 output signed [15:0] out1_real,

29 output signed [15:0] out1_imag,

30

30 output signed [15:0] out2_real,

31 output signed [15:0] out2_imag,

32 output signed [15:0] out3_real,

33 output signed [15:0] out3_imag,

34 output signed [15:0] out4_real,

35 output signed [15:0] out4_imag,

36 output signed [15:0] out5_real,

37 output signed [15:0] out5_imag,

38 output signed [15:0] out6_real,

39 output signed [15:0] out6_imag,

40 output signed [15:0] out7_real,

41 output signed [15:0] out7_imag,

42 output signed [15:0] out8_real,

43 output signed [15:0] out8_imag,

44 output out_stb

45);

46

47 localparam signed sin_45 = 16’b00000000_10110101;

48 localparam signed sin_315 = 16’b11111111_01001011;

49 localparam signed sf = 2.0**-8.0;

50

51 reg signed [31:0] t1_46,t2_46;

52 reg signed [15:0] t1,t2,t3,t4,t5,t6,t7,t8,m0,m1,m2,m3,m4;

53 reg signed [15:0] m7_imag,s1,s2,s3_imag,s4_imag;

54 reg signed [15:0] m5_imag,m6_imag;

55 reg [15:0] mult_inp1,mult_inp2;

56 wire [15:0] mult_out;

57 reg [1:0] stage;

58 reg output_stb;

59

60 multiplier mult (

61 .inp1(mult_inp1),

62 .inp2(mult_inp2),

63 .out(mult_out)

64);

31

65

66 initial

67 begin

68 stage = 2’b00;

69 output_stb = 1’b0;

70 end

71

72 always @(posedge clk)

73 begin

74 if (rst == 1’b1)

75 begin

76 output_stb = 1’b0;

77 end

78 if (stage == 2’b00 && rst == 1’b0)

79 begin

80 $display("stage-1");

81 t1 = inp1 + inp5;

82 t2 = inp7 + inp3;

83 t3 = inp2 + inp6;

84 t5 = inp4 + inp8;

85 m3 = inp1 - inp5;

86 m6_imag = inp7 - inp3;

87 t4 = inp2 - inp6;

88 t6 = inp4 - inp8;

89 t8 = t5 + t3;

90 t7 = t1 + t2;

91 m0 = t7 + t8;

92 mult_inp1 = t4 - t6;

93 mult_inp2 = sin_45;

94 stage = 2’b01;

95 end

96 else if (stage == 2’b01)

97 begin

98 $display("stage-2");

99 m4 = mult_out;

32

100 m5_imag = t5 - t3;

101 m2 = t1 - t2;

102 m1 = t7 - t8;

103 mult_inp1 = t4 + t6;

104 mult_inp2 = sin_315;

105 stage = 2’b10;

106 end

107 else if (stage == 2’b10)

108 begin

109 m7_imag = mult_out;

110 s1 = m3 + m4;

111 s2 = m3 - m4;

112 s3_imag = m6_imag + m7_imag;

113 s4_imag = m6_imag - m7_imag;

114 stage = 2’b00;

115 output_stb = 1’b1;

116 end

117 end

118 assign out_stb = output_stb;

119 assign out1_real = m0;

120 assign out1_imag = 16’b0000000000000000;

121 assign out2_real = s1;

122 assign out2_imag = s3_imag;

123 assign out3_real = m2;

124 assign out3_imag = m5_imag;

125 assign out4_real = s2;

126 assign out4_imag = ~s4_imag + 1’b1;

127 assign out5_real = m1;

128 assign out5_imag = 16’b0000000000000000;

129 assign out6_real = s2;

130 assign out6_imag = s4_imag;

131 assign out7_real = m2;

132 assign out7_imag = ~m5_imag + 1’b1;

133 assign out8_real = s1;

134 assign out8_imag = ~s3_imag + 1’b1;

33

135 endmodule

A.3 Code for modified Cooley-Tukey algorithm with LUT

based multiplier

1 ‘timescale 1ns / 1ps

2

3 module multiplier(

4 input signed [15:0] inp1,

5 input signed [15:0] inp2,

6 input rst,

7 input clk,

8 output signed [15:0] out,

9 output out_stb

10);

11 localparam sf = 2.0**-8.0;

12 reg [29:0] inp12;

13 reg [14:0] input_1;

14 reg [14:0] input_2;

15 reg output_stb;

16 reg out_sign;

17 integer counter;

18 assign out_stb = output_stb;

19 initial

20 begin

21 output_stb = 1’b0;

22 inp12 = 32’b0;

23 counter = 0;

24 end

25

26 always @ (posedge clk)

27 begin

28 if (rst == 1’b1)

29 begin

34

30 output_stb = 1’b0;

31 inp12 = 30’b0;

32 counter = 0;

33 end

34 else if (output_stb == 1’b0 && counter < 15)

35 begin

36 if (counter == 0)

37 begin

38 out_sign = (inp1[15] && ~inp2[15]) + (inp2[15] && ~inp1[15]);

39 input_1 = inp1[15]==1’b0 ? inp1[14:0] : ~inp1[14:0]+1’b1;

40 input_2 = inp2[15]==1’b0 ? inp2[14:0] : ~inp2[14:0]+1’b1;

41 end

42 if(input_1[counter]==1’b1)

43 begin

44 inp12[29:14] = inp12[29:14] + input_2[14:0];

45 end

46 inp12 = inp12 >> 1;

47 counter = counter + 1;

48 end

49 else if (counter >= 15)

50 begin

51 output_stb = 1’b1;

52 end

53 end

54 assign out = {out_sign,inp12[22:7]};

55 endmodule

56

57

58

59 module fft8(

60 input signed [15:0] inp1,

61 input signed [15:0] inp2,

62 input signed [15:0] inp3,

63 input signed [15:0] inp4,

64 input signed [15:0] inp5,

35

65 input signed [15:0] inp6,

66 input signed [15:0] inp7,

67 input signed [15:0] inp8,

68 input clk,

69 input rst,

70 output signed [15:0] out1_real,

71 output signed [15:0] out1_imag,

72 output signed [15:0] out2_real,

73 output signed [15:0] out2_imag,

74 output signed [15:0] out3_real,

75 output signed [15:0] out3_imag,

76 output signed [15:0] out4_real,

77 output signed [15:0] out4_imag,

78 output signed [15:0] out5_real,

79 output signed [15:0] out5_imag,

80 output signed [15:0] out6_real,

81 output signed [15:0] out6_imag,

82 output signed [15:0] out7_real,

83 output signed [15:0] out7_imag,

84 output signed [15:0] out8_real,

85 output signed [15:0] out8_imag,

86 output out_stb

87);

88

89 localparam signed sin_45 = 16’b00000000_10110101;

90 localparam signed sin_315 = 16’b11111111_01001011;

91 localparam signed sf = 2.0**-8.0;

92

93 reg signed [31:0] t1_46,t2_46;

94 reg signed [15:0] t1,t2,t3,t4,t5,t6,t7,t8,m0,m1,m2,m3,m4;

95 reg signed [15:0] m5_imag,m6_imag,m7_imag,s1,s2;

96 reg [15:0] mult_inp1,mult_inp2,s3_imag,s4_imag;

97 wire [15:0] mult_out;

98 reg [1:0] stage;

99 reg output_stb,mult_rst;

36

100 wire mult_stb;

101

102 multiplier mult (

103 .inp1(mult_inp1),

104 .inp2(mult_inp2),

105 .rst(mult_rst),

106 .out(mult_out),

107 .clk(clk),

108 .out_stb(mult_stb)

109);

110

111 initial

112 begin

113 stage = 2’b00;

114 output_stb = 1’b0;

115 mult_rst = 1’b1;

116 end

117

118 always @(posedge clk)

119 begin

120 if (rst == 1’b1)

121 begin

122 output_stb = 1’b0;

123 mult_rst = 1’b1;

124 end

125 if (stage == 2’b00 && rst == 1’b0 && output_stb == 1’b0)

126 begin

127 t1 = inp1 + inp5;

128 t2 = inp7 + inp3;

129 t3 = inp2 + inp6;

130 t5 = inp4 + inp8;

131 m3 = inp1 - inp5;

132 m6_imag = inp7 - inp3;

133 t4 = inp2 - inp6;

134 t6 = inp4 - inp8;

37

135 t8 = t5 + t3;

136 t7 = t1 + t2;

137 m0 = t7 + t8;

138 mult_inp1 = t4 - t6;

139 mult_inp2 = sin_45;

140 stage = 2’b01;

141 mult_rst = 1’b0;

142 end

143 else if (stage == 2’b01 && mult_stb == 1’b1)

144 begin

145 m4 = mult_out;

146 mult_rst = 1’b1;

147 stage = 2’b10;

148 end

149 else if (stage == 2’b10)

150 begin

151 m5_imag = t5 - t3;

152 m2 = t1 - t2;

153 m1 = t7 - t8;

154 mult_inp1 = t4 + t6;

155 mult_inp2 = sin_315;

156 mult_rst = 1’b0;

157 stage = 2’b11;

158 end

159 else if (stage == 2’b11 && mult_stb == 1’b1)

160 begin

161 m7_imag = mult_out;

162 s1 = m3 + m4;

163 s2 = m3 - m4;

164 s3_imag = m6_imag + m7_imag;

165 s4_imag = m6_imag - m7_imag;

166 mult_rst = 1’b1;

167 stage = 2’b00;

168 output_stb = 1’b1;

169 end

38

170 end

171 assign out_stb = output_stb;

172 assign out1_real = m0;

173 assign out1_imag = 16’b0000000000000000;

174 assign out2_real = s1;

175 assign out2_imag = s3_imag;

176 assign out3_real = m2;

177 assign out3_imag = m5_imag;

178 assign out4_real = s2;

179 assign out4_imag = ~s4_imag + 1’b1;

180 assign out5_real = m1;

181 assign out5_imag = 16’b0000000000000000;

182 assign out6_real = s2;

183 assign out6_imag = s4_imag;

184 assign out7_real = m2;

185 assign out7_imag = ~m5_imag + 1’b1;

186 assign out8_real = s1;

187 assign out8_imag = ~s3_imag + 1’b1;

188 endmodule

A.4 Code for modified Cooley-Tukey algorithm with CORDIC

based multiplier

1 ‘timescale 1ns / 1ps

2

3 ‘define K 32’h26dd3b6a

4 ‘define BETA_0 32’h3243f6a9

5 ‘define BETA_1 32’h1dac6705

6 ‘define BETA_2 32’h0fadbafd

7 ‘define BETA_3 32’h07f56ea7

8 ‘define BETA_4 32’h03feab77

9 ‘define BETA_5 32’h01ffd55c

10 ‘define BETA_6 32’h00fffaab

11 ‘define BETA_7 32’h007fff55

39

12 ‘define BETA_8 32’h003fffeb

13 ‘define BETA_9 32’h001ffffd

14 ‘define BETA_10 32’h00100000

15 ‘define BETA_11 32’h00080000

16 ‘define BETA_12 32’h00040000

17 ‘define BETA_13 32’h00020000

18 ‘define BETA_14 32’h00010000

19 ‘define BETA_15 32’h00008000

20 ‘define BETA_16 32’h00004000

21 ‘define BETA_17 32’h00002000

22 ‘define BETA_18 32’h00001000

23 ‘define BETA_19 32’h00000800

24 ‘define BETA_20 32’h00000400

25 ‘define BETA_21 32’h00000200

26 ‘define BETA_22 32’h00000100

27 ‘define BETA_23 32’h00000080

28 ‘define BETA_24 32’h00000040

29 ‘define BETA_25 32’h00000020

30 ‘define BETA_26 32’h00000010

31 ‘define BETA_27 32’h00000008

32 ‘define BETA_28 32’h00000004

33 ‘define BETA_29 32’h00000002

34 ‘define BETA_30 32’h00000001

35 ‘define BETA_31 32’h00000000

36

37 module multiplier(

38 clock,

39 reset,

40 start,

41 angle_in,

42 sin_out,

43 initial_value,

44 out_stb

45);

46

40

47 input clock;

48 input reset;

49 input [31:0] angle_in;

50 input start;

51 input signed [15:0] initial_value;

52 output out_stb;

53 reg out_stb_reg;

54 output signed [15:0] sin_out;

55 assign out_stb = out_stb_reg;

56 wire [15:0] sin_out = sin_final[23:8];

57

58 reg signed [31:0] cos_final;

59 reg signed [31:0] sin_final;

60

61 reg signed [31:0] cos;

62 reg signed [31:0] sin;

63 reg [31:0] angle;

64 reg [4:0] count;

65 reg state;

66

67 reg [31:0] cos_next;

68 reg [31:0] sin_next;

69 reg [31:0] angle_next;

70 reg [4:0] count_next;

71 reg state_next;

72

73 always @(posedge clock or posedge reset) begin

74 if (reset)

75 begin

76 cos <= 0;

77 sin <= 0;

78 angle <= 0;

79 count <= 0;

80 state <= 0;

81 end

41

82 else

83 begin

84 cos <= cos_next;

85 sin <= sin_next;

86 angle <= angle_next;

87 count <= count_next;

88 state <= state_next;

89 end

90 end

91

92 always @* begin

93 cos_next = cos;

94 sin_next = sin;

95 angle_next = angle;

96 count_next = count;

97 state_next = state;

98 if (state) begin

99 cos_next = cos + (direction_negative ? sin_shr : -sin_shr);

100 sin_next = sin + (direction_negative ? -cos_shr : cos_shr);

101 angle_next = angle + (direction_negative ? beta : -beta);

102 count_next = count + 1;

103 if (count == 31) begin

104 state_next = 0;

105 out_stb_reg = 1’b1;

106 sin_final = {sin[31],6’b000000,sin[31:22]} * initial_value;

107 end

108 end

109 else begin

110 if (start) begin

111 cos_next = ‘K;

112 sin_next = 0;

113 angle_next = angle_in;

114 count_next = 0;

115 state_next = 1;

116 end

42

117 end

118 end

119

120 wire [31:0] cos_signbits = {32{cos[31]}};

121 wire [31:0] sin_signbits = {32{sin[31]}};

122 wire [31:0] cos_shr = {cos_signbits, cos} >> count;

123 wire [31:0] sin_shr = {sin_signbits, sin} >> count;

124 wire direction_negative = angle[31];

125 wire [31:0] beta_lut [0:31];

126 assign beta_lut[0] = ‘BETA_0;

127 assign beta_lut[1] = ‘BETA_1;

128 assign beta_lut[2] = ‘BETA_2;

129 assign beta_lut[3] = ‘BETA_3;

130 assign beta_lut[4] = ‘BETA_4;

131 assign beta_lut[5] = ‘BETA_5;

132 assign beta_lut[6] = ‘BETA_6;

133 assign beta_lut[7] = ‘BETA_7;

134 assign beta_lut[8] = ‘BETA_8;

135 assign beta_lut[9] = ‘BETA_9;

136 assign beta_lut[10] = ‘BETA_10;

137 assign beta_lut[11] = ‘BETA_11;

138 assign beta_lut[12] = ‘BETA_12;

139 assign beta_lut[13] = ‘BETA_13;

140 assign beta_lut[14] = ‘BETA_14;

141 assign beta_lut[15] = ‘BETA_15;

142 assign beta_lut[16] = ‘BETA_16;

143 assign beta_lut[17] = ‘BETA_17;

144 assign beta_lut[18] = ‘BETA_18;

145 assign beta_lut[19] = ‘BETA_19;

146 assign beta_lut[20] = ‘BETA_20;

147 assign beta_lut[21] = ‘BETA_21;

148 assign beta_lut[22] = ‘BETA_22;

149 assign beta_lut[23] = ‘BETA_23;

150 assign beta_lut[24] = ‘BETA_24;

151 assign beta_lut[25] = ‘BETA_25;

43

152 assign beta_lut[26] = ‘BETA_26;

153 assign beta_lut[27] = ‘BETA_27;

154 assign beta_lut[28] = ‘BETA_28;

155 assign beta_lut[29] = ‘BETA_29;

156 assign beta_lut[30] = ‘BETA_30;

157 assign beta_lut[31] = ‘BETA_31;

158 wire [31:0] beta = beta_lut[count];

159 endmodule

160

161 module fft8(

162 input signed [15:0] inp1,

163 input signed [15:0] inp2,

164 input signed [15:0] inp3,

165 input signed [15:0] inp4,

166 input signed [15:0] inp5,

167 input signed [15:0] inp6,

168 input signed [15:0] inp7,

169 input signed [15:0] inp8,

170 input clk,

171 input rst,

172 output signed [15:0] out1_real,

173 output signed [15:0] out1_imag,

174 output signed [15:0] out2_real,

175 output signed [15:0] out2_imag,

176 output signed [15:0] out3_real,

177 output signed [15:0] out3_imag,

178 output signed [15:0] out4_real,

179 output signed [15:0] out4_imag,

180 output signed [15:0] out5_real,

181 output signed [15:0] out5_imag,

182 output signed [15:0] out6_real,

183 output signed [15:0] out6_imag,

184 output signed [15:0] out7_real,

185 output signed [15:0] out7_imag,

186 output signed [15:0] out8_real,

44

187 output signed [15:0] out8_imag,

188 output out_stb

189);

190

191 localparam signed sin_45 = 16’b00000000_10110101;

192 localparam signed sin_315 = 16’b11111111_01001011;

193 localparam signed sf = 2.0**-8.0;

194 reg signed [31:0] t1_46,t2_46,mult_inp1;

195 reg signed [15:0] t1,t2,t3,t4,t5,t6,t7,t8,m0,m1,m2,m3,m4;

196 reg signed [15:0] m5_imag,m6_imag,m7_imag,s1,s2,s3_imag,s4_imag;

197 reg [15:0] mult_inp2;

198 wire [15:0] mult_out;

199 reg [1:0] stage;

200 reg output_stb,mult_rst,mult_start;

201 wire mult_stb;

202

203 multiplier mult (

204 .angle_in(mult_inp1),

205 .initial_value(mult_inp2),

206 .reset(mult_rst),

207 .sin_out(mult_out),

208 .clock(clk),

209 .out_stb(mult_stb),

210 .start(mult_start)

211);

212

213 initial

214 begin

215 stage = 2’b00;

216 output_stb = 1’b0;

217 mult_rst = 1’b1;

218 end

219

220 always @(posedge clk)

221 begin

45

222 if (rst == 1’b1)

223 begin

224 output_stb = 1’b0;

225 mult_rst = 1’b1;

226 end

227 if (stage == 2’b00 && rst == 1’b0 && output_stb == 1’b0)

228 begin

229 t1 = inp1 + inp5;

230 t2 = inp7 + inp3;

231 t3 = inp2 + inp6;

232 t5 = inp4 + inp8;

233 m3 = inp1 - inp5;

234 m6_imag = inp7 - inp3;

235 t4 = inp2 - inp6;

236 t6 = inp4 - inp8;

237 t8 = t5 + t3;

238 t7 = t1 + t2;

239 m0 = t7 + t8;

240 mult_inp1 = t4 - t6;

241 mult_inp2 = 32’h3243f6a9;

242 stage = 2’b01;

243 mult_rst = 1’b0;

244 mult_start = 1’b1;

245 end

246 else if (stage == 2’b01 && mult_stb == 1’b1)

247 begin

248 m4 = mult_out;

249 mult_rst = 1’b1;

250 stage = 2’b10;

251 end

252 else if (stage == 2’b10)

253 begin

254 m5_imag = t5 - t3;

255 m2 = t1 - t2;

256 m1 = t7 - t8;

46

257 mult_inp1 = -t4 - t6;

258 mult_inp2 = 32’h3243f6a9;

259 mult_rst = 1’b0;

260 stage = 2’b11;

261 end

262 else if (stage == 2’b11 && mult_stb == 1’b1)

263 begin

264 m7_imag = mult_out;

265 s1 = m3 + m4;

266 s2 = m3 - m4;

267 s3_imag = m6_imag + m7_imag;

268 s4_imag = m6_imag - m7_imag;

269 mult_rst = 1’b1;

270 stage = 2’b00;

271 output_stb = 1’b1;

272 end

273 end

274 assign out_stb = output_stb;

275 assign out1_real = m0;

276 assign out1_imag = 16’b0000000000000000;

277 assign out2_real = s1;

278 assign out2_imag = s3_imag;

279 assign out3_real = m2;

280 assign out3_imag = m5_imag;

281 assign out4_real = s2;

282 assign out4_imag = ~s4_imag + 1’b1;

283 assign out5_real = m1;

284 assign out5_imag = 16’b0000000000000000;

285 assign out6_real = s2;

286 assign out6_imag = s4_imag;

287 assign out7_real = m2;

288 assign out7_imag = ~m5_imag + 1’b1;

289 assign out8_real = s1;

290 assign out8_imag = ~s3_imag + 1’b1;

291 endmodule

47

A.5 Python Code for Verifying fft8 blocks

1

2 i m p o r t numpy as np

3 from b i t s t r i n g i m p o r t B i t s

4 i m p o r t os

5 implement = r a w _ i n p u t (" d e s i g n t o t e s t (a l l o w e d v a l u e s 1 , 2 , 3 , 4) ")

6 w o r k i n g _ d i r e c t o r y = r " / FFT8_ implemen ta t ion_ "+ s t r (implement)

7

8 p r i n t (" G e n e r a t i n g 100 Random I n p u t s . . . ")

9 cmds = " "

10 f o r i i n r a n g e (1 0 0) :

11 i n p u t _ a r r a y =np . random . un i fo rm (low =−8.0 , h igh = 8 . 0 , s i z e = (8 ,))

12 b i n a r y _ a r r a y = []

13 f o r i n p i n i n p u t _ a r r a y :

14 b i n a r y _ a r r a y . append (B i t s (i n t = i n t (i n p *2**8) , l e n g t h =16) . b i n)

15 cmd= " " "

16 i s i m f o r c e add { / f f t 8 _ t b / i np1 } %s −r a d i x b i n

17 i s i m f o r c e add { / f f t 8 _ t b / i np2 } %s −r a d i x b i n

18 i s i m f o r c e add { / f f t 8 _ t b / i np3 } %s −r a d i x b i n

19 i s i m f o r c e add { / f f t 8 _ t b / i np4 } %s −r a d i x b i n

20 i s i m f o r c e add { / f f t 8 _ t b / i np5 } %s −r a d i x b i n

21 i s i m f o r c e add { / f f t 8 _ t b / i np6 } %s −r a d i x b i n

22 i s i m f o r c e add { / f f t 8 _ t b / i np7 } %s −r a d i x b i n

23 i s i m f o r c e add { / f f t 8 _ t b / i np8 } %s −r a d i x b i n

24 i s i m f o r c e add { / f f t 8 _ t b / c l k } 1 −r a d i x b i n −v a l u e 0 −r a d i x

25 b i n −t ime 2500 ps − r e p e a t 5 ns −c a n c e l 1 us

26 i s i m f o r c e add { / f f t 8 _ t b / r s t } 1 −r a d i x b i n −c a n c e l 20 ns

27 i s i m f o r c e add { / f f t 8 _ t b / r s t } 0 −r a d i x b i n −t ime 20 ps

28 −c a n c e l 1 us

29 run

30 dump

31 " " "%t u p l e (b i n a r y _ a r r a y)

32 cmds=cmds+cmd

33

34 os . c h d i r (w o r k i n g _ d i r e c t o r y)

35 f =open (" i n p . t e s t " , "w")

36 f . w r i t e (cmds)

37 f . c l o s e ()

48

38 p r i n t (" S i m u l a t i n g a l l t h e i n p u t s u s i n g ISIM . . . ")

39 cmd= ’ " ’+ w o r k i n g _ d i r e c t o r y + r ’ / f f t 8 _ t b _ i s i m _ b e h . exe " < i n p . t e s t > o u t .

t e s t ’

40 os . sys tem (cmd)

41 f =open (" o u t . t e s t " , " r ")

42 v a l u e s = []

43 i n p ={}

44 o u t ={}

45 f o r l i n e i n f . r e a d l i n e s () :

46 p r i n t l i n e

47 i f " S i g n a l : " i n l i n e :

48 o u t [l i n e . s t r i p () . s p l i t (" { ") [1] . s p l i t (" } ") [0] . s p l i t (" [") [0] . s t r i p ()

]= l i n e . s t r i p () . s p l i t (" : ") [−1] . s t r i p ()

49 i f " V a r i a b l e : " i n l i n e :

50 i n p [l i n e . s t r i p () . s p l i t (" { ") [1] . s p l i t (" } ") [0] . s p l i t (" [") [0] . s t r i p ()

]= l i n e . s t r i p () . s p l i t (" : ") [−1] . s t r i p ()

51 i f " { r s t } " i n l i n e . s t r i p () :

52 v a l u e s . append ([inp , o u t])

53 i n p ={}

54 o u t ={}

55

56 f . c l o s e ()

57

58 p r i n t (" V e r i f y i n g FFT o u t p u t w i th t h e a c t u a l v a l u e s . . . ")

59 c o r r e c t =0

60 c o u n t =0

61 f o r v a l i n v a l u e s :

62 c o u n t = c o u n t +1

63 i n p = np . a s a r r a y ([B i t s (b i n = v a l [0] [’ i n p ’+ s t r (i)]) . i n t / (2 . 0 * * 8) f o r i

i n r a n g e (1 , 9)])

64 ou t1 = np . a r r a y ([B i t s (b i n = v a l [1] [’ o u t ’+ s t r (i) +" _ r e a l "]) . i n t

/ (2 . 0 * * 8) f o r i i n r a n g e (1 , 9)])

65 ou t2 = np . a r r a y ([B i t s (b i n = v a l [1] [’ o u t ’+ s t r (i) +" _imag "]) . i n t

/ (2 . 0 * * 8) f o r i i n r a n g e (1 , 9)])

66 o u t = ou t1 + 1 j * ou t2

67 i f np . a l l c l o s e (out , np . f f t . f f t (i n p) ,1 e−2) :

68 c o r r e c t = c o r r e c t +1

69

70 p r i n t (s t r (c o r r e c t) + r " / "+ s t r (c o u n t) +" C o r r e c t . . . ")

49

REFERENCES

Li, Junwei Fang, Jiandong Li, Bajin Zhao, Yudong. (2016). Study of CORDIC
algorithm based on FPGA. 4338-4343. 10.1109/CCDC.2016.7531747.

Robert Scott (2000). Doing Hartley Smartly.Embedded systems programming.

Amente Bekele(2016). Cooley-Tukey FFT Algorithms.COMP 5703: ADVANCED AL-
GORITHMS, FALL 2016

Meher, P.K.. (2010). LUT Optimization for Memory-Based Computation. IEEE Trans.
on Circuits and Systems. 57-II. 285-289. 10.1109/TCSII.2010.2043467.

Lin, Sheng Liu, Ning Nazemi, Mahdi Li, Hongjia Ding, Caiwen Wang, Yetang Pe-
dram, Massoud. (2017). FFT-Based Deep Learning Deployment in Embedded Systems.

Memon, Tayab Pathan, Aneela. (2018). An approach to LUT based multiplier for short
word length DSP systems. 276-280. 10.1109/ICSIGSYS.2018.8372772.

Beaudoin, Normand Beauchemin, Steven. (2002). An accurate discrete Fourier trans-
form for image processing. Proceedings - International Conference on Pattern Recog-
nition. 3. 935 - 939 vol.3. 10.1109/ICPR.2002.1048189.

Roxburgh, Alastair. (2013). On Computing the Discrete Fourier Transform.

50

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	Introduction
	What is FPGA?
	What is FFT?
	What is a LUT?
	Problem Statement

	Literature Review
	LUT Optimization for Memory-Based Computation
	CORDIC algorithm based on FPGA
	Cooley-Tukey FFT Algorithms
	Doing Hartley Smartly

	Direct Cooley-Tukey algorithm using DSP based multiplier
	Algorithm
	Calculation
	Simulation
	Result

	Modified Cooley-Tukey algorithm reusing single DSP based multiplier
	Algorithm
	Calculation
	Simulation
	Result

	Modified Cooley-Tukey algorithm using LUT based multiplier
	Algorithm
	Calculation
	Simulation
	Result

	Modified Cooley-Tukey algorithm using CORDIC based multiplier
	Algorithm
	Calculation
	Simulation
	Result

	Python Validation Script
	Conclusion
	Appendix
	Code for direct Cooley-Tukey algorithm implementation
	Code for modified Cooley-Tukey algorithm with one multiplier reused
	Code for modified Cooley-Tukey algorithm with LUT based multiplier
	Code for modified Cooley-Tukey algorithm with CORDIC based multiplier
	Python Code for Verifying fft8 blocks

