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ABSTRACT

KEYWORDS: Neural Networks; YOLO; Faster-RCNN; SSD; Kalman filter

The rapid pace of developments in Artificial Intelligence (AI) is providing unprece-

dented opportunities to enhance the performance of different industries and businesses,

including the transport sector. The innovations introduced by AI include highly ad-

vanced computational methods that mimic the way the human brain works. The suc-

cessful application of AI requires a good understanding of the relationships between

AI and data on one hand, and transportation system characteristics and variables on the

other hand. Moreover, it is promising for transport authorities to determine the way to

use these technologies to create a rapid improvement in relieving congestion, making

travel time more reliable to their customers and improve the economics and produc-

tivity of their vital assets. The aim of this project is to build mechanisms which helps

in studying traffic-flow in Indian Conditions in Real-Time. We first look at various

deep learning techniques and architectures used worldwide to address transportation

problems. Then we look at how these pre-trained architectures are working in Indian

scenarios and compare them to the results of same architectures trained on Indian traf-

fic. Then we talk about the working of kalman filter and how we used it to track and

count vehicles in traffic.
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CHAPTER 1

INTRODUCTION

There are several challenges that are persistent throughout the transportation industry

and that have plagued this sector ever since its inception. Safety is arguably the most

important consideration for those working within the travel or transportation industries.

By monitoring traffic on the roads we can reduce accidents happening on the road by

detecting vehicles moving with high velocity etc. Not only road accidents we can also

catch frauds by building a model which can recognise and track them in traffic. We can

solve many other issues by monitoring traffic on roads.

Application of AI in transportation industry is driving the evolution of next gener-

ation of Intelligent Transportation Systems. Artificial Intelligence and its branch Ma-

chine Learning are enabling transportation agencies, cities and soon private car owners

to harness the power of modern compute and communication technologies and make

mobility a much safer and greener activity.

Due to its processing, control and optimization capabilities, artificial intelligence

could be applied to traffic management and decision-making systems in order to en-

hance and streamline traffic management and make our roads smarter.The predicative

abilities of AI are also of huge benefit to traffic management systems as they are able

to recognize the physical and environmental conditions that can lead to or be the re-

sult of heavier traffic flow and congestion. They can then in turn automatically suggest

alternate routes to relieve any traffic that may have formed.

Since India is a country with high population ,its metrocities have high population.

Currently there are 10 cities which have more than 10 million population and some

of those even have population exceeding 20 and 25 million like Mumbai and Delhi

having population as 26 million and 28 million respectively which also results in high

no. of vehicles. Hence it becomes very difficult to control traffic in India. In developed

countries, vehicles travel only in lanes i.e if there are three lanes on the raod, vehicles

also travel in three lanes, but in India it’s never that case. Fig 1.1 tells us the importance



(a) Indian Traffic (b) Foreign Country Traffic

Figure 1.1: Indian vs Foriegn Traffic

of improvements to be made in Indian Traffic Management System, in order to get

traffic under control.

In this project we use Deep Learning methods to detect and recognize different

vehicles in traffic in real time very specific to Indian Conditions. Using Kalman filter

we also built a model which counts number of vehicles by continuously tracking them.

We made our models robust to day and night conditions and also to front view and

back-view of vehicles.We also made the model robust to different traffic conditions by

collecting data from various streets having different traffic flow.
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CHAPTER 2

BACKGROUND

Artificial Intelligence : The word Artificial Intelligence comprises of two words "Arti-

ficial" and "Intelligence". Artificial refers to something which is made by human or non

natural thing and Intelligence means ability to understand or think. There is a miscon-

ception that Artificial Intelligence is a system, but it is not a system .AI is implemented

in the system. There can be so many definition of AI, one definition can be "It is the

study of how to train the computers so that computers can do things which at

present human can do better."Therefore It is a intelligence where we want to add all

the capabilities to machine that human contain.

Machine Learning : A subset of artificial intelligence (AI), machine learning

(ML) is the area of computational science that focuses on analyzing and interpreting

patterns and structures in data to enable learning, reasoning, and decision making out-

side of human interaction. Simply put, machine learning allows the user to feed a

computer algorithm an immense amount of data and have the computer analyze and

make data-driven recommendations and decisions based on only the input data. If any

corrections are identified, the algorithm can incorporate that information to improve its

future decision making.

Machine learning is made up of three parts :

• The computational algorithm at the core of making determinations

• Variables and features that make up the decision

• Base knowledge for which the answer is known that enables (trains) the system
to learn

Initially, the model is fed parameter data for which the answer is known. The al-

gorithm is then run, and adjustments are made until the algorithm’s output (learning)

agrees with the known answer.

Deep learning : Deep learning is a branch of machine learning which is completely

based on artificial neural networks, as neural network is going to mimic the human brain



Figure 2.1: Basic Neural Network

so deep learning is also a kind of mimic of human brain. In deep learning, we don’t

need to explicitly program everything. The concept of deep learning is not new. It has

been around for a couple of years now.

Deep learning surrounds us every day, and this will only increase with time. Whether

you are are thinking about cars that drive autonomously or even have some new technol-

ogy like parking assistance, traffic control, or face recognition technology at airports.

2.1 Neural Networks

A neural network is a network or circuit of neurons, or in a modern sense, an artifi-

cial neural network, composed of artificial neurons or nodes. Thus a neural network is

either a biological neural network, made up of real biological neurons, or an artificial

neural network, for solving artificial intelligence (AI) problems.Fig 2.1 is a basic neural

network. The connections of the biological neuron are modeled as weights. A positive

weight reflects an excitatory connection, while negative values mean inhibitory connec-

tions. All inputs are modified by a weight and summed. This activity is referred as a

linear combination. Finally, an activation function controls the amplitude of the output.

For example, an acceptable range of output is usually between 0 and 1, or it could be -1

and 1.
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Figure 2.2: Example of Convolutional Neural Network
[14]

2.2 Convolutional Neural Networks

One of the most popular uses of this architecture is Image Classification as shown in

Figure 2.2 . A convolutional neural network consists of an input and an output layer, as

well as multiple hidden layers. The hidden layers of a CNN typically consist of con-

volutional layers, RELU layers i.e. activation function, pooling layers, fully connected

layers and normalization layers.

Receptive field : In neural networks, each neuron receives input from some number

of locations in the previous layer. In a fully connected layer, each neuron receives input

from every element of the previous layer. In a convolutional layer, neurons receive input

from only a restricted subarea of the previous layer. Typically the subarea is of a square

shape (e.g., size 5 by 5). The input area of a neuron is called its receptive field.

Convolutional Layer : Each convolutional neuron processes data only for its

receptive field. Convolution operation allows the network to be deeper with fewer pa-

rameters. For instance, regardless of image size, tiling regions of size 5 x 5, each with

the same shared weights, requires only 25 learnable parameters. In this way, it resolves

the vanishing or exploding gradients problem in training traditional multi-layer neural

networks with many layers by using backpropagation.[citation needed]

Pooling : Convolutional networks may include local or global pooling layers.

Pooling layers reduce the dimensions of the data by combining the outputs of neuron

clusters at one layer into a single neuron in the next layer. In addition, pooling may

compute a max or an average. Max pooling uses the maximum value from each of a

cluster of neurons at the prior layer. Average pooling uses the average value from each

of a cluster of neurons at the prior layer.
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Fully connected : Fully connected layers connect every neuron in one layer to

every neuron in another layer. It is in principle the same as the traditional multi-layer

perceptron neural network (MLP). The flattened matrix goes through a fully connected

layer to classify the images.

Weights : Each neuron in a neural network computes an output value by applying

some function to the input values coming from the receptive field in the previous layer.

The function that is applied to the input values is specified by a vector of weights and

a bias (typically real numbers). Learning in a neural network progresses by making

incremental adjustments to the biases and weights.

A distinguishing feature of CNNs is that many neurons share the same filter. This

reduces memory footprint because a single bias and a single vector of weights is used

across all receptive fields sharing that filter, rather than each receptive field having its

own bias and vector of weights.[16]

2.3 Popular Object Detectors

Detection is a more complex problem than classification, which can also recognize ob-

jects but doesn’t tell you exactly where the object is located in the image and a classifier

won’t work for images that contain more than one object.

In our project we compared three architectures to detect vehicles in traffic - Faster-

RCNN, YOLO, SSD.

2.3.1 Faster-RCNN

Faster-RCNN [1] is one of the most well known object detection neural networks.

The 3 networks of Faster-RCNN :

• Feature Network

• Region Proposal Network (RPN)

• Detection Network.

The Feature Network is usually a well known pre-trained image classification net-

work such as VGG minus a few last/top layers. The function of this network is to

6



Figure 2.3: Working of Faster-RCNN [1]

generate good features from the images. The output of this network maintains the the

shape and structure of the original image ( i.e. still rectangular, pixels in the original

image roughly gets mapped to corresponding feature "pixels", etc.)

The RPN is usually a simple network with a 3 convolutional layers. There is one

common layer which feeds into a two layers-one for classification and the other for

bounding box regression. The purpose of RPN is to generate a number of bounding

boxes called Region of Interests ( ROIs) that has high probability of containing any

object. The output from this network is a number of bounding boxes identified by the

pixel co-ordinates of two diagonal corners, and a value (1, 0, or -1, indicating whether

an object is in the bounding box or not or the box can be ignored respectively ).

The Detection Network ( sometimes also called the RCNN network ) takes input

from both the Feature Network and RPN , and generates the final class and bounding

box. It is normally composed of 4 Fully Connected or Dense layers. There are 2 stacked

common layers shared by a classification layer and a bounding box regression layer. To

help it classify only the inside of the bounding boxes, the features are cropped according

to the bounding boxes.

7



Figure 2.4: Working of YOLO [6]

2.3.2 YOLO

YOLO [6] is not a traditional classifier that is repurposed to be an object detector.

YOLO actually looks at the image just once (hence its name: You Only Look Once)

but in a clever way.

YOLO divides the input image into an S X S grid. If the center of an object falls

into a grid cell, that grid cell is responsible for detecting that object.

Each grid cell predicts B bounding boxes and confidence scores for those boxes.

These confidence scores reflect how confident the model is that the box contains an

object and also how accurate it thinks the box is that it predicts. Formally we define

confidence as Pr(Object) ∗ IOU . If no object exists in that cell, the confidence scores

should be zero. Otherwise we want the confidence score to equal the intersection over

union (IOU) between the predicted box and the ground truth.

Each bounding box consists of 5 predictions: x, y, w, h, and confidence. The (x,

y) coordinates represent the center of the box relative to the bounds of the grid cell.

The width and height are predicted relative to the whole image. Finally the confidence

prediction represents the IOU between the predicted box and any ground truth box.

Each grid cell also predicts C conditional class probabilities, Pr(Classi |Object). These

8



probabilities are conditioned on the grid cell containing an object. We only predict

one set of class probabilities per grid cell, regardless of the number of boxes B. At test

time we multiply the conditional class probabilities and the individual box confidence

predictions,

Pr(Classi|Object) ∗ Pr(Object) ∗ IOU = Pr(Classi) ∗ IOU (2.1)

which gives us class-specific confidence scores for each box. These scores encode

both the probability of that class appearing in the box and how well the predicted box

fits the object. As it divides the image into an SxS grid and for each grid cell pre-

dicts B bounding boxes, confidence for those boxes, and C class probabilities. These

predictions are encoded as an SxSx(B*5+C) tensor.

2.3.3 SSD - Sing Shot Multibox Detector

The SSD [3] approach is based on a feed-forward convolutional network that produces

a fixed-size collection of bounding boxes and scores for the presence of object class

instances in those boxes, followed by a non-maximum suppression step to produce the

final detections ( for bounding boxes with most overlap keep the one with highest score).

The early network layers are based on a standard architecture used for high quality

image classification (truncated before any classification layers), which we will call the

base network . We then add auxiliary structure to the network to produce detections

with the following key features:

Multi-scale feature maps for detection: We add convolutional feature layers to the

end of the truncated base network. These layers decrease in size progressively and allow

predictions of detections at multiple scales. The convolutional model for predicting

detections is different for each feature layer (cf Overfeat[4] and YOLO[5] that operate

on a single scale feature map). Convolutional predictors for detection: Each added

feature layer (or optionally an existing feature layer from the base network) can produce

a fixed set of detection predictions using a set of convolutional filters. For a feature layer

of size m X n with p channels, the basic element for predicting parameters of a potential

detection is a 3 X 3 X p small kernel that produces either a score for a category, or a

9



Figure 2.5: SSD Framework [3]

shape offset relative to the default box coordinates. At each of the m X n locations where

the kernel is applied, it produces an output value. The bounding box offset output values

are measured relative to a default box position relative to each feature map location (cf

the architecture of YOLO that uses an intermediate fully connected layer instead of a

convolutional filter for this step).

Default boxes and aspect ratios: We associate a set of default bounding boxes with

each feature map cell, for multiple feature maps at the top of the network. The default

boxes tile the feature map in a convolutional manner, so that the position of each box

relative to its corresponding cell is fixed. At each feature map cell, we predict the offsets

relative to the default box shapes in the cell, as well as the per-class scores that indicate

the presence of a class instance in each of those boxes. Specifically, for each box out of

k at a given location, we compute c class scores and the 4 offsets relative to the original

default box shape. This results in a total of (c + 4)k filters that are applied around each

location in the feature map, yielding (c + 4)kmn outputs for a m X n feature map. For

an illustration of default boxes, please refer to Figure 2.5. Our default boxes are similar

to the anchor boxes used in Faster R-CNN, however we apply them to several feature

maps of different resolutions. Allowing different default box shapes in several feature

maps let us efficiently discretize the space of possible output box shapes.

Figure 2.6 shows comparision of performances of YOLO, SSD and Faster-RCNN on

Pascal VOC. We could see that YOLO v2 has best mAP over Faster-RCNN and SSD.

And for our project we used next better version of YOLO v2 which is YOLO v3 [2].

10



Figure 2.6: Comparision of Faster-RCNN , YOLO and SSD [5]

2.4 Tracking

Video tracking is the process of locating a moving object (or multiple objects) over

time using a camera. It has a variety of uses, some of which are: human-computer in-

teraction, security and surveillance, video communication and compression, augmented

reality, traffic control, medical imaging and video editing.Video tracking can be a time

consuming process due to the amount of data that is contained in video. Adding further

to the complexity is the possible need to use object recognition techniques for tracking,

a challenging problem in its own right. Two techniques that are very popular to track

objects are :

Kalman Filter :

This algorithm can predict future positions based on current position. It can also

estimate current position better than what the sensor is telling us. It will be used to have

better association.

Hungarian Algorithm :

This algorithm can tell if an object in current frame is the same as the one in previous

frame. It will be used for association and id attribution.

11



2.4.1 Kalman Filter

Kalman filtering [4], also known as linear quadratic estimation (LQE), is an algorithm

that uses a series of measurements observed over time, containing statistical noise and

other inaccuracies, and produces estimates of unknown variables that tend to be more

accurate than those based on a single measurement alone, by estimating a joint proba-

bility distribution over the variables for each timeframe. The filter is named after Rudolf

E. Kalman, one of the primary developers of its theory. Kalman filter can be modeled

by :

State : The state is a description of all the parameters we will need to describe the

current system and perform the prediction. For example, we’ll use two numbers: The

current vertical position (y), and our best estimate of the current slope (let’s call it m).

Thus, the state is in general a vector, commonly denoted x, and we can include many

more parameters to it if we wish to model more complex systems.

Model : The model describes how we think the system behaves. In an ordinary

Kalman filter, the model is always a linear function of the state. In our simple case, our

model is:

y(t) = y(t− 1) +m(t− 1) (2.2)

m(t) = m(t− 1) (2.3)

Expressed as a matrix, this is:

xt =

 y(t)

m(t)

 =

1 1

0 1

 y(t− 1)

m(t− 1)

 = Fxt−1 (2.4)

We add an additional term to the state - the process noise, vt which is assumed to be

normally distributed. Although we don’t know the actual value of the noise, we assume

we can estimate how "large" the noise is, as we shall presently see. All this gives us the

state equation, which is simply:

xt = Fxt−1 + vt−1 (2.5)

12



Measurement : When we get new data, our parameters should change slightly to refine

our current model, and the next predictions. What is important to understand is that

one does not have to measure exactly the same parameters as the those in the state. For

instance, a Kalman filter describing the motion of a car may want to predict the car’s

acceleration, velocity and position, but only measure say, the wheel angle and rotational

velocity. In our example, we only "measure" the vertical position of the new points, not

the slope. That is:

measurement =
(
1 0

)
.

 y(t)

m(t)

 (2.6)

In the more general case, we may have more than one measurement, so the mea-

surement is a vector, denoted by z. Also, the measurements themselves are noisy, so the

general measurement equation takes the form:

zt = Hxt + wt (2.7)

Where w is the measurement noise, and H is in general a matrix with width of the

number of state variables, and height of the number of measurement variables.

13



CHAPTER 3

Detection and Recognition in Indian Traffic

We want to build a robust detector and classifier to classify vehicles especially for Indian

Vehicles. Robust in the sense that classifer should be robust to day-time and night-time

and also should be able to detect and classify vehicles from both front-side and back-

side view of vehicles.

Hence we studied this project in 4 parts :

• Day-Time Front-View

• Day-Time Back-View

• Night-Time Front-View

• Night-Time Back-View

3.1 Datasets Used

In the whole project we used 4 different datasets - Pascal-VOC [10] , IITM-HeTra,

Front-View and Back-View Datasets

3.1.1 IITM-HeTra Dataset

We used IITM-HeTra Dataset which is available on Kaggle[7] along with its annota-

tions. We used images from dataset2 folder of IITM-HeTra which has only day-time

front-view images. Sample images of this dataset are shown in Figure 3.1.

It has 1418 images. Each image in this dataset has 640x482 resolution. This Dataset

has 4 classes - Auto , Bus, Car, Person. In the annotation files they labelled 2-wheelers

as Person. In this project as we are focused to classify vehicles we changed the label

Person to Bike.



Figure 3.1: Sample Images from IITM-HeTra Dataset

3.1.2 Front-View and Back-View datasets

We also generated a new data-sets - Front-View , Back-View with images with very

high resolution 1920x1080 pixels to improve accuracy. Also this high resolution helps

us in detecting and recognising number-plates of vehicles.The images in this dataset

are taken from different streets in Chennai. Sample Images of this dataset are shown in

Figures 3.2 and 3.3.

(a) Day Time Front View (b) Night Time Front View

Figure 3.2: Sample Images from Front-View Dataset

(a) Day Time Back View (b) Night Time from Back-View

Figure 3.3: Sample Images from Back-View Dataset
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The new dataset has 4 kinds of images.

• Day-Time Front-View (1503 images)

• Night-Time Front-View (650 images)

• Day-Time Back-View (125 images)

• Night-Time Back-View (570 images)

We annotated these datasets(Front-View and Back-View) with following classes -

Auto, Bike, Bus, Car, NP, Person. We also annotated the truncated vehicles. The

number of instances of each class are given in Tabel 3.1.

Label IITM-HeTra Front-View Back-View Total

Auto 598 1360 478 2436
Bike 3335 1248 247 4830
Bus 279 1419 458 2156
Car 2148 5716 1707 9571

Person 0 365 414 779
NP 0 4046 118 4164

Table 3.1: Count of instances of classes in each Dataset

3.2 Models, Training and Testing

Researchers have proposed a data efficient way for training neural network models by

doing fine-tuning. In the process of fine-tuning, we have a base neural network which is

trained on a large dataset (say source dataset). Given this trained model (or pre-trained

model), we want to re-train the same model on a small dataset (say target dataset). We

take the pre-trained model as a starting point for training the model and then modify its

parameters according to the small target dataset. Since we are starting with an already

trained model, we need fewer data points to do the fine-tuning. Thus with a small target

dataset, we can train a large neural network model. Fine-tuning a pre-trained deep

neural network is a standard practice in computer vision community.

YOLO : Many versions of YOLO exist, of we used YOLO v3 [2] for whole project.

We modified the last layer in YOLO. We changed number of neurons from 80 to 6 in

the last layer, as we are training only on 6 classes. This will also significantly reduce
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the size of weights saved as last layer in YOLO is fully connected. yolov3.weights[8]

are pretrained weights of YOLO trained on Microsoft’s COCO dataset. To fine-tune

YOLO, we cannot use these pretrained weights directly as initial weights as the archi-

tecture is changed. So we removed weights in the last layer of yolov3.weights, and then

fine-tuned these weights by training the whole architecture on IITM HeTra + Front-

View + Back-View datasets. Pretrained YOLO can detect relevant classes like car, bike,

bus, pedestrian. Hence we compared the outputs from new fine-tuned weights with the

outputs of pretrained weights(yolov3.weights) to analyse the importance of training.

PreTrained YOLO cannot detect Auto and Number Plate (NP).

PyFaster-RCNN : The paper Training a deep learning architecture for vehicle

detection using limited heterogeneous traffic data [9] states that finetuning PyFaster-

RCNN [1] with a smaller dataset performs poorly. And it suggested to train PyFaster-

RCNN by augmenting PASCAL VOC[10] with smaller dataset to get good results.

We followed the same procedure,i.e added Pascal VOC dataset to IITM-HeTra + Front-

View + Back-View Dataset to make one large dataset. Then we trained PyFaster-RCNN

on this big dataset. Pascal VOC dataset has around 10000 images of 20 different classes

including cat, dog, train, boat along with relevant classes such as car, truck and bus. It

takes longer time to train because there will be more number of computations because

of large dataset.

Always tested on new images which are not part of training. Default parameters are

used while training, fine-tuning and testing.

3.3 Results on Day-Time Images

We tested pre-trained YOLO , finetuned YOLO and PyFasterRCNN on day time images

and compared the results.

3.3.1 On Day-Time Front-View Images

From Figure 3.4 we can infer that :

• Fine-Tuned YOLO and trained Faster-RCNN did better in detecting Truncated
Vehicles, Autos. It is expected because our dataset included truncated vehicles ,
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(a)

(b)

(c)

(d)

Figure 3.4: PreTrained-YOLO vs FineTuned YOLO vs PyFaster-RCNN

autos .

• We could observe that YOLO detected number plates better than Faster RCNN

3.3.2 On Day-Time Back-View Images

From Figure 3.5 we can infer that :

• Pre-Trained YOLO couldn’t detect all bikes from back-view, which clearly says
there is a need to train architectures with back-view of vehicle images too.

• Fine Tuned YOLO detected Bikes and Truncated Vehicles better than pre-trained
YOLO

• Though most of the Number Plate dataset in the training data is from day-time
front-view images, Fine Tuned YOLO decently enough recognised the number
plates in back-view of vehicle.

• Py-Faster-RCNN performed poorly again in detecting number plates.
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(a)

(b)

(c)

(d)

Figure 3.5: PreTrained-YOLO vs FineTuned YOLO vs PyFaster-RCNN

3.4 Results on Night-Time Images

During night time, head lights of vehicles will be ON and because of the glare from

these head-lights , the vehicles will not be clearly visible and hence it becomes difficult

for the detectors to detect and recognise them. Hence to improve the accuracy we need

to reduce the glare from vehicles. Contrast- adjustment is one method we tried to reduce

glare.

3.4.1 Methods tried to increase contrast of Night time images

Adaptive histogram Equalisation, Gamma Equalisation, Unsharp Masking, Flat-field

correction, Reduce atmosperic gaze, Edge-aware local contrast manipulation , Decor-

relation stretch are some of the filters which we used to make vehicles in the night-time

images more clearer. Figure 3.6 shows output of various filters applied on the first im-
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age in the figure. We could see that 4th image in the set has better clarity. It is output

from adaptive histogram equalization over gamma equalization.

Figure 3.6: Results of contrast enhancement filters applied on a night time image

And we also observe that reduce haze has reduced the glare from headlights (8th

image in Figure 3.6), but it also made the image more darker. But as compared to

main image, all these changes are very small, and for deep-learning techniques using

these filters will not affect the results. Hence we tried to train the network directly on

night-time images without applying any filters.

We tested pre-trained YOLO , finetuned YOLO and PyFasterRCNN on night time front-

view and night time back-view images and compared the results.

3.4.2 On Night-Time Front-View Images

From Figure 3.7 we can infer that :

• Clearly Fine-Tuned YOLO completely outperformed Pre-Trained YOLO and did
better than trained Py-Faster-RCNN.

• It is able to detect vehicles which are difficult to recognise even with a human
eye.
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• It is observed that by training with night-time images makes a clear increase in
the accuracy of detection and recognition of YOLO network

(a)

(b)

(c)

(d)

Figure 3.7: PreTrained-YOLO vs FineTuned YOLO vs PyFaster-RCNN

3.4.3 On Night-Time Back-View Images

From Figure 3.8 we can infer that :

• Again Fine-Tuned YOLO performed better on bikes compared to other architec-
tures.

• It also recognised Auto and Person classes well.
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(a)

(b)

(c)

(d)

Figure 3.8: PreTrained-YOLO vs FineTuned YOLO vs PyFaster-RCNN
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CHAPTER 4

Tracking

Using Py-Faster-RCNN [1], trained on Pascal VOC [10]+ IITM- HeTra+Front-View+Back-

View datasets, as detector, Kalman filter [4] tracker code, counted number of different

classes of vehicles in a chennai traffic sample video. Implemented the code memory

efficiently by removing all information of a vehicle from memory as soon as it leaves

the video. Also implemented different useful applications of this project like to track

vehicles moving only in a particular direction and track vehicles only in specific regions

of the video. As the bounding box size of an object keeps changing from time to time,

the output wouldnt look appealing to eyes. Hence implemented a code to change size

of box only at every 12th frame. On an average tracking happens at 13 frames/sec

Figure 4.1: An image frame in a tracking Output

4.1 Results

We tested our implementation of tracking code on traffic from different regions, differ-

ent traffic conditions and different times of the day.



4.1.1 On Chennai Traffic :

4.1.1.1 Track vehicles on a 1-way road :

We tested on 5min Chennai Traffic in which traffic moves in only one direction and has

234 vehicles. Our code could track 230 vehicles in that video.Table 4.1 gives count of

different classes vehicles tracked in the video. Figure 4.2 is one of the last frames of the

video.

Class Actual Count Observed count

Auto 31 29
Bike 108 107
Bus 8 8
Car 87 88

Table 4.1: Count of instances of each class

Figure 4.2: Tracking output on Chennai Traffic moving on 1-way road

4.1.1.2 Track vehicles on a 2-way road :

We also tested on traffic on a 2-way road in which vehicles move in both the direc-

tions. One of our 4min tested input has 144 vehicles moving towards camera and
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some vehicles moving away from camera.We implemented a code to track vehicles

which are moving only towards camera, the code could count 145 vehicles in that 4min

video.Table 4.2 gives count of different classes vehicles tracked in the video. Figure 4.3

is one of the last frames of the video.

Class Actual Count Observed count

Auto 13 14
Bike 75 74
Bus 4 4
Car 52 53

Table 4.2: Count of instances of each class

Figure 4.3: Tracking output on Chennai Traffic on a 2-way road

4.1.2 On Foreign Traffic :

Tested our code on many foreign traffic situations too, and we got satisfactory results.

Figure 4.4 is an example frame of tracking on foreign traffic.

4.1.2.1 Region Select :

In the Figure 4.5, we could see that vehicles are occluded when they are far away from

camera. In such situations, tracking should be done in the selected regions (need not be

rectangles) where there is less occlusion, for more accurate information. Implemented
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Figure 4.4: Frame of Tracking output on foreign traffic

a code which tracks vehicles only in the red shaded region of the video. Figure 4.5 is

one of the frame of output video.

Figure 4.5: Tracking with Region Select

4.2 Tracking at night-time :

Tracking results at night-time,are not that satisfactory, because detector itself is not able

to recognise the object continuously in all frames of video in which the object is present.

For the kalman algorithm to work properly ,detector should detect the object as long as

it is in the video. Figure 4.6 shows an output frame on night-time traffic
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Figure 4.6: Tracking output frame on night-time traffic
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CHAPTER 5

Conclusions & Future Work

We need to prefer YOLO over other architectures because :

• YOLO processes an image much faster than Pyfaster-RCNN .YOLO works at
27fps, while PyFaster RCNN works at 2-3fps i.e YOLO works nearly 10 times
as fast as PyFaster RCNN

• Finetuning takes fewer number of iterations than training. To get good results
from PyFaster-RCNN we need to train it from scratch [9] on big Dataset (i.e
Pascal VOC + a smaller dataset). Hence working with PyFasterRCNN is compu-
tationally expensive.

• Setting up YOLO is much easier than setting up PyFasterRCNN

• YOLO-finetuned model significantly improved detection of vehicles at night time.

• YOLO-finetuned model is doing better than pre-trained model for detecting and
recognising truncated vehicles, as we also included truncated vehicles in our
dataset.

• YOLO does much better than PyFaster RCNN in detecting number plates.

• Among all the classes , Auto is trained with lowest number of instances, finetuned-
YOLO could detect and recognise Auto’s well.

The model we built is robust only to day & night time and to front-view & back-

view of vehicles. We can make the model more robust by training the model on other

situations like raining etc. Fine-Tuned YOLO is not very good with detecting bikes.

Decreasing the threshold improved the results but pre-trained YOLO did much better.

One way to get as good results as pre-trained YOLO with bikes is to train YOLO from

scratch on Pascal VOC + IITM HeTra + Front-View + Back-View datasets. Followed

a similar procedure with Py-Faster-RCNN , Py-Faster-RCNN could detect bikes well

from both front-view and back-view. License Plate Recognition will be a useful tech-

nology which can help transportation management in many ways like we can make

highway toll collection systems more automatic, enhance prevention of theft of vehi-

cles etc. Till now we only detected licence plates , recognition of licence plates could

be the next step to the project. And also at night times, when glare from vehicles is



too high, detectors are not able to detect all vehicles. And as the detector is performing

poorly, tracking results are also poor.We should explore methods to reduce this glare

from vehicles and improve detection of vehicles at night-time.

Present tracking code works at 12-13 frames/sec. Using deep learning technologies

we can make it work in real-time. And when two objects occlude trackers of those

objects can get interchanged. We need to find a way for trackers to track objects ,even

during occulsions. The present implementation of tracking is not a continuous process

i.e we first do detection, then we feed the results of detection to the tracking code.We

can join Detection and Tracking code and make the process continuous.
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