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ABSTRACT

KEYWORDS: Convolution Neural Network (CNN), ImageNet

ImageNet is an image data set consisting of over 1000 classes of images. It is

inspired by a growing sentiment in the image and vision research field.

One of the ways to solve the problem of image classification of such extensive

database is using Deep Neural Network’s class CNN. A Convolutional Neural

Network (CNN) consists of multiple layers. These layers typically consist of con-

volution layers, ReLU layer i.e. activation function, pooling layers, fully connected

layers, and normalization layers.

In our project, our focus was to implement CNN onto hardware: Zedboard’s

( the device we used ) FPGA. Since FPGA can run operations in parallel instead

of the sequential process like CPU, there is a scope of acceleration in the speed

of execution of CNN. We tried many experiments to accelerate CNN used for

ImageNet dataset classification.
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CHAPTER 1

INTRODUCTION

1.1 Overview

The ImageNet project is an extensive visual database designed for use in visual

object recognition software research. ImageNet contains more than 20,000 cate-

gories with a typical class, such as ”balloon” or ”strawberry” consisting of several

hundred images. The database of annotations of third-party image URLs is freely

available directly from ImageNet, though the actual images are not owned by

ImageNet.

A convolutional neural network (CNN) is a class of Deep Neural Networks,

most commonly applied to analyzing visual imagery. We used it to solve the

ImageNet.

CNN consists of layer typically used to extract features out of an image. These

features include edges, curves, sharpness, and blur. It helps in breaking down of

large scale of information into small chunks. These small chunks of information

are given weights biases as per training and image recognition is done.

1.2 Motivation

At present, most of these networks are simulated by software programs. The

software simulation needs a microprocessor and usually takes a long period to ex-



ecute a massive number of computations involved in the operation of the network.

Hence we do hardware implementations to realize such networks. This realization

makes the network stand alone and operate on a real-time fashion.

Hence in our project, we implement the CNN architecture model, which can

solve the ImageNet on hardware. It would explain the purpose of having broad

image classification in real-time and without any software redundancy. Moreover,

hardware implementation helps in speed-up of the architecture of CNN; By use of

pipe-lining and decreasing memory access time.

1.3 Objectives and Scopes

There exist pre-trained model architectures provided by DARKNET community.

These architectures are based on the AlexNet model, which was the first model to

solve the ImageNet database.

These architectures vary as per various weight file sizes, number of operations

required, and accuracy. For this project, we analyzed which model works best with

more accuracy, reasonable complication in operations, and low weight MB file. We

implemented the model architecture in C-code following its implementation on

hardware (Zedboard).

Our objective was to move convolution function (since it takes maximum com-

putations in the network) onto hardware and do performance analysis. Also, find

ways to accelerate the hardware function.

2



CHAPTER 2

Making of Convolution Neural Network

2.1 Structure

The structure of any DNN in specific CNN is quite simple. It involves the use

of typically three functions/operations, which makes the layers of the CNN. The

depth of CNN is measured using how many hidden layers does a particular CNN

has.

The first layer of CNN is the input layer, and the last is the output layer. The

internal layers are called hidden layers. These in specific to image recognition carry

features from an image. These features are taken from the input layer through the

hidden layers until the output layer by weights. These weights are fixed as per

specific model architecture cause different models vary in depths.

The operations involved in each layer includes convolution and ReLu, max

pooling, and Softmax. In the upcoming sections, we will discuss this in detail.

These operations at each layer are then connected to the next layer with weights

so the features stored are not lost. While connecting layer to another layer, the

weights are balanced out with normalization.



2.2 Explanation of CNN

There is an image which might contain anything example an object or animal etc.;

we need to know how the image is, how edgy it is, where the intensity is low and

where is it high, where there is sharpness and so on. So these are the features of

image, these are extracted using convolution by giving weights to each pixel. This

will give us an idea of what total how many parameters are there so that we have

those many features. Now we need accuracy with less computation too; So we

use max pooling to extract most viable information from convolution and reduce

complexity.

In this fashion, we move ahead layer by layer extracting features from each

pixel. In the end, when we have final features from an image, we make all

the features(basically numeric representation) into an array. This array is then

multiplied by weights we get probabilities. These probabilities determine how

much the image resembles a particular thing. We do normalization and pick top 5

probabilities that are done by softmax function and map the top possibilities with

a reference map of a specific dataset of images of which we have picked an image

to recognize.

2.3 Convolution

Convolution is an operation of summing each element of the image to its local

neighbors, weighted by the inputs of the kernel. Note that the matrix operation

being performed convolution is not traditional matrix multiplication.

In image processing, a kernel is a small matrix. It is used for blurring, sharp-

4



ening, edge detection, and more. These operations are done by a convolution

between a kernel and pixels of an image.

In simple terms, convolution is done by multiplying a pixels and its neigh-

boring pixels color value by a kernel summing the multiplied values and placing

it back to the pixel where the operation has been performed. Differently sized

kernels containing different patterns of numbers produce different results under

convolution. The numbers stored in the kernel are the weights which are used to

extract features and join it to the next layer.

Now there can be many instances wherein weights can be negative, and kernel

might contain negative values. When this occurs, it might result in the next layers

having negative values post convolution. While making CNN, it is must to have

non-negative values, but it’s not always possible there might be negative weights.

So to solve this ReLu operation is used. This operation does thresholding, and it

keeps positive as it is. And to negative values, it multiples with a bias term. This

helps in preserving features of image for its recognition at the output layer.

2.4 Max Pooling

Max pooling is done to down-sample an input representation reducing its dimen-

sionality and allowing only significant weighted features to pass on to the next

layer.

This is done so in part to help over-fitting. It also reduces the computational

cost by reducing the number of parameters. Max pooling is done by applying a

max filter to (usually) non-overlapping sub-regions of the initial representation.

5



Let’s say we have a 2x2 filter that we’ll run over our input image at pixels and

choose the maximum of 4 numbers. We’ll have a stride of 2 meaning the filter will

jump two rows and two columns each time to perform this operation reducing the

dimensionality and features(parameters) for the next operation by a factor of 2.

2.5 Softmax and Output Layer

It is a function that takes a numeric array and normalizes it into a probability

distribution i.e., array of probabilities. Before applying softmax, some numbers

could be negative, or greater than one; and might not sum to 1; but after applying

softmax, it ensures each component will be in the interval (0,1), and the components

will add up to 1, thus interpreted as probabilities.

The softmax function is used in the final layer of a neural network-based clas-

sifier.

Finally, the output layer is used to map the output, i.e., the set of probabilities

to see what the image is. This layer is too essential as it carries the vital information

of what the features. Note, whichever data set we wish to classify we should have

the index map of it. Suppose max probability comes at index 25, we should know

what index 25 corresponds to from the data set we are classifying.

Example: We ran the classification of a zebra image, data set: ImageNet. Now

we got probability maximum at index 44. Then we saw the index map of ImageNet

at 44 its zebra. So in such a way, we validate our results, and that’s how accuracy is

also defined. Because predictions should at least be in top 5 probabilities of which

the image is estimated.
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CHAPTER 3

Model used to solve ImageNet

3.1 Background

We used a model developed by DARKNET community for our project. Darknet

is an open source neural network framework written in C and CUDA. Darknet

community studied the models like Alexnet, VGG-16, and ResNet and developed

a simple version of these models to solve ImageNet.

AlexNet is the name of a convolutional neural network, competed in the Im-

ageNet Large Scale Visual Recognition Challenge. The network achieved a top-5

error of 15.3 percent, more than 10.8 percentage. It was run using GPUs.

The darknet reference model is designed to be small but powerful. It attains the

comparable top-1 and top-5 performance as AlexNet but with 1/10th the parame-

ters. Darknet uses mostly convolutional layers without the large fully connected

layers at the end. It is about twice as fast as AlexNet on CPU. Darknet has also

made models after studying Oxford’s renowned Visual Geometry Group (VGG)

model and Google’s ResNet model.



Model Top-1 Top-5 Ops Weight

AlexNet 57.0 80.3 2.27 Bn 238 MB
Resnet 50 75.8 92.9 9.74 Bn 87 MB
VGG-16 70.5 90.0 30.94 Bn 528 MB

Darknet Reference 61.1 83.0 0.96 Bn 28 MB
Darknet19 72.9 91.2 7.29 Bn 80 MB

Table 3.1: Various models with their comparison in three parameters

Model Top-1 Top-5 Ops Weight

AlexNet 57.0 80.3 2.27 Bn 238 MB
Darknet Reference 61.1 83.0 0.96 Bn 28 MB

SqueezeNet 57.5 80.3 2.17 Bn 4.8 MB

Tiny Darknet 58.7 81.7 0.98 Bn 4.0 MB

Table 3.2: Less MB model file comparison with other three parameters

We initially chose darknet19, one of the reference models of DARKNET com-

munity since the accuracy was higher compared to the darknet reference model.

This model requires 20+ convolution layers and creates a very deep CNN, with

many hidden layers. This made the cost in terms of size and memory to go up by

a significant amount. On further analysis, we found there exist a small version of

darknet with less complexity of implementation on hardware.

SqueezeNet is a DNN made with less MB weights. And when most high-

quality images are 10MB or more, why do we care if our models are 5 MB or 50

MB? We want a small model that’s FAST; So Darknet reference network works. It’s

only 28 MB, but more importantly, it’s only 800 million floating point operations.

The original Alexnet is 2.3 billion. Darknet is 2.9 times faster, and it’s small, and

it’s 4 percent more accurate.

So what about SqueezeNet? Sure the weights are only 4.8 MB, but a forward

pass is still 2.2 billion operations. So to balance out SqueezeNet, the community

came up with Tiny darknet.
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So what advantage does Tiny darknet gives us? It solves the problem of having

more size, i.e., more MB weight file. It has comparable operation calls. Finally,

the accuracy is also equivalent of darknet reference model hence becomes the best

solution on how to solve ImageNet dataset with DNN, which has less complexity

and can easily implement on hardware.

3.2 Tiny Darknet

Smaller CNN architectures offer three advantages:

(1) Less communication across servers during distributed training.

(2) Less bandwidth to export a new model from the cloud to an autonomous car.

(3) More feasible to set up on FPGAs and other hardware with limited on-chip

memory. To provide all of these advantages, we propose a small CNN architecture.

9



It is preferable to work with Tiny darknet as:

• More efficient distributed training. For training, communication overhead
is directly proportional to the number of parameters in the model. Smaller
models require less communication, making frequent updates more feasible.

• Feasible FPGA and embedded deployment. Sufficiently small model could
be stored directly on the FPGA instead of being bottle-necked by memory
bandwidth. Deploying CNN on Application-Specific Integrated Circuits
(ASICs), a sufficiently small model could be stored on-chip directly. FPGAs
often have less than 10MB of on-chip memory and no off-chip memory or
storage.

To make Tiny darknet, three main strategies were used in its design:

Strategy 1: Replace 3x3 filters with 1x1 filters. A 1x1 filter has 9X fewer parame-

ters than a 3x3 filter.

Strategy 2: Decrease the number of input channels to 3x3 filters by downsam-

pling. The total quantity of parameters in this layer is equal to (number of input

channels) x (number of filters) x (3x3). So, to maintain a small total number of

parameters in a CNN, it is important not only to decrease the number of 3x3 filters.

The size of the input data (e.g., 224x224 images). Then the choice of layers in which

to downsample in the CNN architecture is engineered into CNN architectures by

setting the (stride > 1) in some of the pooling layers. Here downsampling is re-

ferred to as pooling discussed in Chapter 2

Strategy 3: No fully connected layer at the end.This reduces the number of

weights significantly. (This was adjusted in training by some optimization method).

3.3 Architecture explanation

As in figure 3.1, Tiny darknet has 22 layers. The details are shown there. Convolu-

tion and max-pooling are the main layers of the architecture. 22nd layer is softmax,

10



which we have discussed in previous chapters.

Figure 3.1: Architecture of Tiny darknet

11



CHAPTER 4

Software implementation of Tiny darknet

4.1 Software results

In the previous chapter, we understood why Tiny darknet should be used, with

its complete architectural understanding. In our project, we took the architecture

model file of Tiny darknet and hard-coded it in MATLAB initially. After some

result analysis, we wrote our own C code based(taking parts of the code) from the

main Darknet reference C code and made Tiny darknet architecture model.

Following are some snippets of the results obtained for specific images.



(a) zebra

(b) husky dog (c) van

Figure 4.1: Images given as input
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Figure 4.2: Results

(a) zebra

(b) husky dog
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(c)van
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CHAPTER 5

Hardware and Environment

5.1 Zedboard

Before we move on to the hardware implementation, we must understand the

hardware we used in this project.

The device that was targeted for the implementation was Zedboard, which

belongs to the Zynq-7000 family of SoCs. Zed-board is typically used in an aca-

demic institution as it is easily configurable for embedded system development.

The configuration is done with the help of SDSoC. Zedboard has ARM A9 Cortex

processor with Artix 7 FPGA included with it. It has external DDR3 memory of

512MB and on-chip BRAM. It uses the AXI3 bus interface for transferring data

from PS to PL.

So whenever code is compiled on Zedboard, it will run on its processor. To

use FPGA, we must specify which function to be pushed on hardware via SDSoc

environment.

5.2 SDSoC and HLS

This is used to configure the hardware for embedded systems development. The

Xilinx SDSoC development environment is a member of the Xilinx SDx family that

provides like C/C++ programming experience including an easy to use Eclipse



IDE and a comprehensive design environment for heterogeneous Zynq All Pro-

grammable SoC. Complete with the industrys first C/C++ full-system optimizing

compiler, SDSoC delivers system-level profiling, automated software acceleration

in programmable logic, automated system connectivity generation, and libraries

to speed programming.

This tool enables us to toggle any function on hardware or software as and

when required. Once we decide which functions to keep on HW and which to

compile on SW, we have to build the whole code, and SDSoC will provide us with

a file enable of running on Zedboard with functions to run on FPGA and processor

separately.

The SDSoC environment is backed up with the HLS tool. HLS provides a

detailed report of how the model code will run on hardware. How and what kind

of resources the system will use on hardware. This gives deep insight on how to

model our code to increase its specifications, like time and memory management.
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CHAPTER 6

Hardware implementation of Tiny darknet

6.1 Making a hardware function

In chapter 4, we saw the software implementation of the code. Our project aim

was to move some of the computations to be done onto hardware. For this, we

identified the essential function of the model: convolution and moved it in on

hardware.

To achieve, we need to toggle function on hardware as in move it to FPGA of

Zedboard discussed in chapter 5. Figure 6.1, is the function pushed onto hardware.

Figure 6.1: Convolution function containing A14: Weights array, B: Previous layer
array and C: Next layer array.



6.2 Hardware results

These were the results of image recognition when we ran the code on Zedboard

via GTK term( terminal interface for Zedboard). The image used is HUSKY figure

4.1 (b), for all experimentation and results.

If we are running any function on the hardware and it requires memory, then

the memory should be less, because we want all our hardware code to run on

programmable logic. Programmable logic involves using BRAMs. (BRAM: Block

random access memory is a programmable memory attached with FPGA. It can be allocated

piece by piece, each has its address and data lines and can be read/written to, all in the same

clock cycles synchronously.) The limitation is BRAMs are available in small size. If

the function put on hardware requires memory than available on-chip(BRAMs),

then it allocates all memory on DRAMs, which is external to FPGA. This leads

to an increase in time of computation cause computation has to happen in FPGA

while memory is external, and each computation requires memory transfer, which

adds up to time.

Here the main observation is that when we ran our model code on Zedboard

with convolution function toggled on hardware: FPGA. It requires more time to

execute than compared to having run the whole model code on software. Why

does this happen? The reason for this is less on-chip memory. The amount of

BRAMs required to run convolution function are too high in some layers, and

hence, FPGA has to rely on its external memory. This external memory transfer of

data results in the extra overhead of time, which is reflected in the result.

Also, there is an HLS report in fig 6.3 which clearly describes by how much we

are short of BRAMs. When there is enough BRAM space available then only we

19



can move our arrays used in hardware to FPGA memory.

Figure 6.2: Significant difference in time taken for the code to give result

(a) Hardware analysis

20



(b)Software analysis
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Figure 6.3: HLS Report clearly stating that there is short of BRAM(on-chip) mem-
ory when function is ran on FPGA
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6.3 Hardware optimization

Pushing the whole convolution operation on hardware implies that all convolution

layers we need to go on-chip, which is a limitation. Now given our model has

max pooling in some layers the size of memory required to do convolution with

weights goes down with progress from layer after layer. So, we just pushed one

single convolution layer which required very less memory compared to other

layers on hardware. In reference to figure 6.4, we found out that 14th layer takes

the least amount of memory.

Figure 6.4: Memory analysis of each layer

In reference to fig 6.5. We observed that the time overhead down significantly

when we run one layer on hardware or only on software. Since now the on-chip

23



memory is available in abundance given size of the memory required by this layer

is less.

Next, we pipe-lined the for loops to extract the pipelining feature of FPGA

hardware. In reference 6.1, will show clearly where we used the HLS pipelining.

We got the better speed up in clock cycles about fig. 6.7 in comparison to reference

fig. 6.6. Then the next approach we implemented was array partitioning by a

factor of 2 and 4, and the results are in figures 6.7 and 6.10.

In pipelining each clock cycle, one instruction is run in parallel. While when we

do array partitioning and the pipeline, we can do simultaneously many operations

in parallel. In reference to fig. 6.8

Figure 6.5: HLS Report clearly 14 layer uses BRAM(on-chip) memory optimally
when function is ran on FPGA

24



Figure 6.6: Hardware implementation without pipeline and use of BRAMs

(1).png

Figure 6.7: Hardware implementation with pipeline and use of BRAMs
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Figure 6.8: Array partitioning explained
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Figure 6.9: Array partitioning by factor of 2

Figure 6.10: Array partitioning by factor of 4
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Figure 6.11: Without pipeline resources utilization in hardware acceleration.

Figure 6.12: With pipeline resources utilization in hardware acceleration.
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Figure 6.13: Array partitioning with factor 2 resources utilization in hardware
acceleration.

Figure 6.14: Array partitioning with factor 4 resources utilization in hardware
acceleration.
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CHAPTER 7

Conclusion

7.1 Various experiments

Experiments No. of
CPU
cycles
running in
Hardware

Time(uS)

SOFTWARE 2579714 3868
Without using Pipe-lining
and BRAMs

36718416 55050

Using Pipe-lining and
BRAMs

3281413 4920

Array partitioning by fac-
tor of 2

1674427 2510

Array partitioning by fac-
tor of 4

870127 1304

Table 7.1: Hardware acceleration experiment results

7.2 Summary

1. Size of BRAMs is limited; hence, we cannot put all convolution layers on FPGA.

Single layer hardware implementation is possible.

2. Array partitioning gives the best hardware acceleration.

3. Array partitioning can only be done on arrays stored on on-chip memory.

4. In our experiment, we can get 3X acceleration on hardware.
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