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ABSTRACT

KEYWORDS: Quantum Error Correction, Neural Networks, Deep Learning, Topolog-

ical Codes, Stabilizer Codes, Toric Codes, Subsystem Codes, Subsystem Color Codes

Recently, several deep learning techniques have been applied in quantum error correc-

tion. Torlai and Melko were the first to design a neural decoder for quantum codes.

Varsamapoulus et al. came up with a two step decoder for quantum codes. Maskara et

al. proposed a similar two step decoder and achieved near optimal threshold for trian-

gular toric code and triangular toric code with a twist. Chinni et al. proposed a two step

decoder based on pseudo-inverse of parity check matrix which achieved near-optimal

threshold for color codes.

In this project we explore neural network based decoders for toric codes and sub-

system color codes. We also take the two-step approach. The decoders proposed in

Varsamapoulus et al., Maskara et al., Chinni et al. use a "naive" decoder in the first

step. These naive decoders do not provide any threshold on their own. We imple-

ment a two step decoder where the naive decoder is replaced with a decoder that has a

threshold. The motivation is to design a neural decoder with low training complexity.

Our neural decoder for toric code achieves a threshold of 15.5% for depolarising error

model. This performs better than the MWPM decoder which has a threshold of 14.8%.

We also explore the possibility of a neural decoder for subsystem color code. There

has been no neural decoder for subsystem color code that has been designed till date.

The existing state-of-art decoder provides a threshold of 1.9% while the theoretical

upper limit for the threshold is 5.5%. The motivation is to find a neural decoder that

can perform better than the state-of-art decoder. Our neural decoder for subsystem

color code does not achieve any threshold for our proposed architecture and hyper-

parameters.
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CHAPTER 1

Introduction

Quantum computers compute and store data on qubits. Quantum error correction is used

to protect the qubits from the external noise. Stabilizer codes are a class of quantum

codes which are completely characterised by checks called as stabilizers.

Toric code and color codes are some examples of stabilizer code. Similar to stabi-

lizer codes there is another class of codes known as subsystem codes. The subsystem

code is completely characterised by a group of operators known as gauge operators. In

this thesis we explore the neural decoder for toric codes and subsystem color codes.

1.1 Neural network based decoders

Recently, data-driven based neural network decoders have been proposed for quantum-

error-correction for various codes and noise models by Torlai and Melko (2017); Varsamopou-

los et al. (2018); Krastanov and Jiang (2017); Baireuther et al. (2018a); Chamberland

and Ronagh (2018); Davaasuren et al. (2018); Jia et al. (2018); Breuckmann and Ni

(2018); Baireuther et al. (2018b); Maskara et al. (2018); Chinni et al. (2019). Among

them, Maskara et al. (2018); Chinni et al. (2019) have outperformed the non-neural de-

coders in terms of performance for various noise models on triangular color codes and

triangular toric code with a twist. Recent work by Chinni et al. (2019) propose a neural

decoder based on pseudo-inverse of the parity check matrix. They achieve a near opti-

mal threshold of 10% for independent bit-flip/phase-flip error model on periodic color

codes.

In this project we explore neural network based decoders for toric codes and sub-

system color codes. The work is inspired by the the two-step approach proposed used

in Varsamopoulos et al. (2018); Maskara et al. (2018); Chinni et al. (2019). They use

a "naive" decoder in the first step to get an error estimate. This error estimate has the

same pure error as the original error. Thus we can eliminate the pure error with this



estimate. In the process of eliminating the pure error the error estimate could have in-

troduced a new logical error in addition to the original logical error. A neural network

is used to estimate the overall logical error. Thus the combined setup of the naive de-

coder and the neural network provides the final error correction. In Varsamapoulus et

al., Maskara et al., Chinni et al. the naive decoders used in step one do not provide any

threshold on their own. The combination of the two decoders give the threshold. We

implement a two step decoder where the naive decoder is replaced with a decoder that

has a threshold. The motivation is to explore and understand the effect of a "good" step

one decoder on performance and training complexity.

We also explore the possibility of a neural decoder for subsystem color code. The

theoretical upper limit to the threshold for the subsystem color code is 5.5% (Andrist

et al. (2012)) while the state-of-art decoder proposed in Bombin et al. (2012) provides a

threshold of 1.9% . Moreover, there has not been any neural network decoder designed

for subsystem color code yet. This motivates us to explore neural network decoders for

subsystem color codes.

1.2 Contributions of the Thesis

In this work, we study the decoding problem for toric codes and subsystem color code.

We propose a neural decoder toric codes which achieves a threshold of 15.5% on de-

polarizing noise model. Our decoder performs better than the MWPM decoder. We

achieve this performance from a single neural network for all the depolarising error

rate. We also propose data augmentation techniques that will significantly improve the

performance of the decoder at a lower training cost.

We also explore the possibility to design a neural-network based decoder for sub-

system color code. We analyse the performance of the neural network decoder based on

inverse of parity check matrix. This work is motivated by the work Chinni et al. (2019)

who propose a neural decoder based on pseudo-inverse of parity check matrix for color

codes.

The proposed subsystem color code decoders do not achieve any threshold for our

chosen architecture and hyper-parameters.
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The thesis is organized as follows,

Chapter 2 introduces QEC, stabilizer codes and subsytem codes with emphasis on

toric codes and subsystem color code. We describe the decoding problem and how it

can be reduced to a classification problem which can be solved by a neural network.

Chapter 3 broadly introduces neural networks (NN) and deep learning (DL). We

discuss on the architecture and training procedure focusing on the neural decoders im-

plemented in the current work.

Chapter 4 discusses on the neural decoder for toric codes. We briefly describe the

decoder model. We describe the step one decoder. We describe the architecture, hyper-

parameters and the training procedure used in the neural network. Finally, we discuss

about the results.

Chapter 5 discusses on the neural decoder for subsystem color codes.We briefly

describe the decoder model. We describe the step one decoder. We describe the archi-

tecture, hyper-parameters and the training procedure used in the neural network.

Chapter 6 provides the conclusion to the thesis.

3



CHAPTER 2

Quantum Error Correcting Codes

In this chapter, we summarize the necessary background on QECC. In section 2.1 we

introduce the stabilizer formalism. In section 2.2 we describe how the quantum error

correction problem can be reduced to a classification problem. In section 2.3 and 2.5

we introduce toric codes and subsystem color codes.

2.1 Stabilizer Codes

In this section we will briefly introduce stabilizer codes. Stabilizer codes are class of

quantum codes which is completely characterised by checks called stabilizers. The

Pauli group of 1 qubit is defined according to Eq. 2.1 where the Pauli operators X, Y, Z

and the identity matrix I are defined in Eq. 2.2.

P1
def
= {±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ} (2.1)

X =

0 1

1 0

 , Y =

0 −i

i 0

 , Z =

1 0

0 −1

 I =

1 0

0 1

 (2.2)

A Pauli group of n qubit Pn is the n- fold tensor product of P1.

Pn = P⊗n1 (2.3)

Stabilizer codes are defined by an abelian subgroup of Pn called as stabilizers. We

denote this subgroup as S. The group S is considered up to a phase. The group S does

not contain the element −I . The codespace, C, is +1 eigenspace of S.

C = { |ψ〉 ∈ (C2)⊗n | S|ψ〉 = |ψ〉 ∀ S ∈ S } (2.4)



A centralizer of a subgroup A in a group B is the set of elements in B that commutes

with every element in A. The centralizer C(S) of S in a group Pn is the set of elements

in Pn that commutes with every element in S. Mathematically, we can write,

C(S) = {p ∈ Pn| ps = sp for all s ∈ S} (2.5)

Let C(S) be the centralizer of group S in the groupPn. Elements of set C(S)\〈S,±iI〉

are the non-trivial logical operators, L, and let Lg be it’s generating set. The set Lg will

has 2k generators, where k is the number of logical qubits. Each logical qubit i has

two associated generators X i, Zi for 1 ≤ i ≤ k. X i and Zj commute if i 6= j and

anti-commute if i = j. A logical operator Li will have the same effect on ith qubit as

the operator L will have on unencoded qubit.

The distance of the code d is an important characteristic of the code. The distance

of the stabilizer code is defined as,

d = min{wt(e)|e ∈ C(S)\〈S,±iI〉} (2.6)

Stabilizer codes acting on n physical qubits and encoding k logical qubits and with

a distance d are denoted by [[n, k, d]].

Once we define S and it’s generator set Sg, we can define another set called pure

errors, T with generator set Tg. Tg consists of pure error T1, T2 . . . Tm, where m = |Sg|.

A pure error Ti will anti-commute with exactly one stabilizer Si ∈ Sg and commutes

with all other stabilizers Sj ∈ Sg. The pure error Ti will commute with other logical

errors Li ∈ Lg and pure errors Ti ∈ Tg. Mathematically, we can define Tg as,

Tg = { ∀t ∈ Tg ∃ s ∈ Sg| ts = −ts, ∀s′ ∈ Sg\s, ts′ = s′t } (2.7)

We can observe that {Sg,Lg, Tg} together form the generating set of Pn.

If E anti-commutes with the ith stabilizer Si ∈ S then, ith bit of syndrome si is one.

If it commuted then si is zero. Each stabilizer is analogous to a check in parity-check

matrix in the classical error correction. Mathematically,

5



si =

0 if ES = SE

1 if ES = −SE

We represent the syndrome in a vector form s = (s1, s2, ..., sm) where m ≥ n− k.

2.1.1 Binary representation

Let, E be the error operator acting on the code with n physical qubits. The operator

E can be written in binarized vector e = (e1, e2, ..., e2n) of length 2n. Firstly, every Y

operator is considered as a combination of X and Z as ZX = iY . For 1 ≤ i ≤ n,

ei = 1 if E has a X operator on ith qubit. For n + 1 ≤ i ≤ 2n, ei = 1 if E has a Z

operator on (i− n)th qubit. The first n entries of e correspond to the X operators in E

and the next n entries of e correspond to the Z operators in E.

A stabilizer S acting on the code of n physical qubits can be written in a binarized

form as a binary vector h = (h1, h2, ..., h2n) of length 2n. The first n entries of h

correspond to the X operators in S and the next n entries of h correspond to the Z

operators in S. For 1 ≤ i ≤ n, hi = 1 if S has a X operator on ith qubit. For

n+ 1 ≤ i ≤ 2n, hi = 1 if S has a Z operator on (i− n)th qubit.

The matrix that contain all the vectors h1, h2, ..., h2n as rows can be considered as

parity check matrix and is denoted by H. Let λ be the matrix as defined in label 2.9.

For an error operator E with the binarized form e the syndrome s can be calculated as,

s = Hλe> (2.8)

λ =

 0 In

In 0

 (2.9)

2.1.2 Decoding Problem

Let E be the error operator. Given the syndrome s the decoding problem is to add an

error estimate Ê to eliminate the syndrome without adding any additional logical error.

6



We discussed in Sec. 2.2 that the error E can be decomposed uniquely into T ,L and

S. Where T is the pure error. L is the logical error and S is the stabilizer error. The

stabilizer error can be ignored as it does not affect the quantum information. Hence, the

decoding problem is to find an error estimate Ê such that Ê = ES ′, where S ′ is some

stabilizer in S.

2.2 QEC as a classification problem

In the previous section we discussed that {Sg,Lg, Tg} form a generating set of Pn we

can write E = TLS as shown in Duclos-Cianci and Poulin (2010). Here T ∈ T , S ∈ S

and L ∈ L. All the T , L, S are a function of the error E. The effect of S is trivial

implying two error patterns E and E ′ = SE will have same effect on the quantum

information. In other words, S will not affect the quantum information stored in the

encoded system. The effect of L is non-trivial. Two error patterns E and E ′ = LE

will not have the same affect on the encoded quantum information. Given syndrome

vector we can uniquely identify T . The problem of error correction for stabilizer codes

is finding the most likely L upto a stabilizer S, as shown in Eq. 2.10. Hence, decoding

can be thought of as a classification problem with 2|Lg | = 22k number of classes.

L = argmax
γ ∈ L

Pr (γ | s) = argmax
γ ∈ L

Σ
δ ∈ S

Pr (γδ | s) (2.10)

2.3 Toric codes

In this section we briefly introduce the 2D toric code with periodic boundary.

Toric code is a stabilizer code. The code is completely characterised by the set of

stabilizers. Qubits are placed on the edges. The toric code has two types of stabilizers.

The Z type stabilizers are on faces with one Z operator on each edge. The X type

stabilizers are on vertices with one X operator on each incident edge. The stabilizers

and qubits are illustrated in Fig. 2.1.

The toric code encodes two logical qubits. It has four independent logical operators,

upto a phase. A logical operator affects the information that is encoded in a qubit. For

7



Z type

X Type

qubits

Figure 2.1: Periodic toric code on a illustrated with the qubits and the stabilizers (X
and Z). Red dots and blue dots correspond to the X and Z operators on the
physical qubits, respectively.

example, A logical Z operator operated on the encoded qubit has the same effect as

an Z operator on an unencoded qubit. A logical operator commutes with the stabilizer

but anti-commutes with one of the other logical operator. The logical operators of toric

code is shown in the Figure 2.2.

We have to observe that multiple error pattern can result to the same syndrome.

Consider the error pattern as shown in Fig. 2.3a. The blue dots indicate the Z error

E. These errors cause the stabilizers to anti-commute with the error E and leave a

syndrome. The violated checks are on the vertices, enclosed by the red box for better

visualisation.

Consider a different error pattern E1 as shown in the Fig. 2.3b. This error pattern

also leaves the same syndrome as in Fig. 2.3a. Here, E and E1 differ by a stabilizer S

i.e, E1 = ES.

Now, consider a different error pattern E2 as shown in the Fig. 2.3b. This error

8



X1

Z1

(a)

Z2

X2

(b)

Figure 2.2: The toric code encodes two qubits. The logical operators of each qubit is
shown in Fig 2.2a and 2.2b. A red dot and blue dot correspond to the X and
Z operator on the physical qubit.

pattern also leaves the same syndrome as in Fig. 2.3a. Here, E and E2 differ by a

stabilizer S and a logical error L i.e, E2 = ELS. Correcting the error E with E2 will

introduce a logical error.

9



(a) The toric code lattice with a phase-flip error E indicated using blue dots. The
corresponding syndromes are indicated in the red boxes that enclose the vertices.

(b) The toric code with a different error E1, where E1 = ES. Both E and E1 leave the same
syndrome.

(c) The difference between E and E1 is a stabilizer.

Figure 2.3: The error E and E1 will leave the same syndrome. The difference between
E and E1 is a stabilizer. Correcting the error E with E1 will not have any
affect on the quantum information encoded in the system.

10



(a) The toric code lattice with a phase-flip error E indicated using blue dots. The
corresponding syndromes are indicated in the red boxes that enclose the vertices.

(b) The toric code with a different Z error E2, where E2 = EZ2S. Both E and E2 leave the
same syndrome but will have different effect on the encoded quantum information.

(c) The difference between E and E2 is a logical Z2.

Figure 2.4: The error E and E2 will leave the same syndrome. But the difference be-
tween E and E2 is a logical Z2. Correcting the error E with E2 will intro-
duce a logical Z on the second logical qubit.

11



2.4 Subsystem Codes

In this section we briefly introduce the subsystem codes. Subsystem codes were first

introduced by Bombín (2010). Let Pn be the Pauli group on n qubits as described in

2.1. The subsystem color code is fully characterised by a non-abelian subgroup of Pn
called gauge group G. The stabilizer set S is the maximal abelian subgroup of G that

does not contain −I .

Let C(G) be the centralizer of subgroup G in the group Pn. We can write the group

of stabilizers S as S = G ∩ C(G), upto a phase. The group of gauge, stabilizers can be

visualised by the Venn diagram 2.5. A detailed description of subsystem codes and it’s

construction is provided in Suchara et al. (2011); Gayatri and Sarvepalli (2018).

G C(G)

C(S)
Pn

Figure 2.5: The Venn diagram illustrating the gauge group and stabilizer group in a
subsystem code.

The codespace, C, is +1 eigenspace of S.

C = { |ψ〉 ∈ (C2)⊗n | S|ψ〉 = |ψ〉 ∀ S ∈ S } (2.11)

The stabilizers form the checks of the subsystem code. The errors in G do not

affect the information encoded in the code. The errors that do not belong to C(S) anti-

commute with at least one element in S and hence are detected. The errors in C(S)\G

are not detected by the checks.

2.4.1 Decoding Problem

Let E be the error operator. Given the syndrome s the decoding problem is to add an

error estimate Ê to eliminate the syndrome without adding any additional logical error.

12



Similar to stabilizer codes we can we can uniquely decompose the error E into T ,L and

G. Where T is the pure error. L is the logical error and G is the gauge error. The gauge

error can be ignored as it does not affect the quantum information. Hence, the decoding

problem is to find an error estimate Ê such that Ê = EG′, where G′ is some gauge

element in G.

2.5 Subsystem Color Codes

In this section we briefly introduce the subsystem color codes. Subsystem color codes

were first introduced by Bombín (2010).

The subsystem color code on the square-octagonal lattice is defined on a graph

shown in figure 2.6. The qubits lie on the vertices. Observe that the graph has three

kinds of edges. The dashed edge, solid edge and the hyper-edge (the triangle). The

subsystem color code for square octagonal lattice has the gauge group which has three

types of gauge elements, namelyX , Y and Z type. The three types of gauges are shown

in figure 2.7. The checks are the stabilizers shown in figure 2.9a. The stabilizers are

derived from the gauges. An example is shown in figure. 2.8.

Figure 2.6: The figure illustrates the graphical structure of the subsystem color code.
The Z-type gauges lie on the triangles and are shown in blue for better

visualisation.

A triangle with two vertices with Z operator constitutes a Z-type gauge. We repre-

sent a X-type gauge with a solid line and Y -type gauge with dashed line. The square-

octagonal subsystem color code encodes two logical qubits. It has four independent

logical operators, upto a phase. A logical operator affects the information that is en-

coded in a qubit. For example, the logical Z has the same effect as an Z operator on an

13
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Figure 2.7: The figure illustrates the X , Y and the Z type gauge operators of the
subsystem color code.
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Figure 2.8: The figure illustrates the construction of stabilizer from the gauge group
elements in the subsystem color code.
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Figure 2.9: The figure illustrates the four types of stabilizers of the subsystem color
code. Figure 2.9a shows the position of the stabilizers. The stabilizers are
shown in color for better visualization.
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Figure 2.10: The figure illustrates the four independent logical operators of the
subsystem color code.

unencoded qubit. A logical operator commutes with the stabilizer but anti-commutes

with one of the other logical operator. The logical operators of subsystem color code

is shown in the Fig. 2.10. Both stabilizers and the logical operators are hypercycles.

The stabilizers act trivially on the codespace. The logical errors act non-trivially on the

codespace.

15



CHAPTER 3

Neural Networks and Deep Learning

3.1 Overview of Machine learning

Traditional methods of computation (Non-machine learning algorithms) have explicitly

mentioned steps to compute the output for a given input. In the case of data driven

methods the algorithm learns these steps using the data. Machine learning (ML) algo-

rithm belong to these data-driven methods. We do not explicitly program the but the

algorithm learns these steps with the help of training data. ML algorithms have two

steps. In the first step is called training. During training the machine learning model

will take in sufficient amount data and learn the pattern the data represents. The sec-

ond step is inference. During inference the trained machine learning model is used to

predict the output for the given input. The performance of the machine learning model

is measured by running the machine learning model for various inputs and calculating

the accuracy of the prediction. In this chapter we focus on the specific framework of

machine learning called neural networks.

3.2 Neural Networks

Artificial neural networks is a machine learning framework inspired by the neural circuit

of the biological brain. A neural network is constructed by connecting number of basic

unit called neuron. A neuron takes in input vector, multiplies it with a weight vector,

adds a bias and sends it as an output (As shown in Fig. 3.1). The set of neurons which

take the same input form a neural network layer. This output is passed through an non-

linear function and then fed as input to the another set of neurons. This continues till

the last layer where the neural network outputs the prediction. Fully connected neural

network is a framework where each neuron in a layer takes input from every neuron

of the previous layer. We use fully connected neural networks in our neural decoders.



x1

x2

x3

Activation
Function

x1w1 + x2w2 + x3w3 + b f(x1w1 + x2w2 + x3w3 + b)

Neuron

Figure 3.1: A single neuron in an neural network.

X1

Xn

X3

X2

Output layer

Input Layer Hidden layers

Figure 3.2: An example of a fully connected neural network.

Fig. 3.2 illustrates an example of fully connected neural network with three hidden

layers.

In a classification problem the number of neurons in the output layer will be same as

the number of classes. For the given input the neural network will output the probability

for that particular class. In the case of the neural decoder the neural network must take

in the syndrome and predict the homology. The number of neurons in the input layer

will be the size of syndrome. The number of neurons in the output layer is the number

of homology classes. The intermediate layers are called as hidden layers. The number

of neurons in the hidden layer is defined by the user.

As discussed before the neural network has two phases. During training the neural

network is given with labelled input and output samples. During inference the trained

neural network will produce the output for the given input. The performance of the

neural network is measured by calculating the accuracy of the prediction. In the case
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of our neural decoder the neural network is trained with the syndrome, homology pair.

During inference the trained neural network will predict the correction homology for

the given syndrome.

3.2.1 Activation function

A single layer of a neural network is nothing but a linear transformation. Two lin-

ear transformation on the same input space will still remain a linear transformation.

Clearly having a neural network with no non-linearity will not be helpful in any real

life prediction. To introduce non-linearity the output of every neuron is passed through

a non-linear function called as an activation function. We use the ReLU activation func-

tion that is defined as Eq. 3.1 for hidden layers. And soft-max activation function for

the output layer.

ReLU(x) = max(x, 0) (3.1)

3.2.2 Loss Function

For a given input the neural network will predict an output. But this prediction need

not always be the ground truth. A suitable function is used to quantify the errors in

prediction. This function is called the activation function. Once the error is quantified

using the loss function the aim of the neural network training would be to reduce the

loss function. The loss function is computed at each step during training. The weights

of the neural networks are updated to minimize the loss the function. Cross-entropy loss

is a well suited for classification(Eq. 3.2). We use cross entropy loss for our decoders.

`CE (y, ŷ) = −
∑
i

yi log (ŷi) (3.2)
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3.2.3 Weight Initialization

Weight initialization plays a major role in determining the time taken for the training.

Large weights significantly increase the value of gradient. Smaller weights will di-

minish the gradients. Both cases are not preferred while training. There are several

techniques of weight initialization that overcome this problem. Xavier normal initial-

ization is one such technique widely used for weight initialization (Glorot and Bengio

(2010)). We initialize the weights according to Xavier normal initialisation in our neural

decoder.

3.2.4 Data Augmentation

Training a neural network needs significant samples of labelled data. Sometimes obtain-

ing labelled data would be computationally expensive. Data augmentation is a standard

procedure used in deep learning community to increase the number of labelled dataset

without significantly increasing the computational cost. For example, an image of a cat

would remain an image of the cat if it is rotated by small angles. Fig. 3.3 shows an ex-

ample of data augmentation. We exploit a similar technique for our toric code decoder

to improve the performance of the neural decoder.

3.2.5 Training Procedure

The neural network is trained with the labelled data. At the very beginning, the neural

network is initialised according to the Xavier’s initialisation. In each iteration the input

is given to the first layer. The output of the first layer is input to the second and so

on. The output of the final layer is taken to compute the loss function. Once the loss

function is computed the weights are updated such that the value of loss function is

reduced. This is done by the gradient descent algorithm. The training is done till the

loss function saturates. The entire training process is illustrated in Fig. 3.4
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Figure 3.3: Data augmentation over an image of cat.

Training Data NN

Calculate
Loss

Estimate
gradients

Input

Ground truth

Update weights

Prediction

Figure 3.4: Training procedure of a neural neural network.

3.2.6 Curriculum Learning

Curriculum learning was first introduced in Bengio et al. (2009). It is a procedure where

we train the neural network with "easier" patterns first and then proceed to "harder"

patterns. The authors train neural network to predict the shape of the input image. It is

shown that the neural network that is trained with "easier" shapes first and then trained

over "harder" shapes perform better than the neural network trained randomly on any
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of the shapes. In our decoder we train the neural networks for lower error rate and

then proceed to higher error rates. Same approach was taken by Maskara et al. (2018);

Chinni et al. (2019) in the proposed neural decoder.
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CHAPTER 4

Error Correction for Periodic Toric Code using Neural

Networks

In this chapter we describe our work on the toric code. In section 4.1 we recollect the

decoding problem for the toric code. In section 4.2 we describe how the two step neural

decoder is modelled. We briefly describe the non-neural decoder. In section 4.3 we

describe the neural network architecture and the hyper-parameters. In section 4.4 we

explain the training procedure. In section 4.5 we explain the results obtained from our

experiments.

4.1 Introduction

Let us recollect that decoding problem for the toric code can be considered as a classi-

fication problem as described in 2.2. Let E be the error operator. The error E can be

decomposed uniquely into T ,L and S. Where T is the pure error. L is the logical error

and S is the stabilizer error. The stabilizer error can be ignored as it does not affect the

quantum information. Hence, the decoding problem is to find an error estimate Ê such

that Ê = ES ′, where S ′ is some stabilizer. Given the syndrome s the decoding problem

is to add an error estimate Ê to eliminate the syndrome without adding any additional

logical error.

E = TLS (4.1)

Let E be the error operator and H be the parity check matrix computed according

to 2.1.1. We can compute the binary representation of the error e according to 2.1.1.

The syndrome s can be calculated as

s> = Hλe> (4.2)



.

A code of distance d that encodes k logical qubit in n physical qubits is denoted

by [[n, k, d]]. The smallest number of physical qubits n to have a code of distance d

is 2d2. Though out our experiments we take the code with the smallest number of

physical qubits. As the number of physical qubits and stabilizers are dependent on the

distance we take distance d as the free parameter. Hence the code of distance d will be

[[2d2, 2, d]] code.

4.2 Decoder Model

The decoder is modelled in a two step process. Let E be the error operator and e

be it’s binarized form. In the first step we use the non-neural decoder to calculate an

estimate
(
Ê
)

of the actual error (E). This approach is inspired by the previous works

by Varsamopoulos et al. (2018); Maskara et al. (2018); Chinni et al. (2019). In the

first step we use the minimum weight perfect matching (MWPM) decoder to calculate

an estimate
(
Ê
)

. In the second step, we use a neural network to predict the resultant

logical error that could have occurred by the initial error E and estimated error Ê.

ê> = MWPM(s>) (4.3)

The decoder in step one finds an error estimate Ê. This is done with the help of MWPM

decoder. The syndrome pattern is transformed into a complete graph. Each violated

check is a vertex v. Each edge e = vv′ will have the weight equal to the smallest

number of qubit string that connect checks corresponding v and v′. An example of

the transformation is given in Figure 4.2. Once the graph is constructed we obtain the

edges corresponding minimum weight perfect matching using the MWPM algorithm.

The error estimate Ê is nothing but the error operator on the qubits that correspond to

the edges in the MWPM.

Both ê and e will leave the same syndrome. Hence, the pure error T corresponding

to E and Ê will also be the same.
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Figure 4.1: The two step framework used in the neural decoder for the toric code.

The error estimate ê and e need not be the same. There exist multiple error patterns

that leave the same syndrome. Each syndrome correspond to a unique pure error T . The

error operators ê and E will have same pure error T but might have different logical

errors. Applying this initial estimate Ê onto the system might result in logical errors.

This can be concluded through the following equations,

E = TLS

Ê = TL̂Ŝ

ÊE = TL̂Ŝ TLS

=⇒ ÊE = (±) L̂LŜS

=⇒ ÊE = (±)L?S? (4.4)

The above set of equations have been reproduced from Chinni et al. (2019) for the sake

of completeness. The reason for occurrence of (±) in Eq. (4.4) is because the Pauli

operators T , Ŝ might commute or anti-commute. This is of little interest to us because

we estimate the error up to a global phase.

=⇒ Hê> = He> = s> (4.5)

By applying the estimate Ê onto the system the pure error is eliminated. The remaining

errors are the logical error L? and the stabilizer error S?. The stabilizer error S? acts

trivially on the codespace. If we can predict the resultant logical error L? the decoding

succeeds. The estimation of L? is done by the Neural Network (NN). Given the syn-

drome, the neural network must predict L?. A neural network trained with samples of

s>, L? can predict L? given s>. Our two step decoder can be illustrated in Fig. 5.1. The

final error correction will be,
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(a) Initial error pattern E and the corresponding syndrome

2

2

2

1

3

43

(b) The graph obtained from the syndrome pattern in 4.2a

(c) The resultant error estimate Ê obtained from the MWPM algorithm. E and Ê differ by a
stabilizer.

Figure 4.2: Finding an error estimate using MWPM algorithm.
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E? = L?Ê (4.6)

By operating system with the error correction E?, the system gets into the original state

up to a stabilizer and a phase as shown in Eq. 4.7.

E?E = L?ÊE = (±)L?L?S? = (±)S? (4.7)

4.3 Architecture

In this section we describe the architecure, hyper-parameters and the training procedure

of the neural network used in the step-two. We use a fully-connected architecture where

every neuron in one layer has input from every neuron of the previous layer. The output

of the network is a vector. Each element of the vector correspond to a logical error

operator. We follow the best practices that is followed by the deep learning community.

We use cross-entropy as our loss function which is best suited for classification problem.

We use the Adam optimizer to update the weights. Kingma and Ba (2014) show that the

Adam optimizer performs better than other known optimizers in convergence of loss.

We have 1D batch normalization layer after every layer in the neural network. Batch

normalization has shown to boost training speed and convergence of loss ( Ioffe and

Szegedy (2015)). We use ReLU as the activation function for input and hidden layers.

ReLU has shown to overcome the vanishing gradient problem that is pertinent in other

activation functions like Sigmoid and Tanh.
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Table 4.1: The values of the hyper-parameters used in the neural network used for the
toric code decoder.

[[n, k, d]]a
parameters

hd
b fd

c bd
d αe td,perr

f Td
g Nt

h

[[50, 2, 5]] 5 5 500 0.001 1× 107 6× 107 1
[[98, 2, 7]] 7 7 500 0.001 3× 107 1.8× 108 1
[[162, 2, 9]] 10 10 500 0.001 5× 107 3× 108 20

aParameters of the code
bNumber of hidden layers
cHidden dimension factor
dBatch size
eLearning rate
fNumber of training samples per each perr
gTotal number of training samples for all perr combined
hNumber of epochs

4.4 Training Procedure

The training samples are generated as follows. Error pattern E are randomly generated

based on the depolarizing error probability perr. The syndrome is computed according

to the equation 4.2. The syndrome is input to the MWPM decoder to obtain the error

estimate Ê. The logical error caused by E and Ê is obtained by EÊ = L?S?. We

use data augmentation techniques to increase the total training dataset as described in

section 4.4.1. We train the neural network with syndrome as the input and L? as the

output. The training procedure is illustrated in Figure. 4.3.

The neural network needs to be trained to predict the correct output. We have labeled

data of input (syndromes s from Eq. (4.2)) and the corresponding output (L?).

We use cross-entropy function (`CE) as our loss function.

Once the loss is calculated the weights of the neural network are updated according

to the update rule specified by the optimizer. The process flow for the neural network

training is explained in 3.2.5.

With the syndrome vector s as the input, a trained NN should be able to correctly

predict the correction homology class L?. We employ a curriculum learning procedure

as described in 3.2.6. We generate training samples at a fixed depolarizing error rate

perr. We use a data augmentation technique describe in section 4.4.1 to increase the

data samples. We train our NN for that error rate until the loss function saturates. We
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Figure 4.3: The training procedure for the toric code decoder.

then change the perr to a higher value. The process is repeated for multiple error rates

under the threshold. In our experiments, we have trained our NN for the error rates

{0.14, 0.15, 0.16, 0.17, 0.18, 0.19}. We employ the standard best practices used by the

machine learning community. We use Xavier normal initialization for the parameters in

fully-connected layers and Gaussian normal initialization for the parameters in batch-

normalization layer before we start training.

The hyper-parameters we have used for our networks are listed in the Table 4.1. bd

denotes the batch size. The input layer will have the dimension of the syndrome vector s

i.e |s|. fd characterises the number of nodes in the hidden layers. α denotes the learning

rate. The number of nodes in the hidden layer is fd times the number of input nodes

= fd×|s|. td,perr denotes the training samples for each perr. Td denotes the total number

of samples used. We use PyTorch1, widely used open-source deep learning framework

to train and test our neural networks.

4.4.1 Data Augmentation

In this section we describe our data augmentation technique. We show that this tech-

nique significantly increases the accuracy for a fixed training set.

The performance of neural network scales with the size of training set. This is

considered as one of the major advantages of neural networks over traditional machine

learning techniques. It is common procedure in deep learning to amplify the available

data with simple techniques like translation, rotations etc.

In our case the training data is generated using the MWPM decoder which has a

complexity of O(n3) = O(d6). Where n is the number of qubits and d is the distance

of the code. For a distance d code we show that we can amplify the data by a fac-
1https://pytorch.org/
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tor of d2 by shifting the syndrome pattern. Note that the code has periodic boundary

due to which the shifting the syndrome pattern is possible irrespective of the position

of the syndrome. As shifting the syndrome pattern does not change the relative dis-

tance between the stabilizers and hence the graph that is input to the MWPM does not

change and so does the output. Thus, we can obtain more data samples without actu-

ally running MWPM. This technique will increase the number of data samples without

significantly increasing the cost of generating data. Fig. 4.4 illustrates the example of

the data augmentation.

4.4.2 Analysis of data augmentation on toric code

We observe that the data augmentation technique significantly reduces the decoding

error probability of the neural decoder. The following plot show the performance of

neural decoder with and without data augmentation. Keeping all other parameters same.

Table 4.2: The values of the hyper-parameters used in the neural network.

[[n, k, d]] a
parameters

hd
b fd

c bd
d αe td,perr

f Td
g

[[50, 2, 5]] 7 7 500 0.001 3.8× 106 2.38× 107

[[98, 2, 7]] 7 7 500 0.001 9× 105 5.4× 106

[[162, 2, 9]] 9 9 500 0.001 5× 105 3× 106

aParameters of the code
bNumber of hidden layers
cHidden dimension factor
dBatch size
eLearning rate
fNumber of training samples per each perr
gTotal number of training samples for all perr combined
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(a) Initial Syndrome pattern

(b) Syndrome pattern after data augmentation.
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(c) The underlying graph generated to calculate MWPM which is same for both (a) and (b)

Figure 4.4: The syndrome pattern is shifted to it’s left by one step from 4.4a to 4.4b and
the initial estimate by MWPM E ′ is also shifted by one step. This because
the underlying graph 4.4c used to calculate MWPM is unchanged.
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Figure 4.5: The decoding error rates of our neural decoder with and without data aug-
mentation for distance 5 (4.5a), 7 (4.5b) and 9 (4.5c). The hyper-parameters
used for the training is given in table. 4.2.
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4.5 Results

We describe our simulation results for toric code decoder with depolarization noise

model in this section. As described earlier in the Section 4.2, our decoder is a two step

decoder where we use a MWPM decoder in step-one and then NN decoder in step two.

The performance of MWPM decoder is shown in the Fig. 4.6. The MWPM decoder

provides a threshold of 14.8%. Our neural decoder provides a threshold of 15.5%.

The performance of our fully-connected NN trained according to the training pro-

cedure mentioned in Section 4.4 is shown in the Fig. 4.6. We report the final threshold

achieved by our neural decoder is 15.5% for depolarizing error model. We also observe

that the neural decoder has lower decoding error rate compared to the MWPM decoder.

4.5.1 Comparison with other decoders

The proposed neural decoder for toric code achieves the threshold of 15.5% for depolar-

ising noise model. The neural decoder for triangular toric code with a twist proposed by

Maskara et al. (2018) achieves a threshold of 17.8% for depolarizing error. The neural

decoder for triangular toric code with a twist proposed by Krastanov and Jiang (2017)

achieves a threshold of 16.4% for depolarizing error. We also point out that MWPM

decoder has much higher complexity than the naive decoder proposed in Maskara et al.

(2018). This will significantly increase the training cost.
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Figure 4.6: Figure. 4.6a shows the performance of our neural decoder. Figure 4.6b
compares the performance of neural decoder with the MWPM decoder
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CHAPTER 5

Error Correction for Subsystem Color Code using

Neural Networks

In this chapter we describe our work on the subsystem color code. In section 5.1 we

recollect the decoding problem for the subsystem color code. We briefly describe the

construction of the non-neural decoder. In section 5.2 we describe how the two step

neural decoder is modelled. In section 5.3 we describe the neural network architec-

ture and the hyper-parameters. In section 5.4 we explain the results obtained from our

experiments.

5.1 Introduction

In this section, we describe our problem formulation for correction of depolarizing

errors on subsystem color codes.

Let us recollect that decoding problem for the subsystem color code can be consid-

ered as a classification problem as described in 2.4. Let E be the error operator. The

error E can be decomposed uniquely into T ,L and G. Where T is the pure error. L is

the logical error and G is the gauge. The gauge can be ignored as it does not affect the

quantum information. Hence, the decoding problem is to find an error estimate Ê such

that Ê = EG′, where G′ is some gauge operator. Given the syndrome s the decoding

problem is to add an error estimate Ê to eliminate the syndrome without adding any

additional logical error.

Our subsystem color code decoder is inspired by the work of Chinni et al. (2019).

They propose a neural decoder for topological color codes based on psuedo-inverse of

parity check matrix. The decoder uses two-step approach. The first step with a non-

neural decoder to eliminate T . The second step uses the neural network to predict L.

We use the same technique to design a decoder for subsystem color codes.



E = TLG (5.1)

Let E be the error operator. We can write the binarized form of E as e according

to 2.1.1. Let H is the parity-check matrix for the subsystem color code computed

according to 2.1.1. syndrome can be calculated as

s> = Hλe> (5.2)

In the case of subsystem color codes we have two dependent stabilizers. Hence, H

is not full rank. We remove the two rows corresponding to two dependent stabilizers

from the H matrix and denote it as Hf . There is no specific rule to decide which two

stabilizers should be removed. For our experiments we remove the last two stabilizers

of the H matrix. The syndrome that is calculated with Hf is denoted by sf . Hf is a full

rank matrix. Now, we can calculate the pseudo-inverse of Hf denoted as G. We use

in-built functions of SageMath1 to compute the inverse.

HfG = I (5.3)

s>f = Hfλfe
> (5.4)

A code of distance d that encodes k logical qubit in n physical qubits is denoted

by [[n, k, d]]. The smallest number of physical qubits n to have a code of distance d

is 3d2. The number of stabilizers would be d2. Though out our experiments we take

the code with the smallest number of physical qubits. As the number of physical qubits

and stabilizers are dependent on the distance we take distance d as the free parameter.

Hence the code of distance d will be [[3d2, 2, d]] code.

1http://doc.sagemath.org/html/en/reference/matrices/sage/matrix/
matrix_symbolic_dense.html
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5.2 Decoder Model

The decoder is modelled in a two step process. Let E be the error operator and e be it’s

binarized form. In the first step we use the non-neural decoder to calculate an estimate(
Ê
)

of the actual error (E).

Given the syndrome s> we calculate s>f by removing the entries corresponding the

dependent rows. Now we calculate the error estimate ê ∈ GFn2 , the binary representa-

tion of the operator Ê as follows,

ê> = λG(s>f ) (5.5)

Both ê and e will leave the same syndrome. Hence, the pure error T corresponding

to E and Ê will also be the same.

Hfλê
> = Hfλe

> = s>f

=⇒ Hλê> = Hλe> = s> (5.6)

The error estimate ê and e need not be the same. There exist multiple error patterns that

leave the same syndrome. Each syndrome correspond to a unique pure error T . The

error operators ê and E will have same pure error T but might have different logical

errors. Applying this initial estimate Ê onto the system might result in logical errors.

This can be concluded through the following equations,

E = TLG

Ê = TL̂Ĝ

ÊE = TL̂Ĝ TLG

=⇒ ÊE = (±) L̂LĜG

=⇒ ÊE = (±)L?G? (5.7)

The above set of equations are analogous to the two step decoder for stabilizer codes

as shown in Chinni et al. (2019). The Pauli operators T , Ĝ might commute or anti-

commute. Hence, we get (±) in Eq. (5.7). But we do not need to estimate this as the
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error is estimated up to a global phase.

Error on
Qubit

Measure
Syndrome H-inverse Correction

Operator
Synd Error Estimate

Trained NN
Logical error correctionSynd

Figure 5.1: The two step decoder framework used for the subsystem color code

By applying the estimate Ê onto the system we observe the pure error is eliminated.

If we can predict the resultant logical error L? the decoding succeeds. The estimation

of L? is done by the Neural Network (NN). Given the syndrome, the neural network

must predict L?. A neural network trained with samples of s>, L? can predict L? given

s>. Our two step decoder can be illustrated in Fig. 5.1. The final error correction will

be,

E? = L?Ê (5.8)

Given the syndrome it is always possible to get the error estimate Ê. If the neural

network predicts the correct resultant logical error L? we can go back to the original

state, up to a gauge and a phase as shown in Eq. 5.9.

E?E = L?ÊE (5.9)

=⇒ E?E = (±)L?L?G? (5.10)

=⇒ E?E = (±)G? (5.11)

5.3 Architecture and Training Procedure

In this section we describe the architecure, hyper-parameters and the training procedure

of the neural network used in the step-two. The architecture used is similar to the

architecture used for our toric code decoder as explained in section 4.3. We use a fully-

connected neural network. We use cross-entropy as our loss function, Adam optimizer

to update the weights, ReLU as the activation function for input and hidden layers. We

use 1D batch normalization layer after every layer in the neural network.

The training samples for the neural network are generated as follows. Error pattern
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Table 5.1: The values of the hyper-parameters used in the neural network.

[[n, k, d]] a
parameters

hd
b fd

c bd
d αe td,perr

f Td
g

[[192, 2, 8]] 3 3 500 0.001 1× 106 4.5× 107

[[432, 2, 12]] 5 5 500 0.001 1× 106 4.5× 107

[[768, 2, 16]] 7 7 500 0.001 4× 107 1.8× 108

aParameters of the code
bNumber of hidden layers
cHidden dimension factor
dBatch size
eLearning rate
fNumber of training samples per each perr
gTotal number of training samples for all perr combined

E are randomly generated based on the depolarizing error probability perr. The syn-

drome is computed according to the equation 5.4. The error estimate Ê corresponding

to the syndrome is estimated with the pseudo-inverse of H as shown in 5.5. The logi-

cal error caused by E and Ê is obtained by Eq. 5.7. We train the neural network with

syndrome as the input and L? as the output. The training procedure is illustrated in

figure. 5.2.

The neural network is trained according to the training procedure described in 3.2.5.

We have labeled data of input (syndromes s from Eq. (5.2)) and the corresponding

output (L?). We use cross-entropy function (`CE) as our loss function. The neural

network takes syndrome (s), and outputs probability distribution over all the possible

classes.

Generate
Error

Calculate
Syndrome H-Inverse Calculate

Logical Error
E Synd Error Estimate

Train NN

Figure 5.2: The training procedure for the subsystem color code decoder.

Given a syndrome vector s, a trained NN should be able to correctly predict the

correction homology class L? for all error rates under the threshold. We employ a cur-

riculum learning procedure as described in 3.2.6. We generate training samples at a

fixed depolarizing error rate perr. We train our NN at this error rate until the loss func-

tion saturates. Then we increase the perr. We repeat this process for several perr in
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the increasing order. In our experiments, we have trained our NN for the error rates

{0.005, 0.006, 0.007, . . . , 0.05}. The weights of the fully connected layers are initial-

ized according to the Xavier normal initialization as described in 3.2.3. The parameters

in batch-normalization layer are initialized according to Gaussian normal initialization.

The hyper-parameters used for the neural networks are listed in the Table 5.1.

bd denotes the batch size. The input layer will have the dimension of the syndrome

vector s i.e |s|. fd characterises the number of nodes in the hidden layers. α denotes the

learning rate. The number of nodes in the hidden layer is fd times the number of input

nodes = fd × |s|. td,perr denotes the training samples for each perr. Td denotes the total

number of samples used. We use PyTorch2 to train and test our neural networks.

5.4 Results

In this section we describe our results for subsystem color code decoder with depo-

larization noise model. The performance of neural network decoder is shown in the

Fig. 5.3. We observe that the decoding error rate is increasing with increase in distance.

Hence, we conclude that the decoder does not have any threshold for the given set of

hyper-parameters. We have not yet identified why the architecture has failed.

2https://pytorch.org/
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Figure 5.3: Performance of neural decoder for subsystem color.
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CHAPTER 6

Conclusion

In this thesis we studied two classes of quantum codes. In section 4.5 we showed that

our neural decoder performs better than the non-neural MWPM decoder both in terms

of threshold and decoding error rate. But it does not outperform other neural decoders

proposed in Maskara et al. (2018); Chinni et al. (2019). This is surprising considering

the fact that Maskara et al. (2018); Chinni et al. (2019) use a naive decoder in step

one while we use a much better performing decoder. We feel the following might be

a potential reasons for the same. The decoders proposed in the Maskara et al. (2018);

Chinni et al. (2019) use a "naive" decoder in the first step. The "naive" step-one decoder

has very high decoding error rate. The neural network gets sufficient samples of almost

all homology classes. But in the proposed decoder in 4 the MWPM decoder has a

good decoding accuracy on its own. Hence, the dataset has overwhelming samples

corresponding to logical error correction L? = I . Essentially, the neural network does

not get much "useful" data to correct the error made by the MWPM decoder. Another

way to validate this is to replace the MWPM decoder with another decoder which has a

good decoding accuracy.

The neural decoder for the subsystem color code does not achieve any threshold for

our chosen hyper-parameters. As stated before, one the major challenges in designing

neural decoder is the choice of architecture, hyper-parameters and the training proce-

dure. For example, a "smart-sampling" technique provides the threshold in Krastanov

and Jiang (2017) and the curriculum learning procedure increases the threshold from

7.2% to 10% in Chinni et al. (2019). We have chosen the hyper parameters comparable

to that used in Chinni et al. (2019). We also observe that the curriculum learning per-

forms better than training the neural network for one fixed depolarizing error rate perr.

We observe that as the curriculum learning progresses to higher perr the accuracy of the

neural network reduces for smaller perr. One approach to overcome this would be to

have different neural network for different perr. As stated before, the architecture and

hyper-parameters play a major role in designing the neural decoder. One can replace the

fully connected neural network with a convolutional neural network(CNN) and deploy



a much deeper network. CNNs are well suited to "learn" local correlations as shown in

Krizhevsky et al. (2012). As the stabilizers and gauges in subsystem color codes are

inherently local a CNN with suitable hyper-parameters might perform better.
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