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ABSTRACT

KEYWORDS: Automatic Speech Recognition (ASR), Hidden Markov

Model (HMM), Gaussian Mixture Model (GMM), Weighted

Finite-State Transducer (WFST), Deep Neural Networks

(DNNs)

The application of speech recognition in devices in which internet connection

is slow or unreliable, can not be served by existing software or hardware de-

coders. The memory, bandwidth and power requirements of speech decoding are

excessive. We aim to optimise the existing hardware decoders used for speech

recognition, so that we can achieve real-time speech decoders which can be de-

ployed on gadgets with limited battery, and with the need of internet connection.

The existing technology uses HMM based decoders, currently a WFST. This re-

quires acoustic modeling and transition modeling. Currently, acoustic modeling is

done using GMMs. Each WFST arc (which are usually millions) requires different

probability-distribution functions and thus requires different GMM parameters to

be stored. This creates a huge load on memory and bandwidth, with ambitious

aim to place all the memory on chip and to reduce bandwidth requirement signif-

icantly, we try switching the acoustic modeling to DNN-based, with existing liter-

atires promising advantages. This work tried an implementation of DNN-HMM

based ASR, and then compression techniques on the DNN in order to reduce the

overall memory requirement significantly.
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CHAPTER 1

INTRODUCTION

1.1 Hardware Speech Recognition Engine

The major existing application of speech recognition is in internet-connected de-

vices, in which cloud-based decoders can run in real-time, where decoding adds

very little in the latency. The application of speech recognition in devices in which

internet connection is slow or unreliable, or in local operations, can not be served by

existing software or hardware decoders, since the overhead of using internet-based

decoders is high. Such applications include, wearable gadgets, home appliances

and industrial equipment.

While mapping the modern speech recognition techniques to digital circuits, re-

duction in power consumption, memory bandwidth to the levels of embedded

systems is desired. There are several limitations to these hardware based speech

recognition systems. The memory, bandwidth and power requirements of speech

decoding are excessive. Digital circuits are fixed functions, they can’t be repro-

grammed to keep up with the algorithmic and statistical modeling technique

developments. existing systems, requires complex external components to realise

complete speech-to-text conversion.



1.2 Existing Technology : HMM Framework

Current speech recognition technology uses Hidden Markov Models (HMM). Ex-

ploiting the regular structure of connections in Markov Models, approximated

linear time inference using Viterbi algorithm makes statistical speech recognition

tractable.

The HMM framework requires modeling the dependencies between variables.

There is transition model p(xt+1|xt) and emission model p(yt|xt). The xt are the

hidden states, yt are the observed states. The transition model incorporates infor-

mation about language - vocabulary and grammatical constraints. The emission

model describes how observations change with the hidden states. These models

are influences by speaker’s vocal tract, microphone and acoustic environment.

The Weighted Finite-State Transducer (WFST) is a state-machine representa-

tion that allows each component to be described separately, and then composed

together for the entire speech recognition process. All possible transitions be-

tween states are expressed as weighted, labeled arcs. A WFST-based decoder

can complete tasks of varying complexity in different domains and languages by

substituting the appropriate model parameters.

The transition probability p(xt+1|xt) is the weight of the WFST arcs leading

from state xt to xt+1. The emission probability p(yt+1|xt+1) is specified by acoustic

model,typically a Gaussian Mixture model. We in our project intend to replace this

acoustic modeling from GMMs to Neural Netwroks to gain hardware advantages.
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1.3 Existing Architecture

1.3.1 Front-End

Speech audio signals are sparse in the sense that time-domain sampling captures

redundant information. We use mel-frequency cepstral coefficients (MFCCs) to

concisely represent relevant characteristics of the signal. The MFCCs low dimen-

sionality simplifies classification, and channel effects (convolution) are additive

in the cepstral domain. Several standalone feature extraction devices have been

reported in the literature, including DSPs, FPGAs, fixed-function digital circuits,

and low-power analog front-ends. The front-end could be used to provide features

to an external (e.g., cloud-based) decoder or to the on-chip decoder.

MFCCs are derived from an audio time series via a chain of conventional signal

processing blocks including an FFT, mel-scale bandpass filter bank, and DCT. The
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audio is split into a series of overlapping frames 25 ms long with a 10 ms pitch. In

addition to computing 12 cepstral coefficients and the log power for each frame,

we extract first- and second-order time differences and concatenate them into a

39-dimensional feature vector at 16 bit resolution. Cepstral mean normalization is

approximated by subtracting a 10 second moving average from the feature vectors.

The FFT exploits the real-valued nature of the input signal to operate on half as

many points, and the bandpass filter bank employs two multipliers which are

reused across the 26 bands. The circuit has an area of 51.8 k gates (plus 107 kb of

SRAM and 66 kb SROM) and requires a clock speed of at least 625 kHz to process

a 16 kHz waveform in real-time.

1.3.2 Viterbi Search

Viterbi search begins with an empty hypothesis for the utterance text and incor-

porates a stream of information from the feature vectors to develop a set of active

hypotheses, represented by states in the HMM. Each of these hypotheses is mod-

eled using the WFST and GMM; if its likelihood is sufficiently high, it will be saved.

The forward pass of Viterbi search propagates a set of hypotheses forward in time,

from the active state list of frame to that of frame t + 1.

Hypothesis Fetch :

Each hypothesis is read from the active state list for the current frame (frame ). The

active state list is implemented as a hash table in SRAM with open addressing and

collisions resolved by linear probing. We store accepted states for the next frame in

a separate SRAM and swap the two SRAMs using multiplexers at the end of each

frame. In these hash tables, the key is a unique state ID (the memory address of the
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state in the WFST model) and the value is a structure describing the state. Hash

table operations become slower as more states are stored (increasing the number of

collisions), but this latency is masked by the much longer time required by WFST

and GMM operations that access external memory. To reduce the need for memory

accesses (which require additional logic and create pipeline stalls), arc labels and

other metadata are carried through the pipeline along with state information.

Arc Fetch :

Each state ID is an index into the WFST model, from which we can retrieve the

parameters of all outgoing arcs. These include all of the information (except a final

score) that will be stored in the active state list if the hypothesis is accepted.

While this operation requires far less memory bandwidth than fetching GMM

parameters, the arcs retrieved during a typical frame are distributed sparsely

across a large memory space: 193 MB for the 5,000 word WSJ model, versus 1

GB or larger for state-of-the-art models. The memory access pattern is sparse and

depends on the hypotheses being searched.

GMM evaluation :

The acoustic likelihood of the current feature vector (given each hypothesis for the

state ) is approximated using a GMM. GMMs used in speech recognition are typi-

cally limited to diagonal covariance matrices to reduce the number of parameters,

using more mixture components to make up for the shortfall in modeling accuracy.

ix



Pruning and Storage :

The state space of a Viterbi search grows exponentially unless a beam or histogram

method is used to prune unlikely hypotheses from being stored and considered.

A beam pruning stage tests each hypothesis against a threshold (relative to the

highest likelihood encountered on the previous frame). Only hypotheses that pass

the test are stored into the active state list for frame t + 1.Once all hypotheses for a

given frame have been processed, a snapshot of the active state list is saved to the

external memory.

x



CHAPTER 2

DNN based Acoustic Modeling

2.1 Choosing a Modeling Framework

The acoustic likelihood of the current feature vector yt (given each hypothesis for

the state xt) is approximated using a GMM. The speed of GMM evaluation is lim-

ited by the rate at which parameters can be fetched from memory. Technically, a

separate GMM would be used for each state in WFST, which are usually millions.

The states are usually grouped into clusters of 1000 to 10000, by the similarity of

their sounds, and share one GMM probability density. Evaluating these proba-

bilities takes up the bulk of power and bandwidth of the chip. This makes it the

focus of architectural enhancements, and we aim to replace it with more optimal

framework.

Experiments performed compared three acoustic modeling frameworks in the con-

text of minimizing memory bandwidth : Gaussian Mixture Model, subspace GMM

and DNN. The DNNs offered the best tradeoffs between bandwidth and accuracy.

Advantages of DNN :-

• Bandwidth reductions in DNN-based model can be achieved by using smaller
networks (for example, 512/256 neurons per layer)

• Scalar quantization of weights and biases can be done, without much loss in
accuracy, this can further reduce memory and bandwidth requirements

• Feed-Forward DNNs can be evaluated using a fixed-function SIMD archi-
tecture. The architecture can compute likelihood results for multiple frames
simultaneously.



2.2 Acoustic Modeling with DNN

In a DNN-HMM hybrid system, the DNN is trained to provide posterior probabil-

ity estimates for the HMM states. Specifically, for an observation out corresponding

to time t in utterance u, the output yut(s) of the DNN for the HMM state s is obtained

using the softmax activation function:

yut(s) = P(s|out) = exp (aut(s))/
∑

exp (aut(s))

where aut(s) is the activation at the output layer corresponding to state s. The

recognizer uses a pseudo log-likelihood of state s given observation out ,

logp(out|s) = logyut(s) − logP(s)

where P(s) is the prior probability of state s calculated from training data.

2.2.1 DNN Training

Since it is a multi-class classification problem, we use cross-entropy as the ob-

jective function and optimisation is done through Stochastic Gradient Descent.

Cross-entropy between the distribution represented by the reference labels and

the predicted distribution y(s), as negative log posterior is defined as :-

FCE = −
∑U

u=1
∑Tu

t=1 logyut(sut)

where sut is the reference state label at time t for utterance u. The required gradient

is :-

δFCE/δaut(s) = −δlogyut(sut)/δaut(s) = yut(s) − δs;sut
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where, δs;sut is the Kronecker delta function.

The DNNs are trained on the same features as the GMM-HMM baselines, except

that the features are additionally processed. The features are globally normalised

to have zero mean and unit variance. Each frame context window size still remains

a 40 dimensional feature vector. The input to the neural network is now 11 frames

(5 additional frames on each side of the original frame), thus now input to the

neural network is a 440 length vector.

The network has 7 layers (i.e., 6 hidden layers), where each hidden layer has

1024 neurons. The input vector to the DNN is of size 440, and the output of the

DNN depends on the WFST it is to be trained for, here the size of output of the

DNN is 1904.

The DNN is initialised with stacked restricted Boltzmann machines, known as

RBMs, that are pretrained in a greedy fashion. The Gaussian-Bernoulli RBM is

trained with an initial learning rate of 0.01 and the Bernoulli-Bernoulli RBMs with

a rate of 0.4. The initial RBM weights are randomly drawn from a Gaussian
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N(0, 0.01); the hidden biases of Bernoulli units as well as the visible biases of the

Gaussian units are initialized to zero, while the visible biases of the Bernoulli units

are initialized as bv = log(p/1p), where p is the mean output of a Bernoulli unit from

previous layer. During pretraining, the momentum m is linearly increased from

0.5 to 0.9 on the initial 50 hours of data, which is accompanied by a rescaling of

the learning rate using 1 −m. Also the L2 regularization is applied to the weights,

with a penalty factor of 0.0002.

We use TIMIT Acoustic-Phonetic Continuous Speech Corpus for training. This

dataset contains broadband recordings of 630 speakers of eight major dialects of

American English, each reading ten phonetically rich sentences. The TIMIT corpus

includes time-aligned orthographic, phonetic and word transcriptions as well as a

16-bit, 16kHz speech waveform file for each utterance.

The utterances and frames are presented to the network in a randomized order

while training both of these networks using stochastic gradient descent to minimize

the cross-entropy between the labels and network output. The SGD uses mini-

batches of 256 frames, and an exponentially decaying schedule that starts with an

initial learning rate of 0.008 and halves the rate when the improvement in frame

accuracy on a cross-validation set between two successive epochs falls below 0.5%.

The optimization terminates when the frame accuracy increases by less than 0.1%.

Cross-validation is done on a set of 4000 utterances that are held out from the

training data.
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2.2.2 DNN-HMM execution

The information from the trained neural network (weights and biases) is stored

in compressed form in the memory of the ASR engine. Additional decoder units

for the comoressed data are to be employed on the chip, these are basic adders,

multipliers, shifters or look-up tables for out purpose. There would be SIMD

execution units deployed on the chip for computation of the output of this DNN

based acoustic modeling.

The MFCC feature extraction is done in the front-end, the output of this usually

extracted feature extractor is then stored in a feature buffer. There a set of addi-

tional transformations applied on this feature extracted, which includes globally

normalising the mean and the variance of the features to 0 and 1 respectively, and

adding 5 additional frames on each side of the original frame. These operations

are exactly identical to the ones performed on the features while DNN was being

trained, similar operations are thus required on the input while we are taking the

same DNN to use. These additional transforms helps in easier computations in
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the DNN, and tries to avoid biasing in the network based on the input data.

With the output of the DNN, for each hypotheses, the cost is calculated. There is

a additional cost calculation unit which takes into consideration whether or not

softmax layer was applied while training the DNN, and appropriate log-likelihood

is calculatedfor cost purposes. The same cost is used along with the arc weight for

calculating the total cost of the hypotheses. Again, the hypotheses below a certain

threshold are given up during pruning, and approrpiate hypothesis along with

the probability is stored in the state list. The Viterbi Search is applied in the same

way as it was for GMM-HMM based ASR architecture, just that with DNN-HMM

based architecture, the acoustic cost calculation is different.

We get a list of phenotics as output as the DNN was trained over TIMIT corpus

of speech signal and their appropriate phonetics. We would additionally need to

convert the phones to worded texts for human understanding. This would require

us to store the Language Model additionally.

We have tried to maintain the architecture as close to the architecture of GMM-

HMM based for easy comparison, better readability and simplicity.

2.2.3 Current Status of Implementation

The training was done on TIMIT dataset, by existing Kaldi Software. The trained

NNET, WFST model, phones directory, and language model from the Kaldi source

has been extracted into the ASR source. The source code executes each of these

block described above and is currently returning an output.

Correct output text :

YOUR WARRIORS MUST GROW WEARY OF RESTING ON THEIR SPEARS

INFADOOS
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Current output phones :

t p er cl k cl p r ey cl p ey vcl g aa cl aa cl ch cl t r iy vcl b ay cl p ay cl p ey ey cl p

The output is incorrect. We are still debugging, and expect the issue to be resolved

once the additional feature extraction (which is done differently in Kaldi source)

is set to the correct values in our source scripts as used while training the DNN.

2.3 Comparison : GMM vs DNN

Our primary aim to switch from GMM to DNN was to significantly affect the

memory required. The memory requirements for storing GNM parameters vs

DNN parameters currently is as,

GMM file DNN file

8.8 MB 10.7 MB

Though currently larger than GMM size, DNN is promising as we have currently

trained a much bigger network of 6 hidden layers and 1024 neurons each. Without

much loss in accuracy the size of the DNN can be significantly reduced. Also,

since we have also opted for phonetics as output for the current DNN-HMM

architecture, the WFST has reduced significantly. Overall memory requirements

for both cases are as follows,

Earlier GMM-based ASR New DNN-based ASR

21.1 MB 12.2 MB
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CHAPTER 3

DNN Compression

3.1 Quantization Heuristic

3.1.1 Motivation

Neural network, because of its bulky nature, consumes lot of memory. Since, we

are constrained, DNN compression becomes crucial.

Each weight or bias was stored as a float(32-bit). We intend to store it in 16-bit,

such that loss in accuracy of the model is not significant.

Here, We store the float(32-bit) after certain operations as an integer (16-bit). The

algorithm described below details the operations required to convert the float into

the appropriate integer and then convert the integer back into approximated float.

3.1.2 Pseudo Code

• Encoding float into integer :

– Identifying the range

– negatively shift each float value by the mean of maximum and minimum
value to surround the range evenly across zero

– This number will be called shifter and will be stored in memory along
with the compressed values

– Divide all the floats with an integer such that all values lie between (-2,2)

– This number will be called divider and will be stored in memory along
with the compressed values

– Multiply each float by 10,000



– Round up each float to the nearest integer

– The resultant numbers will lie between (-20000,20000), which is (−215, 215),
thus 16-bit integer.

Example :-
a = [0.1215515, 1.021151, -3.518452, 9.211515]
shifter = -mean(max(a),min(a)) = -2.8465315
a = [-2.72498, -1.8254105, -6.3649835, 6.3649835]
divider = floor(abs(max)) = 6
a = [-0.4541633, -0.3042350, -1.0608305,1.0608305]
multiplier = 10000
a = [-4542, - 3042, -10608, 10608]

• Recovering float back from integer :
– Shifter, divider and multiplier would be already stored

– Divide each number by the multiplier (here, 10000)

– Multiply each number by the divider

– Positively shift each number by the shifter

Example :-
a = [-4542, - 3042, -10608, 10608]
Multiplier = 10000
a = [-0.4542, -0.3042, -1.0608, 1.0608]
Divider = 6
a = [-2.7252, -1.8252, -6.3648, 6.3648]
shifter = 2.8465315
a = [0.1213315, 1.0213315, -3.5182685, 9.2113315]

3.1.3 Code

Encoding float into integer :
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Recovering float back from integer :

3.1.4 Compression Results

DNN output value :

Output Value Compressed output value Error

1.6178E-07 1.6085E-07 9.3415E-10

1.4132E-11 1.4065E-11 6.6656E-14

1.6668E-10 1.6605E-10 6.2548E-13

0.002924 0.002932 -7.8319E-06

7.71347E-09 7.7174E-09 -4.00035E-12

2.5043E-09 2.48596E-09 1.83713E-11
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DNN Network file size :

Original file Compressed file

30.6 MB 15.3 MB

3.2 Huffman Encoding

3.2.1 Motivation

Common in information theory and computer science, huffman coding is a partic-

ular type of optimal prefix-coding technique that is used for lossless data compres-

sion. The output from Huffman’s algorithm can be viewed as a variable-length

code table for encoding a source symbol. The algorithm derives this table from

the estimated probability or frequency of occurrence for each possible value of the

source symbol. Like other entropy-encoding methods, in huffman encoding, more

common symbols are generally represented using fewer bits than less common

symbols. Huffman’s method can be efficiently implemented, finding a code in

time linear to the number of input weights if these weights are sorted.
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3.2.2 Example

3.2.3 Compression results

Original file Huffman Compressed file

15.3 MB 10.7 MB
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CHAPTER 4

Future Work

4.1 DNN Model Compression by Re-training

• Re-training with reduced number of neurons per hidden layer : We have
currently used a big neural network of 6 hidden layers with 1024 neurons
each. We can evaluate the effect of performance of the network there would
be if we reduce the number of neurons to 512, to 256.

• Re-training with each value being restricted to 16-bit : Instead of later
pruning each value to a 16-bit, we can also restrict each weight and bias to a
16bit value, so that it trains accordingly and there is a lower loss in accuracy.

• Parameter Pruning : Few unimportant weights/biases goes to zero. These
values could be tied together and represented with a single character, thus
could be represented by much lesser number of bits each. This technique
requires re-training, and ensures minimum loss in accuracy.

• Parameter Sharing : Few weights/biases will be tied. Thus reducing the
number of values required to be stored. This technique requires re-training,
and ensures minimum loss in accuracy.

4.2 Hardware Optimization

• SIMD execution : DNN forward propagation can be executed layer-by-
layer in parallel for multiple frames using dedicated SIMD units, which can
significantly improve the performance of the system.

• Specific functions : DNN forward propagation majorly requires multipli-
cation and addition operations. The sigmoid function at each layer can be
approximated to ReLU. We can thus use dedicated functional units like,
adder and multiplier can be used to optimise.

• Compression and Caching techniques to memory and bus requirements



4.3 Language Modeling

• Optimal conversion model from Phonetics to words : While mapping
phonetics to words there are various approximations required. We might
require a proper RNN-LSTM model which can be trained while training the
DNN for acoustic modeling. This could be stored in similar compressed way
as the acoustic modeling DNN. The memory requirements and accuracy of
this and directly using a WFST which maps to word list can be compared.

• Training phonetics-to-word conversion for the corpus : The phonetic-word
RNN training could first be done within a corpus, to take into account the
variations with different speakers and dialects.

• Build a generalised language model over multiple corpora : The training
could then be expanded to incorporate variations across different corpuses,
so that we can possibly develop a generalised langauge model, and can store
this information on the ASR system which can be used for speech recognition
over various dialects and corpuses.
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