
Optimal Rank-Constrained Transmission in Block

Diagonalized Cooperative Multi-Cell MIMO with

Multiple Power Constraints

A Project Report

submitted by

SAI VIHARI CHATURVEDULA

in partial fulfilment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

MAY 2019



THESIS CERTIFICATE

This is to certify that the thesis titled Optimal Rank-Constrained Transmission in

Block Diagonalized Cooperative Multi-Cell MIMO with Multiple Power Constraints,

submitted by Sai Vihari Chaturvedula, to the Indian Institute of Technology, Madras,

for the award of the degree of Master of Technology, is a bona fide record of the re-

search work done by him under our supervision. The contents of this thesis, in full or in

parts, have not been submitted to any other Institute or University for the award of any

degree or diploma.

Dr. Srikrishna Bhashyam
Professor
Dept. Electrical Engineering
IIT-Madras, 600 036

Place: Chennai

Date: 10 May 2019



ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest gratitude and respect to my ad-

visor, Prof.Sri Krishna Bhashyam for his continuous support of my M.Tech study and

research. It is his valuable guidance, patience, motivation, passion, timely responses

and immense knowledge in the subject that has driven me in the right path during

the project. Any words to describe his constructive approach towards problem solv-

ing would be less. I would like to thank you from the bottom of my heart, Sir for all the

weekly feedback sessions on the project progress and introducing me to the interesting

fields of Detection and Estimation, Adaptive Signal Processing.

I am ever grateful to a very special person, Prof.David Koilpillai who I believe has

been very instrumental in building up both my academic and personal skill sets. He has

been my inspiration in every walk of institute life and would always continue to be. I

would also like to thank him for introducing me to the areas of Wireless Communica-

tions, 4G and Multirate DSP.

A special mention to Prof.Rachel for her innovative way of teaching convex opti-

mization and her timely advices during the project. I am thankful to all the Professors

who have taught me over 60 courses during my 5 years tenure in this great institute.

I am grateful to all my fellow students in the lab who spared their valuable time

and help whenever required during this project. I could not have imagined my stay in

IITM without my best friends, Kumar, Madhuri and Bhavya who have been a souce of

perennial support.

Finally, this acknowledge would be incomplete without mentioning the affection,

love and encouragement my parents and sweet little sister have bestowed upon me

throughout the years. My mother and father are my biggest inspiration and I thank

them for giving me the best life I could have ever asked for.

i



ABSTRACT

In this paper, we primarily focus on obtaining an optimal rank-constrained downlink

transmission strategy in a cooperative multi-user multiple-input-multiple-output (MU-

MIMO) system. More specifically, we look at the optimal precoder design that maxi-

mizes the weighted sum-rate of all the Mobile Stations (MSs) under a set of joint power

constraints. This set includes (1) Sum power constraint over all the transmit anten-

nas (SPC), (2) Per Base Station (BS) power constraints (PBPC) and (3) Per Antenna

power constarints (PAPC). To eliminate the inter user interference, we apply a linear

precoding technique called Block Diagonalisation (BD) to the downlink transmission.

We assume perfect knowledge of the downlink channels and the transmit messages in

designing signals from different BSs to all the MSs. It’s important to study the BD rank-

constrained transmission under joint power constraints set in the context of mmWave

systems where the number of antennas could be large, but only a limited number of

streams are allowed because of the low rank of the channel and also the implemen-

tation complexity of spatial multiplexing that comes with a large number of streams.

Our main result in this paper discusses a very efficient algorithm, Projected Factored

Gradient Descent (PFGD) to arrive at the optimal rank-constrained precoder matrix

numerically. Achievable rates are plotted for some cooperative MU-MIMO systems

under different low rank constraints. By using convex optimisation and linear algebra

techniques, we also extend a popular work slightly to present another efficient optimal

algorithm to solve the same problem without a rank constraint viz. the number of al-

lowed data streams being the total number of receive antennas, and derive the closed

form expression for the optimal BD precoding matrix.
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Moreover, the proposed solution reduces to the optimal zero-forcing beamform-

ing (ZF-BF) precoder design for the weighted sum-rate maximization in the multi-

user multiple-input-single-output (MU-MISO) broadcast channel (BC) with joint SPC

and PAPC. A sub optimal but low complexity BD precoding scheme is also presented

and their achievable rates are compared against the rates achieved by both the optimal

schemes in full possible rank case.

Index terms— Multi User MIMO, coperative multi-cell system, multi-antenna

broadcast channel, convex optimisation, linear algebra, block diagonalization, per

antenna power constraints, sum power constraint, per base station power con-

straints, rank constraint, zero-forcing beamforming.
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CHAPTER 1

INTRODUCTION

1.1 Single-Cell Setup and Block Diagonalisation

An active research in the past few years has been carried out to obtain optimal downlink

transmissison strategies in various kinds of cellular and wireless systems under differ-

ent sets of power constraints. Conventionally, the earlier works’ focus has been on the

downlink beamforming in a single-cell set-up with a multiple-transmit antenna base

station (BS) and multiple single-/multiple-output mobile stations (MSs). In this sys-

tem, the transmission can be modeled by a multiple-input single-/multiple-output (MIS-

O/MIMO) broadcast channel (BC). For the Gaussian MISO/MIMO BC, it is known

that the dirty paper coding (DPC) technique achieves the capacity region which consti-

tutes all the simultaneously achievable rates for all the MSs (Weingarten et al., 2006).

However owing to the nonlinear complicatedness and the difficulty of implementation

in real-time systems, a massive drift of attention towards linear transmit and receive

beamforming schemes for the Gaussian MISO/MIMO BC has been observed in the

literature (Rashid-Farrokhi et al., 1998; Schubert and Boche, 2004; Peel et al., 2005;

Wiesel et al., 2006; Stojnic et al., 2006).

One such simple linear precoding scheme is block diagonalisation (BD) discussed

in (Spencer et al., 2004; Wong et al., 2003; Choi and Murch, 2004; Pan et al., 2004). To

eliminate the inter-user interferences and thereby allow each MS perceive an interference-

free MIMO channel, the BD scheme restricts the precoding matrix that is multiplied by

the transmitted signal from a BS to the designated MS to be orthogonal to the down-

link channels corresponding to all other MSs. BD reduces down to well-known zero-

forcing beamforming (ZF-BF) in the special case of a MISO channel (Peel et al., 2005).

Although BD is in general inferior as compared to the DPC based optimal nonlinear

precoding scheme or the minimum-mean-squared-error (MMSE) based optimal linear

precoding scheme in terms of achievable rate, it performs very well in the high signal-

to-noise-ratio (SNR) regime and achieves the same degrees of freedom (DoF) for the



MISO-/MIMO-BC sum-rate as the optimal linear/nonlinear precoding schemes (Caire

and Shamai, 2003). Moreover, (Caire and Shamai, 2003) shows how BD can be gen-

earalized to incorporate nonlinear DPC processing, which leads to ZF-DPC precoding.

The optimal transmission strategy and capacity formulae for MIMO Gaussian chan-

nels under a sum-power constraint (SPC) have been given by Telatar in (Telatar, 1999).

Gaussian signaling with a transmit covariance matrix determined using the singular

value decomposition (SVD) of the channel matrix and a water-filling algorithm is opti-

mal under the SPC. The SPC limits the total power than can be used by the transmitter

and such a constraint is usually imposed by regulations and a need to control the total

energy consumption. In recent years, there has been an increasing interest to derive

the optimal schemes under many other transmission constraints. Per-Antenna power

constraints (PAPC), Per-Group power constraints (PGPC) and Per-Base Station power

constraints(PBPC) may arise due to the hardware limitations in sharing the total avail-

able power across all the transmit antennas. In distributed antenna systems, the transmit

antennas are spread across multiple locations and are not driven by the same power am-

plifier. In such a setting, the total power cannot be arbitrarily allocated across the differ-

ent geographically separated antennas. This kind of situation arises in cellular systems

using coordinated multipoint transmission (CoMP) and in cell-free massive MIMO. If

the multiple transmission points (BSs) in CoMP are single antenna transmitters, then

we get PAPC. If the BSs are multi-antenna transmission points, we get PBPC. There-

fore, it is important to study the optimal MIMO transmission schemes under multiple

sets of power constraints such as SPC, PBPC, PAPC.

While Gaussian signaling is optimal even under multiple power constraints, there is

no general analytical solution for the optimal transmit covariance matrix and the capac-

ity as in the case of SPC. Exact analytical solutions are limited to the MISO and some

full rank MIMO settings. MIMO and MISO BC under PAPC have been extensively

studied in (Vu, 2011b; Pi, 2012; Tuninetti, 2014; Vu, 2011a). Closed form solutions for

both capacity and optimal transmit covariance matrix have been obtained for the MISO

case under PAPC in (Vu, 2011b). Under the two assumptions that channel matrix being

full column rank and the optimal transmit covariance matrix being full rank, a closed

form solution for MIMO capacity under PAPC is obtained in (Tuninetti, 2014). Ca-

pacity of MIMO Gaussian channels has also been studied in (Pi, 2012; Vu, 2011a). In

(Pi, 2012), an iterative algorithm is proposed to compute the capacity for single-stream

2



under PAPC and multi-stream MIMO with per-stream PAPC. Any kind of closed form

solutions are not provided in (Pi, 2012). In (Vu, 2011a), the authors have proposed an

algorithm to compute the MIMO capacity under PAPC for the special case when the

channel matrix has full column rank or full row rank. Optimal transmit strategies for

MIMO Gaussian channels and the MIMO capacity under Joint-SPC-PAPC have been

obtained in (Le Cao and Oechtering, 2017) via an iterative algorithm proposal.

1.2 Multi-Cell Systems and Motivation behind the project

A recent work (Chaluvadi et al., 2018), one of the two main inspirations for this project,

discusses MIMO capacity under multiple simlultaneous power constraints - SPC, PGPC

and PAPC. They have derived the analytical solutions under Joint-SPC-PGPC-PAPC

for the MISO channel, full column rank MIMO channel assuming optimal transmit co-

variance matrix to be full rank and a 2 × Nr where Nr is the total number of receive

antennas in the MIMO BC. There has been a significant growth of interest in MIMO

systems in the context of mmWave communications (Torkildson et al., 2011; Sun et al.,

2014; Raghavan et al., 2016). In these systems, the number of antennas is expected to

be large because of the high frequency of operation. However the rank of the transmit

co-variance matrix viz. the number of spatial streams transmitted is likely to be limited

by: (1) Sparsity in the channel or the rank of the channel itself (2) The complexity of im-

plementing the spatial multiplexing on hardware and requirement of several RF chains.

Similar constraints are expected to arise in the massive MIMO systems. Therefore, it is

imporatnt to understand the capacity of the MIMO channel under the aforementioned

rank constraint. The other main contribution of (Chaluvadi et al., 2018) is a projected

factored gradient descent algorithm in the general single user (SU) MIMO BC case,

to find the optimal transmission strategy under Joint-SPC-PGPC-PAPC and rank con-

straint. In this proposed algorithm, the optimal precoding/beamforming matrix(square

root of the transmit covariance matrix) is directly found instead of the optimal transmit

covariance matrix.

Until now, the discussion has only been about a single-cell downlink transmission.

A lot of work has also been done by shifting the design paradigm to a multi-cell coop-

erative downlink transmission in the last decade (Shamai and Zaidel, 2001; Zhang and

3



Dai, 2004; Karakayali et al., 2006; Somekh et al., 2007; Jing et al., 2007; Kaviani and

Krzymien, 2008). In these studies, it is assumed that BSs in a cellular network are con-

nected via backhaul links to a central processing unit (e.g., a dedicated control station

or a preassigned BS), which has the global knowledge of downlink channels from each

BS to all the MSs transmit messages for all the MSs in the network. Thereby, the cen-

tral processing unit is able to jointly design the downlink transmissions for all the BSs

and provide them with appropriate transmit signals. As demonstrated in these works,

the cooperative multi-cell downlink processing leads to enormous throughput gains by

utilising the co-channel interference across different cells in a coherent fashion as com-

pared to the conventional single-cell processing with the co-channel interference treated

as noise. Moreover, distributed multi-cell downlink beamforming via the use of belief

propagation and and message passing among BSs has also been proposed in (Ng et al.,

2008), without the need for a central controller.

Initially, the BD precoder design subject to Per-Base Station power constraints

(PBPC) has been studied in (Boccardi and Huang, 2006; Liu et al., 2009; Zhang et al.,

2008). In these woks, the BD precoders are designed essentially following the same

principle as for the conventional sum-power constraint (SPC) i.e., the precoding vec-

tors known for the SPC case are adopted, and then the power allocation is optimised

to maximize the sum-rate under PBPC. However, it remains unclear whether the de-

veloped BD precoder solutions therein are indeed optimal for the weighted sum-rate

maximization in a cooperative multi-cell system. Optimum zero-forcing beamform-

ing (ZF-BF) with per-antenna power constraints is investigated in (Karakayali et al.,

2007) for a MISO BC case. The authors show that standard zero-forcing techniques,

such as the Moore-Penrose pseudo inverse, which are optimal in the context of sum-

power-constrained systems are actually suboptimal when there are per-antenna power

constraints. They formulate convex optimization problems to find the optimum ZF-BF

vectors.

Soon after the above works have been published, Rui Zhang has authored (Zhang,

2010) which is the other main inspirational work for this project. In this work, the

author shows that the BD precoder designs following the above heuristic approach of

separating the beamforming design and power allocation are indeed suboptimal for

rate maximization, while the optimal BD precoder solution requires a new joint beam-

forming and power-allocation optimization approach. In more detail, (Zhang, 2010)

4



formulates the MU-MIMO-BC transmit optimization problem with the BD precoding

and equivalent Per-Base Station power constraints (PBPC) as a convex optimization

problem and designs an efficient optimal algorithm to solve this problem. The author

also derives the closed-form expression of the optimal BD precoding matrix to maxi-

mize the weighted sum-rate for the MU-MIMO-BC. It is also proved in this work that

the optimal BD precoding(beamforming) vectors for each MS in the case of Per-BS

power constraints are in general non-orthogonal, which differs from the conventional

orthogonal BD precoder design for the sum-power constraint case. Consequently, it is

proved that the orthogonal BD precoder designs proposed in prior works (Boccardi and

Huang, 2006; Liu et al., 2009; Zhang et al., 2008) for the Per-BS power constraints are

in general suboptimal(for weighted sum-rate maximization). The paper also presents a

low-complexity, suboptimal scheme for the same problem.

1.3 Project’s Main Contributions

In this paper, we focus our study on the BD-based downlink precoding for a fully co-

operative multi-cell system equipped with a central processing unit, which is assumed

to have the perfect knowledge of all the downlink channels and the transmit messages

in the network.

This project’s main contributions are summarized as follows :

1.3.1 What is new in the project ?

Both the Joint-SPC-PBPC-PAPC and the rank-constrained Joint-SPC-PBPC-PAPC prob-

lems in the context of a fully cooperative block diagonalised multi-cell(multi-user too)

system have not been studied earlier and hence we have chosen these two topics to be

presented in this work.

1.3.2 Optimal Solution without rank constraints

First, we formulate the cooperative multi-cell MIMO system in hand as a MU-MIMO-

BC and design the transmit optimisation problem with the objective of maximizing the

5



weighted sum-rate under BD precoding constraints and Joint-SPC-PBPC-PAPC power

constraints as a convex optimization problem. Note that we still haven’t introduced the

rank constraints on any of the MSs as of now i.e. we assume the number of spatial

streams allowed for each MS is the number of receive antennas on the MS (maximum

allowable rank).

By applying linear algebra and convex optimization. techniques, we design an effi-

cient optimal algorithm on the similar lines of the algorithm proposed in (Zhang, 2010)

to solve this problem. We also derive the closed form expression of the optimal pre-

coding matrix to maximize the weighted sum-rate for the MU-MIMO-BC in a similar

fashion as in (Zhang, 2010).

More importantly, we conclude that the optimal BD precoding(beamforming) vec-

tors for each MS in the case of Joint-SPC-PBPC-PAPC are in general non-orthogonal,

which strengthens the argument in (Zhang, 2010). For the special case of single-antenna

BSs and MSs, the proposed BD precoding design for the MU-MIMO-BC provides

the optimal ZF-BF precoder solution to maximize the weighted sum-rate for the MU-

MISO-BC with Joint-SPC-PAPC.

1.3.3 Suboptimal Solution without rank constraints

We also present a low-complexity, sub-optimal scheme for the studied problem, which

is obtained by computing the conventional BD precoder design for the SPC case with

an optimal power allocation to meet the Joint-SPC-PBPC-PAPC. We also derive the

closed-form expression of the suboptimal precoding matrix. This scheme can be con-

sidered as a direct extension of that given in (Zhang, 2010) for the MU-MIMO BC with

the BD precoding constraints and Per-Base Station power constraints.

1.3.4 PFGD Algorithm with rank constraints

Next , we formulate the MU-MIMO-BC transmit optimisation problem for the given

fully cooperative multi-cell system with the BD precoding constraints, Joint SPC-PBPC-

PAPC power constraints and rank constraints (must be obviously less than the number

of receive antennas on the MS) on all the MSs i.e. we are limiting the number of spa-
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tial streams through which data can be transmitted for each MS. Again by using linear

algebra and convex optimization techniques, we propose an efficient numerical pro-

jected factored gradient descent (PFGD) algorithm to find the optimal transmisssion

strategy which maximizes the weighted sum-rate under the aforementioned constraints.

This algorithm can be thought of as an extension of the PFGD algorithm presented in

(Chaluvadi et al., 2018) for the general SU-MIMO-BC case in the scenario of a single-

cell system set-up. In this method, instead of solving for the covariance matrix, the

algorithm determines the precoding /beamforming matrix viz. square root of the trans-

mit covariance matrix directly. Numerical results show that the solution from the PFGD

algorithm matches with the solution proided by standard convex optimization package,

CVX (Grant and Boyd, 2014). The PFGD algorithm can actually take advantage of the

low rank structure for a reduced complexity solution.

1.3.5 Simulation Results

In both the MU-MIMO BC and MU-MISO BC cases for two cooperative multi-cell sys-

tems without a rank constraint(or assuming full possible rank), we compare the achiev-

able rates of both the optimal and suboptimal schemes as discussed in the second and

the fourth points respectively. We also plot the rate curves using PFGD algorithm for

full-rank case and show that eventually PFGD algorithm matches the optimal algorithm

that we have proposed initially. We also plot and compare the achievable rate curves

obtained using PFGD algorithm for MU-MIMO BC under different rank constraints

for two different multi-cell systems. We also provide a plot on how fast the the PFGD

algorithm converges for a particular network realization.
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CHAPTER 2

SYSTEM MODEL AND PROBLEM FORMULATION

2.1 System Model

We consider a multi-cell system consisting of A cells each of which has a single BS.

For our convenience, let us assume there areMB ≥ 1 transmit antennas on each BS. Let

us consider there are Ka ≥ 1 users in every cell where “a" is the BS-/cell-index. Let

us denote the total number of MSs (users) in the multi-cell system by K =
∑A

a=1 Ka,

and also assume that each and every MS has the same number of receive antennas on it,

denoted by N ≥ 1. Denote the total number of transmit antennas across all the BSs in

the system as M = MBA. We can conveniently model the jointly designed downlink

transmission for all the BSs in this fully cooperative multi-cell system as an auxiliary

MU-MIMO BC with M transmit antennas and K users each with N receive antennas.

In this auxiliary MU-MIMO BC, we assign the indices from (a − 1)MB + 1 to aMB

to the transmit antennas on the BS indexed with label a = 1, · · · , A for convenience

of notation later on in the paper. Similarly, the indices of MSs in the auxiliary MU-

MIMO BC are associated with the index of the cell they correspond to. In detail, cell

“a" contains MSs with indices from
∑a−1

i=1 Ki + 1 to
∑a

i=1 Ki.

The discrete-time baseband signal of each auxiliary MIMO BC corresponding to K

MSs is thus given by the linear model

yk = Hkxk +
∑
j 6=k

Hkxj + nk, k = 1, · · · , K (2.1)

where xk ∈ CM×1 denotes the transmit signal vector designated for k-th MS from

M transmit antennas, yk ∈ CN×1 denotes the received signal vector at the k-th MS.

Hk ∈ CN×M denotes the downlink channel from all the M transmit antennas on all

the BSs to the k-th MS. nk ∈ CN×1 denotes the receiver noise at the k-th MS. For our

convenience, we assume that nk ∼ CN (0, I),∀k = 1, · · · , K.



Figure 2.1: Multi User - MIMO BC

2.2 Relation between Transmit Covariance Matrices and

Precoding Matrices

Without loss of generality, we can further express xk as a product of the precoding

matrix of the k-th MS, Uk ∈ CM×Rk and the information-signal for the k-th MS, sk ∈

CRk×1.

xk = Uksk, k = 1, · · · , K (2.2)

We should note that the precoding matrices specify both the transmit beamforming

vectors and allocated power values for different data streams. Here, Rk denotes the

number of permitted data streams for the k-th MS due to spatial multiplexing. We note

that Rk ≤ min(M,N),∀k = 1, · · · , K. Denote Qk = E[xkx
H
k ] ∈ CM×M as the trans-

mit covariance matrix corresponding to the k-th MS, with Qk � 0. Now, we note that

both the matrices Qk and Uk have rank Rk. We assume the information-bearing signal

vectors sk are independent over k and we also assume a Gaussian codebook is used for

each MS at the transmitter antennas and thus, sk ∼ CN (0, I),∀k = 1, · · · , K. There-

fore, we can express the precoding matrix as a square root of the transmit covariance

matrix i.e., Qk = UkU
H
k . The overall downlink transmit covariance matrix for the M

cooperating transmit antennas is thus given by Q =
∑K

k=1 Qk.
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2.3 Multiple Power Constraints

As discuused earlier, these transmit covariance matrices need to satisfy three different

sets of power constraints briefly discussed below.

2.3.1 Sum Power Constraints (SPC)

In this case, the total average power across all the M transmitting antennas is limited to

Psum. Mathematically speaking, the transmit covariance matrices Qk must satisfy the

inequality given below.

Tr(Q) ≤ Psum or
K∑
k=1

Tr(Qk) ≤ Psum (2.3)

2.3.2 Per-Base Station Power Constraints (PBPC)

Under PBPC, the BS “a" has an average sum transmit power constraint across all it’s

MB transmit antennas given by P̃a∀a. Hence, the transmit covariance matrices corre-

sponding to the K MSs must satisfy the following inequalities.

Tr(BaQ) ≤ P̃a or
K∑
k=1

Tr(BaQk) ≤ P̃a, a = 1, · · · , A (2.4)

where

Ba , Diag(0, · · · , 0︸ ︷︷ ︸
(a−1)MB

, 1, · · · , 1︸ ︷︷ ︸
MB

, 0, · · · , 0︸ ︷︷ ︸
(A−a)MB

) (2.5)

2.3.3 Per-Antenna Power Constraints (PAPC)

Under PAPC, the average transmit power of the i-th transmit antenna is constrained by

P̂i∀i = 1, · · · ,M . Therefore in mathematical terms, the transmit covariance matrices

corresponding to the K MSs must satisfy the inequalities given below.

Tr(BiQ) ≤ P̂i or
K∑
k=1

Tr(BiQk) ≤ P̂i, i = 1, · · · ,M (2.6)
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where

Bi , Diag(0, · · · , 0︸ ︷︷ ︸
(i−1)

, 1, 0, · · · , 0︸ ︷︷ ︸
(M−i)

) (2.7)

Let us denote this joint power constraints set as Joint-SPC-PBPC-PAPC. We note

that in the special case of single-antenna BSs and MSs i.e., MB = N = 1, the per-

BS power constraints in (2.4) reduce to per-antenna power constraints in (2.6) for an

equivalent MU-MISO BC.

2.4 Quasi Static Fading Assumption

We consider a scenario where the downlink channels corresponding to K MSs in the

auxiliary MU-MIMO BC remain constant for a particular given downlink transmission

frame i.e., we are basically dealing with a quasi-static fading environment.

2.5 Block Diagonalisation Precoding Constraints

Let us now consider the inter-user interference eliminating linear BD precoding scheme

for each downlink transmission frame in the MU-MIMO BC, i.e., we should have for

each given k, Hjxk = 0 in (2.1) or more precisely HjUk = 0,∀j 6= k. We can also

present the aforementioned variant of ZF-BF constraints as below.

HjQkH
H
j = 0, ∀j 6= k (2.8)

We assume that the row vectors in all downlink channels, Hk’s are linearly independent

(due to the fact that we have considered an independent fading scenario). From the

BD precoding constraints in (2.8) ∀k = 1, · · · , K, it follows that M ≥ NK should be

a necessary condition in order to get feasible transmit covariance matrices, Qk’s with

rank Rk ≤ min(M,N ) = N, ∀k (since K ≥ 1).

Without loss of generality, we assume that all the MSs in the multi-cell system have

the same number of permitted data streams i.e., Qk’s and Uk’s have the same rank,

∀k = 1, · · · , K. In Chapter 3, the rank constraint is made inactive i.e., Rk = N,∀k

whereas in Chapter 4, we consider the rank constraint to be active but equal for all MSs
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as mentioned just now.

In practice, the total number of MSs in the system can be very large such that the

above condition fails. In such scenarios, the central processing unit (CPU) schedules

the transmission from BSs to MSs into different time-slots/frequency-bands. Now the

CPU also makes sure that in each time-slot/frequency-band, the number of MSs sched-

uled for transmission satisfies the aforementioned condition. For further reference, the

interested readers may go to (Yoo and Goldsmith, 2006; Shen et al., 2005) for under-

standing the detailed design of downlink transmission scheduling in the MISO/MIMO

BC with ZF-BF/BD precoding. For the rest of this paper, we assume M ≥ NK.

2.6 Convex Optimisation Problem to be solved in Chap-

ter 3 - (P1)

We are now all set to present the weighted sum-rate maximization problem for the

downlink transmission in a fully cooperative multi-cell system modeled as an auxiliary

MU-MIMO BC under Joint-SPC-PBPC-PAPC and BD precoding power constraints as

follows.

(P1) :

max
Q1,··· ,QK

K∑
k=1

wk log |I + HkQkH
H
k |

s.t. HjQkH
H
j = 0, ∀j 6= k

K∑
k=1

Tr(Qk) ≤ Psum

K∑
k=1

Tr(BaQk) ≤ P̃a, a = 1, · · · , A

K∑
k=1

Tr(BiQk) ≤ P̂i, i = 1, · · · ,M

Qk � 0, ∀k

where wk is the given non-negative weight for the capacity corresponding to the k-th

MS. In order to expose the capacities of all MSs, we let wk ≥ 0,∀k.

A very important observation in (P1) is that we have posed the optimization problem

with the transmit covariance matrices, Qk,∀k as the optimization variables instead of

the precoding matrices Uk, ∀k. We have purposefully done this beacuse it is easy to
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verify that (P1) is a convex optimization problem with Qk’s, since the objective function

is concave over Qk’s and all the constraints specify a convex set over Qk’s.

However, we should note that we haven’t introduced any rank constraints in (P1)

as they don’t specify a convex set over Qk’s. Thus, (P1) can be solved using standard

optimization techinques, e.g., interior-point method (Boyd and Vandenberghe, 2004) or

directly using CVX software package (Grant and Boyd, 2014) but such an approach

would not reveal the optimal BD precoding matrix structure which is investigated in

detail in Chapter 3.

2.7 Non-Convex Optimisation Problem to be solved in

Chapter 4 - (P2)

If we choose Uk’s as the design variables, both the objective and BD precoding con-

straints fail the requirements for a convex optimization problem formulation.

Therefore if we substitute Qk = UkU
H
k ,∀k in (P1), we have a non-convex opti-

mization problem in hand. Let’s utilise this opportunity and introduce the non-convex

rank constraints also now to formulate a non-convex optimization problem (P2) as

shown above. This problem (P2) would be solved numerically in Chapter 4.

(P2) :

max
U1,··· ,UK

K∑
k=1

wk log |I + (HkUk)(HkUk)
H |

s.t. HjUk = 0, ∀j 6= k

K∑
k=1

Tr(UkU
H
k ) ≤ Psum

K∑
k=1

Tr(BaUkU
H
k ) ≤ P̃a, a = 1, · · · , A

K∑
k=1

Tr(BiUkU
H
k ) ≤ P̂i, i = 1, · · · ,M

rank(Uk) = Rk(≤ N), k = 1, · · · , K
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CHAPTER 3

OPTIMAL PRECODING MATRIX SOLUTION

WITHOUT RANK CONSTRAINTS

In this chapter, we first derive an optimal structure for the precoding matrices and also

present a very efficient algorithm to solve (P1) both of which are direct extensions

of Rui Zhang’s work in (Zhang, 2010) for the general case with arbitrary number of

transmit and receive antennas at the BSs and the MSs respectively. Then, we extend

this developed solution for the special case of single-antenna BSs/MSs i.e., auxiliary

MISO BC.

3.1 General MU-MIMO BC Case

3.1.1 Eliminate BD Precoding Constraints

To solve (P1), we would first want to get rid of the BD precoding constraints given in

(2.8), as follows:

Define Gk = [HT
1 , · · · ,HT

k−1,H
T
k+1, · · · ,HT

K ]T ,∀k = 1, · · · , K, where Gk ∈

CL×M with L = N(K − 1). Let the normal singular value decomposition (SVD)

of Gk be denoted as Gk = AkΣkB
H
k where Ak ∈ CL×L,Bk ∈ CM×M are both unitary

matrices i.e., AkA
H
k = AH

k Ak = IL and BkB
H
k = BH

k Bk = I and Σk is a non-negative

L×M matrix.

Anyways, L ≤M (since NK ≤M ) which means that the rank of the matrix Gk is

given by rank(Gk) = min(L,M ) = L. We can further express Σk,Bk as Σk = [Σkp |0]

and Bk = [Bk1|Bk0 ] where Σkp is a positive diagonal matrix of dimension L × L

containing only positive singular values of the matrix Gk, Bk1 ∈ CM×L and Bk0 ∈

CM×(M−L) are two parts of the right singular matrix, Bk that correspond to positive and

zero singular values respectively.



It is easy to verify now that the normal SVD of Gk can be reduced to Gk =

AkΣkpB
H
k1

. Based on the above build-up, we next propose the following lemma.

Lemma 1 The optimal solution of (P1) takes the form

Qk = Bk0SkB
H
k0
, k = 1, · · · , K (3.1)

where Sk ∈ C(M−L)×(M−L) and Sk � 0

Proof: Please refer to Appendix A.

Remark 1: In prior works (Spencer et al., 2004; Wong et al., 2003; Choi and

Murch, 2004; Pan et al., 2004) and (Zhang, 2010) on the design of BD precoder for

the MIMO BC in the case of SPC and PBPC respectively, it has been proved that

the columns(precoding vectors) in the BD precoding matrix for the k-th MS, Uk with

UkU
H
k = Qk, must be a linear combinations of the columns in Bk0 in order to satisfy

the BD precoding constraints given in (P2) HjUk = 0,∀j 6= k. Lemma 1 just extends

this result to the case of Joint-SPC-PBPC-PAPC constraints.

3.1.2 Convex Optimisation Problem (P3) - A Modified Version of

(P1)

So, the optimal structure for the transmit covariance matrix suggested in (3.1) satisfies

all the Zero-forcing constraints given in (2.8) and hence they can be eliminated from

(P1). Thus we can reduce (P1) to the following equivalent problem.

(P3) :

max
S1,··· ,SK

K∑
k=1

wk log |I + HkBk0SkB
H
k0

HH
k |

s.t.
K∑
k=1

Tr(Bk0SkB
H
k0

) ≤ Psum

K∑
k=1

Tr(BaBk0SkB
H
k0

) ≤ P̃a, a = 1, · · · , A

K∑
k=1

Tr(BiBk0SkB
H
k0

) ≤ P̂i, i = 1, · · · ,M

Sk � 0, ∀k

15



We can verify that (P3) is a convex optimization problem based on similar argu-

ments that have been made earlier in proving (P1) as convex.

3.1.3 Procedure to obtain Optimal Solution of (P3)

We would like the solve the problem (P3) using Lagrange-Duality method. Let the

dual variables associated with the SPC, PBPC and PAPC in (P3) be γ, {λa}Aa=1, {µi}Mi=1

respectively, then we can write the Lagrangian function for the above problem (P3) as

follows.

L({Sk}, γ, {λa}, {µi}) =
K∑
k=1

wk log |I + HkBk0SkB
H
k0

HH
k |

+γ(Psum −
K∑
k=1

Tr(Bk0SkB
H
k0

))

+
A∑
a=1

λa(P̃a −
K∑
k=1

Tr(BaBk0SkB
H
k0

))

+
M∑
i=1

µi(P̂i −
K∑
k=1

Tr(BiBk0SkB
H
k0

))

(3.2)

where {Sk}, {λa} and {µi} denote the set of Sk’s, λa’s and µi’s respectively. The

Lagrange Dual function for (P3) is then defined as

g(γ, {λa}, {µi}) = max
Sk�0,∀k

L({Sk}, γ, {λa}, {µi}) (3.3)

Also, the dual problem of (P3) is defined as

(P3-D) :

min
γ,{λa},{µi}

g(γ, {λa}, {µi})

s.t. γ ≥ 0

λa ≥ 0, ∀a = 1, · · · , A

µi ≥ 0, ∀i = 1, · · · ,M

Since it is already known that (P3) is a convex optimization problem and satisfies the

Slater’s conditions (Boyd and Vandenberghe, 2004), the primal optimal objective value

is equal to the dual optimal objective value i.e., the duality gap between the optimal

objective values of (P3) and (P3-D) is zero. Therefore, we can equivalently solve (P3-
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D) instead of solving (P3). Towards this end, we first need to solve for optimal {S∗k}

that maximizes the Lagrangian function in (3.2) in terms of the given dual variables.

We should also note that {S∗k} is the optimal solution for the maximization problem in

(3.3) with the set of given γ, {λa}, {µi}.

Moreover, the dual problems are always convex and hence (P3-D) is also convex.

Finally, we can obtain optimal dual variables γ∗, {λ∗a}, {µ∗i } iteratively using the sub-

gradient method e.g., the ellipsoid method (Bland et al., 1981; Boyd and Barratt, 2008),

given the fact that the subgradients (partial derivatives) of function g(γ, {λa}, {µi}) at

a set of already fixed γ, λa’s and µi’s are Psum −
∑K

k=1 Tr(Bk0S
∗
kB

H
k0

) for γ, P̃a −∑K
k=1 Tr(BaBk0S

∗
kB

H
k0

) for λa, a = 1, · · · , A and P̂i −
∑K

k=1 Tr(BiBk0SkB
H
k0

) for

µi, i = 1, · · · ,M in that order.

Now we can substitute these optimal dual variables in the optimal structure obtained

for S∗k above and later obtain an optimal BD precoding matrix/transmit covariance ma-

trix structure. This is validated by the fact that strong duality holds for the convex

optimization problem (P3).

3.1.4 Relevant Power Constraints

Before we proceed further with our arguments on how to solve for optimal BD pre-

coding matrix structure, it is important for us to take a step back and note down the

following which are useful later on in the paper.

It is sufficient to consider the case where

Psum ≤
A∑
a=1

P̃a & P̃a ≤
aMB∑

i=(a−1)MB+1

P̂i (3.4)

SPC is redundant if Psum >
∑A

a=1 P̃a and in that case we can achieve the capacity

without any loss by setting Psum =
∑A

a=1 P̃a.

Similarly for any a ∈ {1, · · · , A}, if P̃a >
∑aMB

i=(a−1)MB+1 P̂i then the Per-Base

Station power constraint corresponding to the BS “a" is redundant. In this case, we can

still achieve the same capacity by making P̃a =
∑aMB

i=(a−1)MB+1 P̂i and obviously save

some power.
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For the rest of this paper hereafter, we work with power constraints that satisfy the

sufficient conditions in (3.4). Next, we present an idea that has already been proposed

in (Chaluvadi et al., 2018).

Lemma 2 In the case of Joint-SPC-PBPC-PAPC, with the sufficient conditions being

enforced viz. Psum ≤
∑A

a=1 P̃a & P̃a ≤
∑aMB

i=(a−1)MB+1 P̂i, ∀a = 1, · · · , A, the optimal

transmission strategy {Q∗k} uses full sum power i.e.,
∑K

k=1 Tr(Q∗k) = Psum.

Proof: Please refer to Appendix B

3.1.5 Maximisation Problem (P4) and it’s Optimal Solution

Next, we continue forward to obtain the optimal {S∗k} with a set of given dual variables.

From (3.2), it is evident that the maximization problem in (3.3) can be split intoK inde-

pendent maximization subproblems each involving only one Sk as the primal variable.

After discarding the irrelevant terms, we can express the corresponding subproblem, for

each given k as below.

(P4) :
max
Sk�0

wk log |I + HkBk0SkB
H
k0

HH
k |

−Tr(BγλµBk0SkB
H
k0

)

where Bγλµ , γI +
∑A

a=1 λaBa +
∑M

i=1 µiBi , Bγ + Bλ + Bµ. The notations

Bγ,Bλ,Bµ are self explanatory. We must observe that Bγλµ is a diagonal matrix with

the diagonal elements given by γ + λa + µi in the order of a = 1, · · · , A and i =

1, · · · ,M .

We have to discuss about the rank of the above matrix i.e, the number of positive

entries in Bγλµ. By applying one of the Karash-Kuhn-Tucker conditions (Boyd and

Vandenberghe, 2004), the complementary slackness theorem, it is evident that if the

dual variable corresponding to the SPC, γ > 0, then it leads to having a tight sum

power constraint with the optimal solution for {Sk}. Therefore, if γ > 0, then the

diagonal matrix Bγλµ is full rank as it has all positive entries in it’s diagonal.

Now, we would want to find a lower bound on the rank(Bγλµ) to deal with cases

where γ = 0. This lower bound is presented in the following lemma, very crucial
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for our arguments next. The proof of this lemma goes on similar lines of the proof of

Lemma 2 presented in (Zhang, 2010) where the author derives a lower bound on the

number of active Per-Base Station power constraints in a block diagonalised multi-cell

system with only PBPC.

Lemma 3 For (P4) to have a bounded objective value, it holds that rank(Bγλµ) =

RBγλµ ≥M −N(K − 1).

Proof: Please refer to Appendix C.

Remark 2: The fact that the sum power constraint is tight with the optimal transmit

covariance matrices set {Q∗k} under sufficient conditions provided in (3.4) does not

imply that the optimal dual variable corresponding to the sum power constraint γ∗ is

positive, it’s value can be zero too. The complementary slackness theorem under the

assumption of strong duality states that atleast one of the two following conditions have

to be met. (1) The optimal dual variable corresponding to the constraint is zero, (2) The

constraint is tight with the optimal primal variables. But, if we have some optimal dual

variables λ∗a > 0 for some a ∈ {1, · · · , A}/µ∗i > 0 for some i ∈ {1, · · · ,M}, then we

can straightaway conclude that the corresponding Per-Base Station /Per-Antenna power

constraint is tight with optimal Q∗k.

Let’s consider Tr(BγλµBk0SkB
H
k0

) and perform some algebraic manipulations on

this term to aid us later on in the paper as follows.

Tr(BγλµBk0SkB
H
k0

)

= Tr(SkBH
k0

BγλµBk0) (3.5)

= Tr((BH
k0

BγλµBk0)1/2Sk(B
H
k0

BγλµBk0)1/2) (3.6)

= Tr(S̃k) (3.7)

where (3.5), (3.6) follow from the fact that Tr(XY) = Tr(YX). Also in (3.6),

the matrix (BH
k0

BγλµBk0)1/2 is the square root of the positive semi-definite matrix

BH
k0

BγλµBk0 (since Bγλµ � 0). We should note that S̃k � 0 if Sk � 0. With Lemma

3 and L = N(K − 1), we can assume without loss of generality that rank(Bγλµ) ≥

(M − L) since we are only interested in the scenario where the objective value of the

problems, (P1) and (P4) are both bounded. Accordingly, we have rank(Bk0BγλµB
H
k0

) =
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min(rank(Bγλµ),M − L) = M − L. Thus, Bk0SkB
H
k0
∈ C(M−L)×(M−L) is a full-rank

matrix and hence invertible. Therefore, from (3.7), we can write

Sk = (BH
k0

BγλµBk0)−1/2S̃k(B
H
k0

BγλµBk0)−1/2 (3.8)

and we can re-formulate (P4) to get the following maximization problem (P5).

(P5) :

max
S̃k�0

wk log|I + HkBk0(BH
k0

BγλµBk0)−1/2×

S̃k(B
H
k0

BγλµBk0)−1/2BH
k0

HH
k |

− Tr(S̃k)

Note that rank(HkBk0(BH
k0

BγλµBk0)−1/2) = min(N,M − L) = N . Thus, we can

obtain it’s reduced SVD as follows

HkBk0(BH
k0

BγλµBk0)−1/2 = ÂkΣ̂kpB̂
H
k1

(3.9)

where Âk ∈ CN×N , B̂k1 ∈ C(M−L)×N and Σ̂kp = Diag(σ̂k1 , · · · , σ̂kN ) with {σ̂ki}Ni=1

being all the positive singular values of the matrix HkBk0(BH
k0

BγλµBk0)−1/2. We next

substitute the above SVD in the objective function of (P5) and solve it using KKT con-

ditions (Boyd and Vandenberghe, 2004) and present the optimal solution for (P5) in the

following theorem.

Theorem 1 The optimal solution of (P5) for a given set of dual varibles, γ, {λa}Aa=1, {µi}Mi=1

is given as

S̃∗k = B̂k1ΩkB̂
H
k1

(3.10)

where Ωk = Diag(ωk1 , · · · , ωkN ) with ωki given by

ωki =
(
wk −

1

σ̂2
ki

)+

∀i = 1, · · · , N. (3.11)

where (y)+ , max(0, y).

Proof: Please refer to Appendix D.

To summarize from (3.10), the optimal solution of (P4) for a given set of dual vari-
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ables, γ, {λa}Aa=1, {µi}Mi=1 can be expressed as

S∗k = (BH
k0

BγλµBk0)−1/2B̂k1ΩkB̂
H
k1

(BH
k0

BγλµBk0)−1/2 (3.12)

3.1.6 Optimal Solution of (P1)

As mentioned earlier, we next solve for the optimal dual variables γ∗, {λ∗a}Aa=1, {µ∗i }Mi=1

in (P3-D) using a subgradient-based method such as the ellipsoid method (Boyd and

Barratt, 2008; Bland et al., 1981). Substituting these optimal dual variables in (3.12)

gives us the optimal solution for the problem (P3). By combining this result with

Lemma 1, we design the following theorem

Theorem 2 The optimal solution of (P1) is given by

Q∗k = Bk0(BH
k0

B∗γλµBk0)−1/2B̂k1ΩkB̂
H
k1

×(BH
k0

B∗γλµBk0)−1/2BH
k0

(3.13)

∀k = 1, · · · , K, where B∗γλµ = γ∗I+
∑A

a=1 λ
∗
aBa+

∑M
i=1 µ

∗
iBi with γ∗, {λ∗a}Aa=1, {µ∗i }Mi=1

being the optimal dual solutions of (P3).

3.1.7 Optimal Algorithm (A1) to solve (P1)

We next summarize the optimal algorithm(A1) for solving (P1) as follows.

1. Initialize the dual variables γ ≥ 0, λa ≥ 0,∀a = 1, · · · , A and µi ≥ 0,∀i =

1, · · · ,M .

2. Repeat

• Solve for S∗k, k = 1, · · · , K using the equation (3.12) with the given dual vari-
ables above.

• Compute the sub-gradients of the Lagrange Dual function g(γ, {λa}, {µi}) as
– Psum −

∑K
k=1 Tr(Bk0S

∗
kB

H
k0

) w.r.t. γ.

– P̃a −
∑K

k=1 Tr(BaBk0S
∗
kB

H
k0

) w.r.t. λa, a = 1, · · · , A.

– P̂i −
∑K

k=1 Tr(BiBk0SkB
H
k0

) w.r.t. µi, i = 1, · · · ,M .

• Update γ, {λa}Aa=1 and {µi}Mi=1 based on the ellipsoid method (Bland et al., 1981;
Boyd and Barratt, 2008).
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3. Until all the dual variables γ, {λa}Aa=1 and {µi}Mi=1 converge to a prescribed

accuracy.

4. Set Q∗k = Bk0S
∗
kB

H
k0
, k = 1, · · · , K.

3.1.8 Optimal Precoding matrix structure without rank constraints

and it’s miscellaneous properties

The following corollary is obtained from Theorem 2 and the fact that Qk = UkU
H
k , ∀k.

Corollary 1. The optimal BD precoding matrices that maximize the weighted sum-

rate in a multi-cell system posed as a MU-MIMO-BC subject to multiple power con-

straints e.g., SPC in (2.3), PBPC in (2.4) and PAPC in (2.6) are given by

U∗k = Bk0(BH
k0

B∗γλµBk0)−1/2B̂k1Ωk
1/2 (3.14)

for k = 1, · · · , K. Here, (3.14) follows from the fact that (BH
k0

B∗γλµBk0)−1/2 is a

hermitian matrix.

The following remarks have been made on similar lines of remarks 3.3 and 3.4 from

(Zhang, 2010). We discuss some interesting properties of the optimal BD precoding

matrix structure in (3.14) in these remarks.

Remark 3(Channel Diagonalization): One of the desirable properties of linear pre-

coding techinques for a point-to-point MIMO channel is that the precoding matrix,

when jointly deployed with a unitary decoding matrix at the receiver, must be able to

diagonalize the MIMO channel into parallel scalar sub-channels, over which we can

apply independent encoding and decoding to simplify the transceiver design. Here,

we verify that the optimal BD precoding matrix, U∗k in (3.14) satisfies this “channel

diagonalization" property, as follows:

ÂH
k HkU

∗
k = ÂH

k HkBk0(BH
k0

B∗γλµBk0)−1/2B̂k1Ωk
1/2 (3.15)

= ÂH
k ÂkΣ̂kpB̂

H
k1

B̂k1Ωk
1/2 (3.16)

= Σ̂kpΩk
1/2 (3.17)
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where (3.15) follows from (3.14), (3.16) is due to (3.9) and (3.17) follows from the

two facts that Âk is a unitary matrix and B̂H
k1

B̂k1 = I. Therefore, when we apply a

unitary decoding matrix ÂH
k at the k-th MS receiver, the MIMO channel corresponding

to the k-th MS with BD precoding is diagonalized into N scalar sub-channels with

channel gains given by the main diagonal of the N ×N diagonal matrix Σ̂kpΩk
1/2.

Remark 4(Comparison with Sum Power Constraint): If we have only SPC as the

power constraint instead of Joint-SPC-PBPC-PAPC in (P1), then the resulting problem

corresponds to the conventional BD precoder design for the MIMO BC with a sum

power constraint as studied earlier in (Spencer et al., 2004; Wong et al., 2003; Choi and

Murch, 2004; Pan et al., 2004). We can apply the developed solution for (P1) in this

case, with the corresponding matrix B∗γλµ being modified as B∗γ = γ∗I. From (3.13),

it follows that the optimal transmit covariance matrix solution for this modified version

of (P1) is given by

Q∗∗k =
1

γ∗
Bk0B̂k1ΩkB̂

H
k1

BH
k0
, k = 1, · · · , K. (3.18)

Moreover, from (3.9) with B∗γ = γ∗I, it follows that the matrix B̂k1 is obtained from

the SVD:
1√
γ∗

HkBk0 = ÂkΣ̂kpB̂
H
k1

(3.19)

and is thus independent of γ∗ but Ωk in (3.18) will be dependent on γ∗. Accordingly,

the optimal precoding matrix in the sum power constraint case is given by

U∗∗k =
1√
γ∗

Bk0B̂k1Ωk
1/2, k = 1, · · · , K. (3.20)

Comparing U∗∗k in (3.20) for the SPC case with U∗k in (3.14) for the Joint SPC-

PBPC-PAPC case, we see that U∗∗k consists of orthogonal columns (orthogonal beam-

forming vectors) since B̂H
k1

BH
k0

Bk0B̂k1 = I, while U∗k in general consists of non-

orthogonal columns (non-orthogonal beamforming vectors) if B∗γλµ is a non-identity

diagonal matrix. This is the actual reason for the BD precoder designs in early works

such as (Boccardi and Huang, 2006; Liu et al., 2009; Zhang et al., 2008) based on the

orthogonal precoder structure U∗∗k to be suboptimal in general for the Joint-SPC-PBPC-

PAPC case or only-PBPC case as discussed in (Zhang, 2010).
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3.2 Special MU-MISO BC Case

3.2.1 Optimal Structure of the Transmit Covariance Matrices

Here, we investigate the developed solution for (P1) for the special case of MISO BC

i.e., MB = N = 1. The auxiliary MU-MIMO BC with Joint-SPC-PBPC-PAPC reduces

to an equivalent MU-MISO BC with the corresponding Joint-SPC-PAPC, and the BD

precoding constraints reduce to the ZF-BF precoding constraints. When MB = 1, the

per-base station power constraints and the per-antenna power constraints are the same.

Hence, we can write without loss of generality that Bγλµ = Bγµ. With N = 1, we

denote Hk = hHk where hk ∈ CM×1 is a column-vector for k = 1, · · · , K. Accordingly,

the regular SVD in (3.9) can be re-written as

hHk Bk0(BH
k0

BγµBk0)−1/2 = σ̂kpb̂
H
k1

(3.21)

where σ̂kp > 0 and b̂k1 ∈ C(M−L)×1. From (3.11), (3.13) and (3.21), it follows that

the optimal downlink transmit covariance matrix for the k-th MS, Q∗k, in the case of

MB = N = 1 is given by

Q∗k = ωkBk0(BH
k0

B∗γµBk0)−1/2b̂k1b̂
H
k1

×(BH
k0

B∗γµBk0)−1/2BH
k0

(3.22)

where ωk = (wk − 1/σ̂2
kp

)+. Now substitute the SVD given in (3.21) into the above

equation (3.22) and obtain the following optimal structure for Q∗k.

Q∗k =
ωk
σ̂2
kp

Bk0(BH
k0

B∗γµBk0)−1BH
k0

hk

×hHk Bk0(BH
k0

B∗γµBk0)−1BH
k0

(3.23)

3.2.2 Optimal Precoding Matrix Structure

From (3.23), we can easily observe that the rank(Q∗k)≤ 1 for the MISO BC case. Thus,

we can express Q∗k in this scenario as Q∗k = u∗k(u
∗
k)
H where u∗k ∈ CM×1 is the optimal

beamforming vector (precoding matrix in MIMO BC case reduced to a beamforming
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vector in MISO BC case). The expression for u∗k is given as

u∗k =
ω

1/2
k

σ̂kp
Bk0(BH

k0
B∗γµBk0)−1BH

k0
hk (3.24)

A very important observation is that (3.24) holds regardless of the number of trans-

mit antennas on each BS MB. Furthermore, the optimal beamforming vector for the

k-th MS in the conventional sum power constraint case (with B∗γµ = B∗γ = γ∗I) is

obtained from (3.24) as follows

u∗∗k =
ω

1/2
k

σ̂kpγ
∗Bk0B

H
k0

hk (3.25)

(3.25) follows from the fact that BH
k0

Bk0 = I.

3.2.3 Interesting Properties of the above Optimal Precoding Matrix

Structure

Next, we discuss an interesting observation on the optimal ZF-BF precoding design in

(3.24) as compared with a prior result published in (Peel et al., 2005).

Remark 5: We first denote U = [u1, · · · ,uK ] ∈ CM×K as the total precoding

matrix for a MU-MISO BC with M transmitting antennas and K users/MSs each with

a single-antenna. Then, for the sum power constraint case with uk = u∗∗k shown in

(3.25), the corresponding total optimal precoding matrix U∗∗ becomes the conventional

ZF-BF design for the MISO BC based on the channel pseudo inverse (Peel et al., 2005),

i.e., we can express U∗∗ as U∗∗ = H†Ω̂ where H = [h1, · · · ,hK ]H ∈ CK×M is the

total downlink channel matrix and Ω̂ = Diag(ω̂1, · · · , ω̂K), where ω̂k = ω
1/2
k σ̂kp , k =

1, · · · , K.

However, it has been observed that this ZF-BF design based on the Moore-Penrose

inverse of the channel matrix is in general suboptimal for the MISO BC with the per-

antenna power constraints in (Karakayali et al., 2007), per-BS power constraints in

(Zhang, 2010). Hence, we conclude that the conventional pseudo-inverse-based method

is suboptimal for the MISO BC under Joint-SPC-PAPC constraints also where the total

optimal precoding matrix U∗ is obtained by letting uk = u∗k as given in (3.24).
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We should note that u∗k becomes collinear with u∗∗k regardless of γ∗, {µ∗i }Mi=1 when

M = K because of the fact that (BH
k0

B∗γµBk0)−1 in (3.24) becomes a scalar quantity as

(M − L) = M −N(K − 1) = M −K − 1 = 1. In this particular case, Bk0 becomes

a vector, bk0 ∈ CM×1, and u∗k & u∗∗k can both be expressed in the form pkbk0 , with

pk ≥ 0. Furthermore, we can show that this result holds regardless of the value MB

takes, provided that N = 1 and M = MBA = K.
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CHAPTER 4

SUB OPTIMAL PRECODING MATRIX SOLUTION

WITHOUT RANK CONSTRAINTS

4.1 Procedure to obtain Sub Optimal Precoding Matrix

Structure

In this section, we propose a suboptimal solution for (P1) which requires lesser imple-

mentation complexity than the optimal solution proposed in the previous chapter. A

summary of steps in this procedure is as follows.

1. First, we consider the optimal structure of the transmit covariance matrix for

the conventional BD precoding design problem under a single sum power constraint

which has already been derived in (3.18). This structure is surely suboptimal for the

Joint-SPC-PBPC-PAPC case. We can see from (3.18) that this matrix is unitarily diag-

onalizable into a diagonal matrix called the power allocation matrix.

2. Next, we substitute the above suboptimal transmit covariance structure in the

objective function and the Joint-SPC-PBPC-PAPC power constraints and solve the re-

sulting convex optimization problem for the best possible power allocation. Note that

we have already gotten rid of the BD precoding constraints above by considering the

solution of the conventional BD precoding design problem under SPC.

3. Finally, we discuss the algortihm(A2) used to obtain these suboptimal transmit

covariance matrices and show why algorithm(A2) has lesser implementation complex-

ity than the optimal algorithm(A1).



4.2 Formulation of Convex Optimisation Problem (P6)

to be solved for obtaining Sub Optimal Solution

First, we define the projected channel of Hk associated with the projection matrix Pk

as H⊥k = HkPk = HkBk0B
H
k0
, k = 1, · · · , K, where H⊥k ∈ CN×M and rank(H⊥k ) =

min(N,M − L) = N . Next, we define the reduced SVD of H⊥k as given below.

H⊥k = A⊥k Σ⊥kp(B
⊥
k1

)H (4.1)

where A⊥k ∈ CN×N ,B⊥k1
∈ CM×N and Σkp = Diag(σ⊥k1

, · · · , σ⊥kN ). Now taking a

careful look at the SVD of HkBk0 in (3.19) from Remark 4, we can easily deduce that

HkBk0B
H
k0

= H⊥k = Âk(
√
γ∗Σ̂kp)(Bk0B̂k1)H (4.2)

where γ∗ and Ωk from (3.18) gives the optimal power allocation for the k-th MS

in the conventional BD precoder design under a single sum power constraint. Also,

(Bk0B̂k1)H(Bk0B̂k1) = I. Therefore, we can conclude from (4.1) and (4.2) that

B⊥k1
= Bk0B̂k1 (4.3)

From (4.3) and (3.18), we can finally present a structure for the proposed suboptimal

solution of (P1) as follows.

Q̄k = B⊥k1
Ω̄k(B

⊥
k1

)H , k = 1, · · · , K. (4.4)

where Ω̄k = Diag(ω̄k1 , · · · , ω̄kN ) denotes the power allocation for the k-th MS.

With {Q̄k}Kk=1 given in (4.4), it can be shown that the ZF constraints in (P1) are satisfied

and thus can be removed. Next, we substitute the above {Q̄k}’s in the objective function

and Joint-SPC-PBPC-PAPC of (P1) to solve for the optimal power allocation matrix Ω̄k.
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Furthermore, in the objective function of (P1), the following equalities hold:

log |I + HkQ̄kH
H
k |

= log |I + Hk(Bk0B
H
k0

+ Bk1B
H
k1

)Q̄k

× (Hk(Bk0B
H
k0

+ Bk1B
H
k1

))H | (4.5)

= log |I + (H⊥k + HkBk1B
H
k1

)Q̄k

× (H⊥k + HkBk1B
H
k1

)H | (4.6)

= log |I + H⊥k Q̄k(H
⊥
k )H | (4.7)

= log |A⊥k (A⊥k )H + A⊥k Σ⊥kpΩ̄kΣ
⊥
kp(A

⊥
k )H | (4.8)

= log |I + (Σ⊥kp)
2Ω̄k| (4.9)

where (4.5) follows from the fact that Bk0B
H
k0

+Bk1B
H
k1

= I; (4.6) follows from the

definition of H⊥k ; (4.7) is due to the fact that BH
k1

Bk0 = 0; (4.8) is because A⊥k (A⊥k )H =

(B⊥k1
)HB⊥k1

= I and (4.9) follows from the fact that log |I+XY| = log |I+YX|. From

(4.9), we can observe that the MIMO channel for the k-th MS has been diagonalized into

N scalar sub-channels with channel gains given by ω̄ki , i = 1, · · · , N . Accordingly,

(P1) is reduced to the following problem (P6).

(P6) :

max
{ω̄ki}

K∑
k=1

wk

N∑
i=1

log(1 + (σ⊥ki)
2ω̄ki)

s.t.
K∑
k=1

N∑
i=1

‖b⊥k1
[:, i]‖2ω̄ki ≤ Psum

K∑
k=1

N∑
i=1

‖b⊥k1
[a, i]‖2ω̄ki ≤ P̃a, ∀a = 1, · · · , A

K∑
k=1

N∑
i=1

|b⊥k1
(j, i)|2ω̄ki ≤ P̂j, ∀j = 1, · · · ,M

ω̄ki ≥ 0, ∀k, i

where {ω̄ki} denotes the set of ω̄ki’s, for k = 1, · · · , K and n = 1, · · · , N . Note

that b⊥k1
[:, i] denotes the i-th column, while b⊥k1

(j, i) represents the (j, i)-th element

and b⊥k1
[a, i] denotes the vector consisting of the elements from the i-th column and the

((a−1)MB+1)-th to (aMB)-th rows in the matrix B⊥k1
, a = 1, · · · , A and i = 1, · · · , N .
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4.3 Procedure to obtain Optimal Solution of (P6)

We can verify that (P6) is a convex optimisation problem since the objective function

is concave over {ω̄ki}, the primal optimization variables and all the three power con-

straints generate an affine set (which is also convex) over ω̄ki’s.

Thus, similar to (P3), we can apply Lagrange-Duality method to solve (P6) by in-

troducing a set of dual variables, γ, {λa}Aa=1, {µj}Mj=1 associated with the sum power

constraint, per-BS power constraints and per-antenna power constraints respectively in

(P6).

The Lagrangian function for the above problem (P6) is written as

L({ω̄ki}, γ, {λa}, {µj}) =
K∑
k=1

wk

N∑
i=1

log(1 + (σ⊥ki)
2ω̄ki)

+γ(Psum −
K∑
k=1

N∑
i=1

‖b⊥k1
[:, i]‖2ω̄ki)

+
A∑
a=1

λa(P̃a −
K∑
k=1

N∑
i=1

‖b⊥k1
[a, i]‖2ω̄ki)

+
M∑
j=1

µj(P̂j −
K∑
k=1

N∑
i=1

|b⊥k1
(j, i)|2ω̄ki)

(4.10)

where {ω̄ki}, {λa} and {µj} denote the set of ω̄ki’s, λa’s and µj’s respectively.

The Lagrange Dual function for (P6) is then defined as

g(γ, {λa}, {µj}) = max
ω̄ki≥0,∀k,i

L({ω̄ki}, γ, {λa}, {µj}) (4.11)

Again, the dual problem of (P6) is defined very similar to (P3-D) as follows.

(P6-D) :

min
γ,{λa},{µj}

g(γ, {λa}, {µj})

s.t. γ ≥ 0

λa ≥ 0, ∀a = 1, · · · , A

µj ≥ 0, ∀j = 1, · · · ,M

It is already known that (P6) is a convex optimization problem and satisfies the
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Slater’s conditions (Boyd and Vandenberghe, 2004), so the duality gap between the

optimal objective values of (P6) and (P6-D) is zero. Therefore, we can equivalently

solve (P6-D) instead of solving (P6). Towards this end, we first need to solve for optimal

{ω̄∗ki} set that maximizes the Lagrangian function in (4.10) in terms of the given dual

variables.

Moreover, the dual problems are always convex and hence (P6-D) is also convex.

Finally, we can obtain optimal dual variables γ∗, {λ∗a}, {µ∗j} iteratively using the sub-

gradient method e.g., the ellipsoid method (Bland et al., 1981; Boyd and Barratt, 2008),

given the fact that the subgradients (partial derivatives) of function g(γ, {λa}, {µj}) at

a set of already fixed γ, λa’s and µj’s are Psum−
∑K

k=1

∑N
i=1 ‖b⊥k1

[:, i]‖2ω̄∗ki for γ, P̃a−∑K
k=1

∑N
i=1 ‖b⊥k1

[a, i]‖2ω̄∗ki for λa, a = 1, · · · , A and P̂j −
∑K

k=1

∑N
i=1 |b⊥k1

(j, i)|2ω̄∗ki
for µj, j = 1, · · · ,M in that order.

Now we can substitute these optimal dual variables in the optimal structure obtained

for ω̄∗ki above and later obtain a suboptimal BD precoding matrix/transmit covariance

matrix structure. This is validated by the fact that strong duality holds for the convex

optimization problem (P6).

4.4 Maximisation Problem (P7) and it’s Optimal Solu-

tion

Now, we continue forward to solve for the optimal {ω̄∗ki} with a given set of dual vari-

ables. From (4.10), it is evident that the maximization problem in (4.10) can be sep-

arated into NK independent maximization subproblems each involving only one ω̄ki

as the primal variable. After discarding the irrelevant terms, we can express the corre-

sponding subproblem in (P7), for each pair of {k, i} as follows.

(P7) :

max
ω̄ki≥0

wk log(1 + (σ⊥ki)
2ω̄ki)− ω̄ki

(
γ‖b⊥k1

[:, i]‖2

+
A∑
a=1

λa‖b⊥k1
[a, i]‖2 +

M∑
j=1

µj|b⊥k1
(j, i)|2

)

Let us denote the scalar quantity multiplying ω̄ki in the second term of the objective
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function above by fki . This will be helpful for an easy notation later on. So,

fki = γ‖b⊥k1
[:, i]‖2 +

A∑
a=1

λa‖b⊥k1
[a, i]‖2

+
M∑
j=1

µj|b⊥k1
(j, i)|2 (4.12)

The following theorem presents the optimal solution for (P7).

Theorem 3 The optimal solution of (P7) for a given set of dual variables γ, {λa}Aa=1, {µj}Mj=1

is given as

ω̄∗ki =
(wk
fki
− 1

(σ⊥ki)
2

)+

(4.13)

where (x)+ , max(0, x).

Proof: Please refer to appendix E.

4.5 Sub Optimal Algorithm (A2) to solve (P1)

Similar to (A1), the following algorithm (A2) can be used to obtain the proposed sub-

optimal solution for (P1).

1. Initialize the dual variables γ ≥ 0, λa ≥ 0,∀a = 1, · · · , A and µj ≥ 0,∀j =

1, · · · ,M .

2. Compute the SVDs: HkBk0B
H
k0

= A⊥k Σ⊥kp(B
⊥
k1

)H , k = 1, · · · , K.

3. Repeat

• Solve for {ω̄∗ki} using the equation (4.13) with the given dual variables above.

• Compute the sub-gradients of the Lagrange Dual function in (4.11), g(γ, {λa}, {µj})
as

– Psum −
∑K

k=1

∑N
i=1 ||b⊥k1

[:, i]||2ω̄∗ki for γ.

– P̃a −
∑K

k=1

∑N
i=1 ||b⊥k1

[a, i]||2ω̄∗ki for λa, a = 1, · · · , A.

– P̂j −
∑K

k=1

∑N
i=1 |b⊥k1

(j, i)|2ω̄∗ki for µj, j = 1, · · · ,M .

• Update γ, {λa}Aa=1 and {µj}Mj=1 based on the ellipsoid method.

• Update γ, {λa}Aa=1 and {µj}Mj=1 based on the ellipsoid method (Bland et al., 1981;
Boyd and Barratt, 2008).
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4. Until all the dual variables γ, {λa}Aa=1 and {µj}Mj=1 converge to a prescribed

accuracy.

5. Set Q̄k = B⊥k1
Ω̄∗k(B

⊥
k1

)H for k = 1, · · · , K, where Ω̄∗k = Diag(ω̄∗k1
, · · · , ω̄∗kN ).

4.6 Reason behind the lower implementation complex-

ity of (A2) compared to (A1)

The following remark is inspired from Remark 4.1 in (Zhang, 2010). It discusses the

reason behind the lower implementation complexity of the suboptimal algorithm (A2)

when compared to that of the optimal algorithm (A1) and also a special case in which

(A2) provides optimal solution for (P1).

Remark 6: For each loop in the “Repeat" section in (A2), only the power allocation

computation in (4.13) is implemented, instead of whole matrix computation given in

(3.12). This is the prime reason for (A2) having lower implementation complexity

than (A1). Due to the suboptimal structure of the downlink transmit covariance matrix

in (4.4) for (A2) as compared to the optimal one in (3.13) for (A1), (A2) in general

leads to a suboptimal solution and a lower weighted sum-rate for (P1) than (A1) at

reasonably high SNRs (power constraints). However, in the special case of N = 1 and

M = K where the suboptimal transmit covariance matrix structure in (4.4) is known to

be collinear with the optimal structure (discussed already in Remark 5). In this special

case, (A2) can be used as an alternative algorithm to (A1) to obtain the optimal solution

for (P1). We can conclude saying that the algorithm (A2) will be indeed suboptimal for

(P1) at reasonably high SNRs if M > K.
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CHAPTER 5

RANK-CONSTRAINED MULTI-USER MIMO

CAPACITY UNDER JOINT-SPC-PBPC-PAPC

In this chapter, we propose a Projected Factored Gradient Descent (PFGD) algorithm

to find the optimal transmission scheme that maximizes the weighted sum-rate of a

multi-cell system modeled as an auxiliary MU-MIMO BC under BD precoding, joint

SPC-PBPC-PAPC and additional rank constraints on transmit covariance matrices cor-

responding to K MSs as shown in (P2). In this paper, we consider a uniform rank con-

straint on all the precoding matrices i.e., we assume Rk = rank(Uk) = R(≤ N),∀k =

1, · · · , K.

In the PFGD algorithm, the key idea is to project the updated precoding matrices

corresponding to all the K MSs after each gradient descent step onto the constraint set

consisting of Joint SPC-PBPC-PAPC (power constraints) and zero forcing constraints

(BD precoding). We recall that Qk � 0 iff ∃ a matrix Uk such that Qk can be factored

as Qk = UkU
H
k . Note that Uk is also a square root of the matrix Qk. As shown in (P2),

the whole formulation has been done in terms of {Uk}Kk=1.

5.1 Important reasons for choosing PFGD Approach

Inspired from (Chaluvadi et al., 2018; Park et al., 2016), we provide some important

reasons for choosing PFGD approach as follows.

1. We actually desire to obtain the optimal precoder matrices set {Uk}Kk=1 that

optimizes the transmission scheme in block diagonalized fully cooperative multi-cell

system with multiple power constraints directly without finding the optimal downlink

transmit covariance matrices {Qk}Kk=1. Hence, we have formulated the non-convex

optimization problem (P2) in Chapter 2 towards this end.

2. The constraint Qk � 0 in (P1) is easily enforced by the factorization Qk =

UkU
H
k ,∀k = 1, · · · , K.



3. The rank constraints rank(Qk) = R, for k = 1, · · · , K can be enforced simply

by choosing the size of the precoding matrices {Uk}Kk=1 to be M × R. It turns out that

such rank constraints are very difficult to be enforced in an iterative algorithm while

directly determining {Qk}.

4. Recently in (Chaluvadi et al., 2018; Park et al., 2016), it has been shown that

PFGD algorithm can be implemented with a very low complexity when compared with

the standard CVX package (Grant and Boyd, 2014).

5. Also, the optimal (A1) and the suboptimal (A2) algorithms presented in Chap-

ter 3 for full-rank case have more SVD implementations than the PFGD algorithm at

different stages. SVDs generally increase the complexity of algorithm by many folds.

Hence, we can use PFGD as an alternative optimal rate-achieving algorithm in the full

rank case too instead of (A1).

5.2 Formulation of two Non Convex Optimisation prob-

lems (P8) & (P9) equivalent to (P2)

We rewrite the power constraints in (P2) in two different ways and formulate two more

problems equivalent to (P2). This is for the ease of notation later on in the chapter to

help us solve the problem.

(P8) :

max
{Uk}∈CM×R

K∑
k=1

wk log |I + (HkUk)(HkUk)
H |

s.t. HjUk = 0, ∀j 6= k

K∑
k=1

M∑
l=1

(UkU
H
k )ll ≤ Psum

K∑
k=1

∑
l∈I(a)

(UkU
H
k )ll ≤ P̃a, a = 1, · · · , A

K∑
k=1

(UkU
H
k )ii ≤ P̂i, i = 1, · · · ,M

where I(a) = {(a − 1)MB + 1, · · · , aMB} and (A)ll denotes the (l, l)-th element
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in the matrix A.

(P9) :

max
{Uk}∈CM×R

K∑
k=1

wk log |I + (HkUk)(HkUk)
H |

s.t. HjUk = 0, ∀j 6= k

K∑
k=1

M∑
l=1

‖ukl‖2 ≤ Psum

K∑
k=1

∑
l∈I(a)

‖ukl‖2 ≤ P̃a, a = 1, · · · , A

K∑
k=1

‖uki‖2 ≤ P̂i, i = 1, · · · ,M

Another way of representing the power constraints is in terms of the rows of the

precoding matrices {Uk}Kk=1 as shown above. Here, ukl denotes the l-th row of the

precoding matrix Uk. We again note that (P2) ≡ (P8) ≡ (P9).

5.3 Individual Constraint Sets - Notations

Let us denote the set consisting of BD precoding constraints in (P2) by CBD which is

given as

CBD =
{
{Uk}Kk=1 ∈ CM×R : GkUk = 0,∀k

}
where Gk = [HT

1 , · · · ,HT
k−1,H

T
k+1, · · · ,HT

K ]T ,∀k = 1, · · · , K.

The Joint-SPC-PBPC-PAPC power constraints set is denoted by CJ−SBA and it can

be expressed as

CJ−SBA =
{
{Uk}Kk=1 ∈ CM×R :

K∑
k=1

M∑
l=1

(UkU
H
k )ll ≤ Psum

K∑
k=1

∑
l∈I(a)

(UkU
H
k )ll ≤ P̃a, a = 1, · · · , A

K∑
k=1

(UkU
H
k )ii ≤ P̂i, i = 1, · · · ,M

}
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We will also need a separate notation for the Joint-SPC-PBPC constraints set later

on in the projection step of the PFGD algorithm. Hence, we define Joint-SPC-PBPC

power constraints set, CJ−SB as

CJ−SB =
{
{Uk}Kk=1 ∈ CM×R :

K∑
k=1

M∑
l=1

(UkU
H
k )ll ≤ Psum

K∑
k=1

∑
l∈I(a)

(UkU
H
k )ll ≤ P̃a, a = 1, · · · , A

}

Now, the total constraint set is denoted as CTot = CBD ∩ CJ−SBA. As mentioned

earlier in the introduction, the ability to incorporate the rank constraint easily is useful

when (1) Channel is sparse/Channel matrix has a low rank (2) Number of spatially

multiplexed data streams is limited by the number of receive antennas on each MS.

5.4 PFGD Algorithm (A3) to solve (P2)

Let f({Qk}) =
∑K

k=1 wk log |I + HkQkH
H
k |. We now present the PFGD algorithm

(A3) below.

1. Initialization: Initialize the precoding matrices as {Uk0}. The initialization

process will be discussed right after the algorithm.

2. Projected Gradient Descent: Compute the gradients of f({UkpU
H
kp
}) w.r.t.

the matrices {Ukp}Kk=1, where “p" stands for the p-th iteration in the Gradient Descent

method as follows.

∇Ukp
f({UkpU

H
kp})

=2wkH
H
k (I + HkUkp(HkUkp)

H)−1HkUkp (5.1)

for k = 1, · · · , K. Then, the precoding matrices set for the next iteration, “p + 1" is

given by

{Ukp+1} = ΠTot({Ukp + η∇Ukp
f({UkpU

H
kp})}) (5.2)

where ΠTot({Vk}) in (5.2) is the projection of {Vk}Kk=1 onto the total constraints set
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CTot, and η is a randomly chosen fixed step size parameter for all MSs and iterations.

3. Stopping Criterion: Stop the algorithm when

‖Ukp+1 −Ukp‖F ≤ ε,∀k = 1, · · · , K. (5.3)

where ‖.‖F in (5.3) denotes the frobenius norm of a matrix. Typically, we choose ε in

the order of 10−3.

4. Optimal Solution: The optimal downlink transmit covariance matrices are given

by

Q∗k = Ukp+1U
H
kp+1

, ∀k = 1, · · · , K. (5.4)

and the corresponding maximum weighted sum-rate is given by

C = f({Q∗k}) =
K∑
k=1

wk log |I + HkQ
∗
kH

H
k | (5.5)

Note that (5.1) follows from the fact in (Petersen et al., 2008) that ∇Uh(Q)|Q=UUH =

2 ∇Qh(Q)U|Q=UUH and ∇Qh(Q) = HH
(
I + HQHH

)−1
H when h(Q) = log |I +

HQHH |. (5.4),(5.5) follow directly from the basic definitions of precoding matrix and

capacity(weighted sum-rate).

5.5 Initialisation Step in the PFGD Algorithm

The following remark discusses the initialization step in the PFGD algorithm.

Remark 7(Initialization of Precoding Matrices): Initialization of {Uk} is done as

previously suggested in (Chaluvadi et al., 2018; Park et al., 2016). Let

Xk0 =
1

‖∇Qk
f({0})−∇Qk

f({e1eH1 })‖F
Π+(∇Qk

f({0})) (5.6)

for k = 1, · · · , K where Π+(R) is the projection of R onto the positive semi-

definite (PSD) matrices set.

In this scenario, Π+(∇Qk
f({0})) = wkHkH

H
k � 0. Note that e1 = [1, 0, · · · , 0]T ∈

CM×1.
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Next, we need to compute a square root of Xk0 i.e., we have to find a Ũk0 such that

Xk0 = Ũk0Ũ
H
k0

is satisfied for k = 1, · · · , K.

Finally, we find the initial precoding matrices by projecting {Ũk0} onto the total

constraint set CTot, i.e., {Ũk0} = ΠTot({Ũk0}).

5.6 Procedure to describe the projection of a set of ma-

trices onto the Total Constraints Set CTot

We are now ready to describe the projection of a set of matrices {Vk}Kk=1 onto the total

constraints set CTot. The step by step procedure is given below.

1. First, we discuss the projection of {Vk} onto the BD precoding constraints set,

CBD using linear least squares technique in section 5.7.

2. Then, we discuss the projection of {Vk} onto the Joint-SPC-PBPC power con-

straints set, CJ−SB by minimizing the total linear least squares error in section 5.8.

3. Next, we use the projection of {Vk} onto Joint-SPC-PBPC constraints set as a

vehicle in an algorithm to be proposed in section 5.9 that obtains the projection onto

Joint-SPC-PBPC-PAPC power constraints set.

4. Now, we have the projections of {Vk} onto CBD and CJ−SBA in our hand sep-

arately. Moreover, both CJ−SBA and CBD are convex sets over the precoding matrices

set {Uk}Kk=1.

5. However, we want the projection of {Vk} onto CTot which is the intersection

of two convex sets, CBD and CJ−SBA. Hence, in section 5.10, we present Dykstra’s

projection algorithm (Bauschke and Borwein, 1994) which helps us find a projection in

the intersection of two convex sets numerically thus giving us the projection of {Vk}

onto CTot.
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5.7 Projection Onto BD Precoding Constraints Set

To find the projection of {Vk}Kk=1 onto the BD precoding constraints set, we must find

a set of matrices {UBD
k }Kk=1 in CBD that satisfies the following: GkU

BD
k = 0,∀k =

1, · · · , K. We have already seen in Lemma 1 that the precoding matrix structure for the

k-th MS obtained after eliminating the BD precoding constraints is given by UBD
k =

Bk0T
BD
k where TBD

k ∈ C(M−L)×R. We also note that rank(TBD
k ) = min(M − L,R) =

R since M − L = M −N(K − 1) > N ≥ R (because M ≥ NK).

Next, we find {TBD
k }Kk=1 by posing the following least squares problems which

ensure that {UBD
k } is the closest to {Vk} in CBD.

TBD
k = argmin

{tkj }

R∑
j=1

‖Bk0tkj − vkj‖2 ∀k = 1, · · · , K. (5.7)

where tkj and vkj are the j-th columns of the matrices Tk and Vk respectively.

The following theorem gives us {UBD
k }Kk=1, the projection of {Vk}Kk=1 onto the BD

precoding constraints set, CBD.

Theorem 4 The projection of a set of matrices {Vk}Kk=1 onto the BD precoding con-

straints set CBD is given by

UBD
k = Bk0B

H
k0

Vk, ∀k = 1, · · · , K. (5.8)

Proof: Please refer to Appendix F.
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5.8 Projection Onto Joint-SPC-PBPC Constraints Set

Our goal is to find a set of matrices {UJ−SB
k }Kk=1 from CJ−SB that are closest to {Vk}.

Towards this end, we formulate the following problem.

(P10) :

min
{ukl}

K∑
k=1

M∑
l=1

‖ukl − vkl‖2

s.t.
K∑
k=1

M∑
l=1

‖ukl‖2 ≤ Psum

K∑
k=1

∑
l∈I(a)

‖ukl‖2 ≤ P̃a, a = 1, · · · , A

So, we conclude that the optimal primal variables obtained after solving the above

problem (P10 )are the required {UJ−SB
k }. Also, (P10) is a convex optimization problem

since the objective is a convex function over {ukl} and the Joint-SPC-PBPC power

constraints form a convex set over {ukl}. In fact, the SPC and PBPC in (P10) are norm

balls over {ukl} and hence generate a convex set. By introducing a set of non-negative

dual variables, γ, {λa}Aa=1, associated with sum power constraint and per-BS power

constraints respectively ,the Lagrangain function of (P10) can be written as

L(ukl , γ, {λa}) =
K∑
k=1

M∑
l=1

‖ukl − vkl‖2

+γ
( K∑
k=1

M∑
l=1

‖ukl‖2 − Psum
)

+
A∑
a=1

λa

( K∑
k=1

∑
l∈I(a)

‖ukl‖2 − P̃a
)

(5.9)

In (P10), the objective function and the constraints are smooth, the slater’s con-

ditions are satisfied and strong duality holds i.e, the duality gap between the primal

and dual objective functions of (P10) is zero. Therefore, all the assumptions required

for KKT conditions to be valid are active. From the KKT conditions (Boyd and Van-

denberghe, 2004), we know that the optimal primal variables {u∗kl} minimizes the La-

grangian function at optimal dual variables i.e.,

∇ukl
L(ukl , γ

∗, {λ∗a})
∣∣∣
u∗kl

= 0, ∀k, l (5.10)
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Solving (5.10), we observe that each row u∗kl ,∀k = 1, · · · , K and ∀l = 1, · · · ,M

is a scaled version of the original row vkl i.e., we get

u∗kl =
vkl

1 + γ∗ + λ∗a
, l ∈ I(a).

For finding the projection of {Vk}Kk=1 onto Joint-SPC-PBPC power constraints

set CJ−SB, we arrange the Base Stations (indexed by “a”) in the ascending order of
P̃a∑K

k=1

∑
l∈I(a) ‖vkl‖

2
and place them in an ordered set ∆ where vkl denotes the l-th row of

Vk, I(a) = {(a − 1)MB + 1, · · · , aMB} and ∆(j) for j = 1, · · · , A denotes the j-th

element of ∆.

The following theorem gives us {UJ−SB
k }Kk=1, the projection of {Vk}Kk=1 onto the

Joint-SPC-PBPC constraints set, CJ−SB.

Theorem 5 Let {UJ−SB
k }Kk=1 be the projection of {Vk}Kk=1 onto the Joint-SPC-PBPC

constraints set, CJ−SB. Then, each row uJ−SBkl
of the matrix UJ−SB

k is a scaled version

of the original row vkl of the matrix Vk i.e.,

uJ−SBkl
= ξlvkl , ∀k, l (5.11)

where

ξl =

√√√√ P̃a∑K
k=1

∑
l∈I(a) ‖vkl‖2

(5.12)

for l ∈ I(a), a ∈ {∆(1), · · · ,∆(m)} and

ξl = ξ =

√√√√ Psum −
∑∆(m)

a=∆(1) P̃a∑K
k=1

∑∆(A)
a=∆(m+1)

∑
l∈I(a) ‖vkl‖2

(5.13)

for l ∈ I(a), a ∈ {∆(m+1), · · · ,∆(A)}wherem is the least element in {0, 1, 2, · · · , A−

1} such that

P̃∆(m+1)∑K
k=1

∑
l∈I(∆(m+1)) ‖vkl‖2

≥
Psum −

∑∆(m)
a=∆(1) P̃a∑K

k=1

∑∆(A)
a=∆(m+1)

∑
l∈I(a) ‖vkl‖2

(5.14)

Note that the scaling factor ξl is independent of k always and independent of l also

when a ∈ {∆(m+ 1), · · · ,∆(A)}.
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Proof: Please refer to Appendix G.

Therefore, we can conclude that

UJ−SB
k = ΞJ−SBVk, ∀k = 1, · · · , K. (5.15)

where ΞJ−SB = Diag(ξ1, · · · , ξM) in (5.15).

5.9 Projection Onto Joint-SPC-PBPC-PAPC Constraints

Set

First and foremost, we note from Theorem 5 that each row uJ−SBkl
of the matrix UJ−SB

k

obtained after projection onto Joint-SPC-PBPC power constraints set is just a scaled

version of the row vkl of the matrix Vk before projection. Therefore, the key idea here is

to find the projection onto CJ−SB first and then check if the set of rows {uJ−SBki
}Kk=1∀i =

1, · · · ,M violate PAPC .

If the PAPC constraint corresponding to the antenna “i" is violated, then we must

scale these rows {uJ−SBki
}Kk=1 appropriately such that the sum of their norms is equal

to the PAPC constraint P̂i and the scaled {uJ−SBki
}Kk=1 will be our new projection onto

CJ−SBA, {uJ−SBAki
}Kk=1. The justification for the above scaling is provided by the fol-

lowing lemma inspired from Lemma 2 in both (Le Cao and Oechtering, 2017; Chaluvadi

et al., 2018).

Lemma 4 Denote Z = {1, · · · ,M}. Let C ⊆ Z, and S(C) :=
{

{uJ−SBki
}Kk=1:∑K

k=1 ‖u
J−SB
ki

‖2 ≤ P̂i,∀i ∈ C
}

. Let D :=
{
i ∈ Z\C :

∑K
k=1 ‖u

J−SB
ki

‖2 > P̂i

}
. Let

P
S(Z)
i denote the optimal power allocation under the per-antenna power constraints set

S(Z). Note that Z = C ∪D. If D 6= ∅, then P S(Z)
i = P̂i,∀i ∈ D.

Proof: Please refer to Lemma 2 in (Chaluvadi et al., 2018).

Therefore, once the PAPC have been checked for violation by the Joint-SPC-PBPC

projection, we know that the optimal power under Joint-SPC-PBPC-PAPC for atleast

one antenna. Next, we can remove the transmit antennas whose optimal power have
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been determined and formulate a new Joint-SPC-PBPC problem by modifying Psum, P̃a

and I(a),∀a = 1, · · · , A as described in the algortihm below. We determine the optimal

Joint-SPC-PBPC-PAPC projection in atmost M steps repeating the above steps.

DenoteG = {1, · · · , A}, I(a) = {(a−1)MB+1, · · · , aMB} andZ = {1, · · · ,M}.

The algorithm to obtain projection of {Vk}Kk=1 onto CJ−SBA is explained in the follow-

ing steps:

1. Repeat: Compute the per-antenna powers allocated for {uJ−SBki
}Kk=1 i.e., P J−SB

i =∑K
k=1 ‖u

J−SB
ki

‖2,∀i ∈ Z.

2. Check for PAPC Violation: Check if for any i ∈ Z, P J−SB
i > P̂i.

• If No: Output the projection of {Vk} onto the Joint-SPC-PBPC-PAPC con-
straints set, CJ−SBA as

UJ−SBA
k = ΞJ−SBVk, ∀k = 1, · · · , K.

• If Yes:
– Set Pa = {j ∈ I(a) : P J−SB

j > P̂j},∀a ∈ G.

– Allocate optimal per-antenna powers for projection onto CJ−SBA as P J−SBA
i ←

P̂i,∀i ∈ Pa, ∀a ∈ G.

– This means ∀i ∈ Pa,∀a ∈ G, we have to update the scaling factor as

ξJ−SBAi = ξJ−SBi

√
P̂i

P J−SB
i

– Formulate Joint-SPC-PBPC problem for the remaining antennas by updat-
ing as follows:
i. Z = Z\{Pa, a ∈ G}.
ii. Hk = [hki ]i∈Z ,∀k = 1, · · · , K.
iii. Psum ← Psum −

∑
a∈G

∑
i∈Pa P̂i.

iv. P̃a ← P̃a −
∑

i∈Pa P̂i,∀a ∈ G.
v. Go back to the step “Repeat" and solve the reduced size problem.

5.10 Dykstra’s Projection Onto Total Constraints Set

We have the projections of {Vk}Kk=1 onto two convex sets CBD and CJ−SBA separately

in our hand now. Dykstra’s projection algorithm finds for each set of matrices {Vk}Kk=1,
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the only {UTot
k }Kk=1 ∈ CBD ∩ CJ−SBA = CTot numerically such that:

K∑
k=1

M∑
l=1

||uTotkl
− vkl ||2 ≤

K∑
k=1

M∑
l=1

||ukl − vkl ||2 (5.16)

The above problem in (5.16) is equivalent to finding the projection of {Vk}Kk=1 onto

CBD ∩ CJ−SBA = CTot, which we have already denoted by {UTot
k }Kk=1. The Dykstra’s

projection algorithm is described in the following steps:

1. Initialize Xk0 = Vk,Pk0 = Qk0 = 0,∀k = 1, · · · , K.

2. Update: At the p-th iteration,

• {Ykp}Kk=1 = ΠJ−SBA({Xkp + Pkp}Kk=1).

• Pkp+1 = Xkp + Pkp −Ykp ,∀k = 1, · · · , K.

• {Xkp+1}Kk=1 = ΠBD({Ykp + Qkp}Kk=1).

• Qkp+1 = Ykp + Qkp −Xkp+1 , ∀k = 1, · · · , K.

where ΠBD(.) and ΠJ−SBA denote the projections onto BD precoding constraints

set and Joint-SPC-PBPC-PAPC power constraints set respectively.

3. Stopping Criterion: Stop the algorithm when

‖Xkp+1 −Xkp‖F ≤ ε,∀k = 1, · · · , K. (5.17)

where ‖.‖F in (5.17) denotes the frobenius norm of a matrix. Typically, we choose ε in

the order of 10−3.

4. The Final Projection: Therefore, the final projection of {Vk}Kk=1 onto CTot =

CBD ∩ CJ−SBA is given by

UTot
k = Xkp+1 ,∀k = 1, · · · , K.
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CHAPTER 6

NUMERICAL RESULTS

In this chapter, we provide numerical examples to illustrate the results in the paper.

For the purpose of exposition, we assume the downlink channels Hk’s in (2.1) to be

independent over k, and all the elements in each Hk to be independent CSCG random

variables with zero mean and unit variance. Moreover, we consider the sum-rate max-

imisation for the fully cooperative multi-cell downlink transmission system, i.e., wk’s

are all equal to one in (P1)-(P10). In the following sections, we present the obtained

simulation results along with related discussions.

6.1 Convergence Behavior

6.1.1 Convergence Behavior of Dykstra’s Projection Algorithm

In Fig. 6.1, we show the convergence behavior of Dykstra’s projection algorithm for

obtaining the projection onto CTot = CBD ∩ CJ−SBA. We assume that A = 4,MB =

3, K = 4, N = 2. The transmit power constraint for each antenna is P̂i = 1W . The

transmit power constraint for each base station is considered P̃a = MBP̂i
1.1

and the sum

power constraint is then taken as Psum = AMBP̂i
(1.1)2 keeping in mind, the sufficient con-

ditions on power constraints in (3.4). The error b/w two consecutive projections in the

frobenius norm sense is shown against different iterations for all the four MSs in the

system. As observed, the error converges to prescribed accuracy of 10−3 within almost

10 iterations.

6.1.2 Convergence Behavior of PFGD Algorithm

In Fig. 6.2, we show the convergence behavior of PFGD algorithm for obtaining the

optimal precoding matrices that maximise the sum-rate under Joint-SPC-PBPC-PAPC.

We assume that A = 4,MB = 3, K = 4, N = 2, Rank = R = 2. We have chosen
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Figure 6.1: A = 4,MB = 3, K = 4, N = 2 & P̂i = 1W , P̃a = MBP̂i
1.1

, Psum = AMBP̂i
(1.1)2

η = 2, the fixed step-size parameter in a trial and error method. The transmit power

constraint for each antenna is P̂i = 1W . The transmit power constraint for each base

station is considered P̃a = MBP̂i
1.1

and the sum power constraint is then taken as Psum =

AMBP̂i
(1.1)2 keeping in mind, the sufficient conditions on power constraints in (3.4). The

error b/w two consecutive precoding matrices in the frobenius norm sense is shown

against different iterations for all the four MSs in the system. As observed, the error

converges to prescribed accuracy of 10−3 within almost 7-8 iterations. Therefore, we

observe that the convergence behavior is good even though there is no strong therotitical

claim supporting this kind of convergence. In (Chaluvadi et al., 2018), the authors have

proved a local convergence gurantee for PFGD algorithm in SU-MIMO BC case under

Joint-SPC-PBPC-PAPC and rank constraints (no BD precoding in this case).

6.1.3 Comments on Complexity of the PFGD Algorithm

In every iteration of the PFGD algorithm, we have to find “K" gradients and do a projec-

tion step. The dominant computations are the gradient computations and the projections

onto BD precoding constraints set, CBD since the projections onto CJ−SBA are mainly

scaling operations. Gradient,∇Ukp
f({UkpU

H
kp
}) = 2wkH

H
k (IN+HkUkp(HkUkp)

H)−1HkUkp

can be written as∇Ukp
f({UkpU

H
kp
}) = 2wkH

H
k (HkUkp)(IR+(HkUkp)

H(HkUkp))
−1

using matrix inversion lemma to reduce complexity as R ≤ N .
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(1.1)2

& η = 2

Finding the gradient involves finding inverse of a R × R matrix and multiplication

of M × N,N ×M,M × R,R × R matrices and a scalar multiplication which can be

ignored for now (as wk = 1). Finding the projection onto CBD involves finding the

multiplication of M× (M−L), (M−L)×M,M×R matrices. Complexity of inverse

operation for an R × R matrix is 6(2R3) flops and multiplication of M × R matrix,

R × L matrix is 6(2MRL) flops (Golub and Van Loan, 2012). Also, we count every

complex operation as 6 real flops.

Therefore, complexity of PFGD algorithm is given by 6K(2R3 + 2MR(R+ 2N) +

2M2(M − L + R)) per iteration where L = N(K − 1). Note that the complexity of

the optimal algorithm (A1) in full rank case requires more multiplications as SVD’s are

involved.
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6.2 MU-MISO BC with Joint-SPC-PAPC - Comparison

of (A1) and (A2) performance

6.2.1 Case Study 1

Next, we consider a special case of the fully cooperative multi-cell downlink transmiss-

sion system with MB = N = 1, which is equivalent to a MU-MISO BC with the

corresponding Joint-SPC-PAPC power constraints. We assume that K = 2 and vary

the number of transmitting antennas from 2 to 10. The transmit power constraint for

each antenna is assumed to be P̂i = 1.25W . The sum power constraint is then taken

as Psum = AMBP̂i
1.25

keeping in mind, the sufficient conditions on power constraints in

(3.4). In Fig. 6.3, we compare the achievable sum-rate averaged over 1000 random net-

work simulations with the optimal ZF-BF precoder obtained by (A1) against that with

the suboptimal precoder obtained by (A2). It is observed that when M = K = 2, the

achievable rates for both the optimal and suboptimal precoders are identical, which is

in accordance with our discussion in Remark 6, Chapter 4. We can also observe that

when M > K, the sum-rate gain of the optimal precoder solution over the suboptimal

solution increases with M .
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6.2.2 Case Study 2

We also consider another special case of the fully cooperative multi-cell downlink trans-

misssion system with MB = N = 1, which is equivalent to a MU-MISO BC with the

corresponding Joint-SPC-PAPC power constraints. This time, we assume that K = 4

and vary the number of transmitting antennas from 4 to 12. The transmit power con-

straint for each antenna is assumed to be P̂i = 1.25W . The sum power constraint is then

taken as Psum = AMBP̂i
1.25

keeping in mind, the sufficient conditions on power constraints

in (3.4). In Fig. 6.4, we compare the achievable sum-rate averaged over 1000 random

network simulations with the optimal ZF-BF precoder obtained by (A1) against that

with the suboptimal precoder obtained by (A2). It is observed that when M = K = 4,

the achievable rates for both the optimal and suboptimal precoders are identical, which

is in accordance with our discussion in Remark 6, Chapter 4. We can also observe that

when M > K, the sum-rate gain of the optimal precoder solution over the suboptimal

solution increases with M .

Therefore, we can conclude that our observations in both the case studies have been

consistent.
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6.3 MU-MIMO BC with Joint-SPC-PBPC-PAPC - Com-

parison of (A1), (A2), PFGD (A3) and CVX perfor-

mance

6.3.1 Case Study 1

We consider the case of multi-antenna MS receivers. For the corresponding auxil-

iary BC, we assume that A = 4,MB = 3, K = 4, N = 2. Also, we maintain

P̂i = P̂ ,∀i; P̃a = MBP̂
1.1

,∀a;Psum = AMBP̂
(1.1)2 so that the sufficient conditions for rele-

vant power constraints in (3.4) are satisfied. In Fig. 6.5, we show the achievable sum-

rates for all the optimal (A1), suboptimal (A2) BD precoders, PFGD (A3) algorithm for

both Rank-2 and Rank-1 cases and Standard CVX package vs. the per-antenna transmit

power constraint P . We vary P from 0 to 20 dB. It is observed that optimal BD pre-

coder solution (A1), PFGD - Full Rank Case (Rank = 2) and Standard CVX package

achieve the same sum-rates. We observe that although the optimal precoder solution

still performs better than the suboptimal one, their rate gap is not large. Furthermore,

the PFGD - Rank 1 case performs much worse than the remaining schemes as expected.
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6.3.2 Case Study 2

Next, we consider another case of MU-MIMO BC. We assume that A = 3,MB =

3, K = 3, N = 2. Also, we maintain P̂i = P̂ , ∀i; P̃a = MBP̂
1.1

,∀a;Psum = AMBP̂
(1.1)2 so

that the sufficient conditions for relevant power constraints in (3.4) are satisfied. In Fig.

6.6, we show the achievable sum-rates for all the optimal (A1), suboptimal (A2) BD

precoders, PFGD (A3) algorithm for both Rank-2 and Rank-1 cases and Standard CVX

package vs. the per-antenna transmit power constraint P . We vary P from 0 to 20 dB.

It is again observed that optimal BD precoder solution (A1), PFGD - Full Rank Case

(Rank = 2) and Standard CVX package achieve the same sum-rates. We also observe

that although the optimal precoder solution still performs better than the suboptimal

one, their rate gap is not large. Furthermore, the PFGD - Rank 1 case performs much

worse than the remaining schemes as expected.

Therefore, the observations in both the case studies have been consistent.
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6.4 MU-MIMO BC with Joint-SPC-PBPC-PAPC - Com-

parison of PFGD (A3) performance under different

rank constraints

6.4.1 Case Study 1

We consider the case of an auxiliary MU-MIMO BC where we assume A = 4,MB =

4, K = 4, N = 4. Since N = 4, we can vary the rank of the precoding matrices from 1

to 4. Also, we maintain P̂i = P̂ ,∀i; P̃a = MBP̂
1.1

,∀a;Psum = AMBP̂
(1.1)2 so that the sufficient

conditions for relevant power constraints in (3.4) are satisfied. In Fig. 6.7, we show the

achievable sum-rates for the PFGD (A3) algorithm for all the four possible ranks vs. the

per-antenna transmit power constraint P . We vary P from -10 to 30 dB. Furthermore,

the PFGD (A3) performance for a higher rank is always superior to a lower rank in high

SNR conditions (high values of P, i.e., P > -5). However, in low SNR conditions (low

values of P, i.e., P < -5), the PFGD (A3) performance is almost the same for all the four

possible ranks.
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6.4.2 Case Study 2

Next, we consider another case of an auxiliary MU-MIMO BC where we assume A =

4,MB = 5, K = 4, N = 4. Since N = 4, we can vary the rank of the precoding

matrices from 2 to 4. Also, we maintain P̂i = P̂ ,∀i; P̃a = MBP̂
1.1

,∀a;Psum = AMBP̂
(1.1)2

so that the sufficient conditions for relevant power constraints in (3.4) are satisfied. In

Fig. 6.8, we show the achievable sum-rates for the PFGD (A3) algorithm for all the

three chosen ranks (R = 2, 3, 4) vs. the per-antenna transmit power constraint P . We

vary P from -10 to 30 dB. Furthermore, the PFGD (A3) performance for a higher rank

is always superior to a lower rank in high SNR conditions (high values of P, i.e., P >

-5). However, in low SNR conditions (low values of P, i.e., P < -5), the PFGD (A3)

performance is almost the same for all the four possible ranks.

Therefore, we see that the observations have been consistent in both the case studies.
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CHAPTER 7

SUMMARY

This paper obtains the optimal transmission scheme for a fully cooperative multi-cell

system (with multiple users) that can be modeled as an auxiliary MU-MIMO BC under

Block Diagonalisation (BD) precoding constraints and multiple simulataneous power

constraints such as sum, per-base station and per-antenna power constraints (Joint-SPC-

PBPC-PAPC) with and without constraints on the number of spatial multiplexing data

streams available for each MS (rank constraints). By applying linear algebra and convex

optimization techniques, this paper derives the closed form expression for the optimal

transmit covariance matrices corresponding to all the users to maximize the weighted

sum-rate in the multi-cell system without rank constraints. In this case, the optimal

BD precoding vectors for each user are shown to be non-orthogonal in general, which

differs from the conventional orthogonal precoder design for the sum-power constraint

case where the optimal zero-forcing beamforming vectors are orthogonal. A suboptimal

heuristic method method is also proposed, which combines the conventional orthogonal

BD precoder design with an optimised power allocation to meet the Joint-SPC-PBPC-

PAPC. Furthermore, this paper shows that the proposed optimal BD precoder solution

reduces down to the optimal zero-forcing beamforming (ZF-BF) solution for the spe-

cial case of MU-MISO BC under Joint-SPC-PAPC. Since analytical solutions are not

possible for the general MU-MIMO case, this paper proposes a Projected Factored Gra-

dient Descent (PFGD) algorithm to find the optimal precoding matrices that maximize

the weighted sum-rate of all the users in the multi-cell system under BD precoding

and Joint-SPC-PBPC-PAPC along with rank constraints on transmit covariance matri-

ces numerically. The proposed PFGD algorithm is extremely advantageous for finding

optimal transmission strategies under low rank constraints and also preferred over the

optimal algorithm proposed earlier in the full-rank case owing to it’s very low imple-

mentation complexity.



APPENDIX

A. Proof of Lemma 1

We first argue that Bk0 forms an orthogonal basis for the null-space of Gk. We already

know that the rank of the matrix Gk ∈ CL×M is min(L,M ) =L = N(K−1). Therefore,

null(Gk) must have (M − L) M × 1 orthogonal basis vectors. From the fact that Bk is

a unitary matrix, we can easily derive the following.

BkB
H
k = I⇐⇒ Bk1B

H
k1

+ Bk0B
H
k0

= I

BH
k Bk = I⇐⇒ BH

k1
Bk1 = BH

k0
Bk0 = I

BH
k1

Bk0 = BH
k0

Bk1 = 0
(7.1)

Recall from the BD precoding constraints in (P2) that HjUk = 0,∀j 6= k directly

implies GkUk = 0. This means that Uk must lie in the null-space of Gk. Now, consider

the product GkBk0 = AkΣkpB
H
k1

Bk0 = 0 from (7.1). This proves the argument that Bk0

= null(Gk). So, we can express the optimal solution for Uk in the following form.

Uk = Bk0Tk (7.2)

where Tk ∈ C(M−L)×Rk is an arbitrary matrix with rank(Tk) = min(M − L,Rk) = Rk

(since M − L = M − N(K − 1) ≥ N ≥ Rk). From (7.2), it is very simple now to

see that the optimal transmit covariance matrix Qk takes the following form after the

elimination of BD precoding constraints.

Qk = UkU
H
k = Bk0TkT

H
k BH

k0
= Bk0SkB

H
k0

(7.3)

where Sk ∈ C(M−L)×(M−L) with rank(Sk) = Rk is evidently a positive semi-definite

matrix from it’s structure (Sk = TkT
H
k ). Lemma 1 thus follows.
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B. Proof of Lemma 2

We prove Lemma 2 by contradiction. We know that if Qk1 − Qk2 is positive definite,

then Qk1 � Qk2 . Let us define f(Qk) = wk log |I + HkQkH
H
k | with wk > 0 as

previously mentioned in our discussion. Now, f(Qk) is monotonic with respect to Qk

i.e., f(Qk1) > f(Qk2) if Qk1 � Qk2 . Also, the total capacity is given by
∑K

k=1 f(Qk).

Suppose all the available power is not used by the optimal transmit covariance matrices

set {Q∗k} i.e.,
∑K

k=1 Tr(Q∗k) < Psum then we can find a new set of transmit covaraince

matrices {Qk} that uses full sum power i.e.,
∑K

k=1 Tr(Qk) = Psum satisfying Qk �

Q∗k,∀k = 1, · · · , K. This means f(Qk) > f(Q∗k),∀k and we can write
∑K

k=1 f(Qk) >∑K
k=1 f(Q∗k). Obviously, it leads to a contradiction that the total capacity achieved

by the optimal set {Q∗k} is less than the total capacity achieved by the set of transmit

covariance matrices {Qk}. Hence, we conclude that the optimal transmission strategy

makes the sum power constraint tight given the sufficient conditions in (3.4). Lemma 2

thus follows.

C. Proof of Lemma 3

We prove Lemma 3 by contradiction. Suppose γ = 0 and there exist a number of

strictly positive λa’s and µi’s such that rank(Bγλµ) < M − N(K − 1). Since L =

N(K − 1), we can write rank(Bγλµ) < (M − L). This also validates the fact that

γ = 0 because otherwise the rank(Bγλµ) = M ≥ (M − L). Let S denote the set

consisting of the indices corresponding to all the strictly positive λa’s and µi’s i.e., if

λa > 0 for any a ∈ {1, · · · , A} and µi > 0 for any i ∈ {1, · · · ,M}, then {(a −

1)MB + 1, · · · , aMB}, i ∈ S. Note that the cardinality of the set S is denoted by

|S| = rank(Bγλµ). Let Ek(S) and Fk(S
c) denote the matrices consisting of the rows in

Bk0 ∈ CM×(M−L) with the row indices given by the elements in S and Sc, respectively.

Here, Sc denotes the complement of set S. Note that |S|+ |Sc| = M and |Sc| > 0 since

|S| = RBγλµ < (M − L) < M . From the facts that Ek(S) ∈ CRBγλµ × (M − L) and

RBγλµ < (M − L), we can say that the null-space of Ek(S) is not empty and hence we

could find a unit vector sk ∈ C(M−L)×1 such that Ek(S)sk = 0 and at the same time

satisfying Fk(S
c)sk 6= 0. Since γ = 0, Bγλµ = Bλµ , Bλ + Bµ. Further, we can
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deduce the following.

Ek(S)sk = 0⇐⇒ BλµBk0sk = 0

Fk(S
c)sk 6= 0⇐⇒ Bk0sk 6= 0

Denote zk = Bk0sk and Hkzk = rk. Note that the indices of the non-zero elements

in zk belong to Sc. Suppose we take the solution of (P4) as S∗k = p(sks
H
k ) with p ≥

0. Substituting this solution for S∗k into the objective function of (P4) gives us the

following.

wk log |I + HkBk0S
∗
kB

H
k0

HH
k | − Tr(BλµBk0S

∗
kB

H
k0

)

= wk log |I + pHkzkz
H
k HH

k |

= wk log |I + prkr
H
k | (7.4)

Provided that rkr
H
k 6= 0, as p → ∞, the value in (7.4) becomes unbounded (which

holds with probability one with independent channel realizations). Therefore, we con-

clude that our presumption that rank(Bγλµ) = RBγλµ < M −N(K − 1) is false in order

to have a bounded objective value for (P4). Lemma 3 thus follows.

D. Proof of Theorem 1

We have to find an optimal S̃∗k that maximizes the objective function in (P5) denoted

by L(S̃k, γ, {λa}, {µi}) for a given set of γ, {λa}, {µi}. Hence, we have to solve the

equation below

∇S̃k
L(S̃k, γ, {λa}, {µi})

∣∣∣
S̃∗k

= 0 (7.5)

The results from (Petersen et al., 2008) on derivatives of traces and determinants of

standard matrix forms have been very helpful to derive the next few steps.

∇S̃k
wk log|I + HkBk0(BH

k0
BγλµBk0)−1/2S̃k×

(BH
k0

BγλµBk0)−1/2BH
k0

HH
k |
∣∣
S̃∗k
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= ∇S̃k
wk log |I + ÂkΣ̂kpB̂

H
k1

S̃kB̂k1Σ̂kpÂ
H
k |
∣∣∣
S̃∗k

(7.6)

= wkB̂k1Σ̂kpÂ
H
k (I + ÂkΣ̂kpB̂

H
k1

S̃∗kB̂k1Σ̂kpÂ
H
k )−1

× ÂkΣ̂kpB̂
H
k1

(7.7)

where (7.6) is obtained by substituting the regular SVD of HkBk0(BH
k0

BγλµBk0)−1/2

in the objective function of (P5) and (7.7) follows from the result in (Petersen et al.,

2008), ∇Q log |I + HQHH | = HH(I + HQHH)−1H. Next, we have from (Petersen

et al., 2008) that

∇S̃k
Tr(S̃k)

∣∣∣
S̃∗k

= I (7.8)

From the equations (7.5, 7.7, 7.8) above, it follows that

wkB̂k1Σ̂kpÂ
H
k (I + ÂkΣ̂kpB̂

H
k1

S̃∗kB̂k1Σ̂kpÂ
H
k )−1

× ÂkΣ̂kpB̂
H
k1

= I (7.9)

We should note that B̂H
k1

B̂k1 = I which has already been proven in Appendix A

of this paper. Âk is a unitary matrix and hence ÂkÂ
H
k = I. Also, Σ̂kp is a diagonal

matrix with only positive singular values as it’s diagonal entries and hence is invertible.

Applying all the above arguments on (7.9), we get

(I + ÂkΣ̂kpB̂
H
k1

S̃∗kB̂k1Σ̂kpÂ
H
k )−1 =

1

wk
ÂkΣ̂

−2
kp

ÂH
k (7.10)

Since Σ̂−2
kp
� 0 (a diagonal matrix with only positive entries in the diagonal),

ÂkΣ̂
−2
kp

ÂH
k � 0 and hence we conclude that ÂkΣ̂

−2
kp

ÂH
k is invertible. Therefore, we

can write from (7.10) as below

I + ÂkΣ̂kpB̂
H
k1

S̃∗kB̂k1Σ̂kpÂ
H
k = wk(ÂkΣ̂

−2
kp

ÂH
k )−1

= wkÂkΣ̂
2
kpÂ

H
k (7.11)

where (7.11) follows from the fact that a unitary matrix Âk satisfies ÂH
k = Â−1

k .
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Further by substituting I = ÂkÂ
H
k in the above equation, we get

ÂkΣ̂kpB̂
H
k1

S̃∗kB̂k1Σ̂kpÂ
H
k = Âk(wkΣ̂

2
kp − I)ÂH

k (7.12)

Using the fact that ÂH
k Âk = I and Σ̂kp is invertible, we can continue from (7.12) to

write as below

B̂H
k1

S̃∗kB̂k1 = wkI− Σ̂−2
kp

(7.13)

Now, we use the fact that B̂H
k1

B̂k1 = I once again to conclude that the optimal

stucture of S̃∗k that satisfies (7.14) is given by

S̃∗k = B̂k1(wkI− Σ̂−2
kp

)B̂H
k1

(7.14)

However, there is a small catch here. We are looking for an optimal S̃∗k that is posi-

tive semi-definite. S̃∗k � 0 iff wkI � Σ̂−2
kp

. We also know that (wkI−Σ̂−2
kp

) is a diagonal

matrix. Therefore, to make this diagonal matrix positive semi-definite, we should allow

only non-negative values into it’s diagonal. Let us define Ωk = Diag(ωk1 , · · · , ωkN )

with ωki given by

ωki =
(
wk −

1

σ̂2
ki

)+

∀i = 1, · · · , N

where (y)+ , max(0, y). Therefore, the optimal solution for problem (P5) is given by

S̃∗k = B̂k1ΩkB̂
H
k1

Theorem 1 thus follows.

E. Proof of Theorem 3

We have to find an optimal ω̄∗ki that maximizes the objective function in (P7) denoted

by L(ω̄ki , γ, {λa}, {µj}) for a given set of γ, {λa}, {µj}. Hence, we have to solve the

equation below
∂

dω̄ki
L(ω̄ki , γ, {λa}, {µj})

∣∣∣∣
ω̄∗ki

= 0 (7.15)
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Therefore, the objective function of (P7) and the equation (7.15) gives us the fol-

lowing.
wk(σ

⊥
ki

)2

1 + (σ⊥ki)
2ω̄∗ki

= fki (7.16)

From (7.16) and the condition that ω̄∗ki must be non-negative, we get

ω̄∗ki =
(wk
fki
− 1

(σ⊥ki)
2

)+

where (y)+ , max(0, y). Theorem 3 thus follows.

F. Proof of Theorem 4

From equation (5.7), it is evident that we have to solve the following equation.

∇tkj

R∑
j=1

‖Bk0tkj − vkj‖2

∣∣∣∣∣
tBDkj

= 0 (7.17)

We know that

‖Bk0tkj − vkj‖2 = (Bk0tkj − vkj)
H(Bk0tkj − vkj) (7.18)

From (7.17) and (7.18), we can write

(tBDkj )HBH
k0

Bk0 = vHkjBk0 (7.19)

Since BH
k0

Bk0 = I, (7.19) reduces down to tBDkj = BH
k0

vkj and hence we can con-

clude that

TBD
k = BH

k0
Vk (7.20)

The fact that the projection is given by UBD
k = Bk0T

BD
k and (7.20) suggest that

UBD
k = Bk0B

H
k0

Vk, ∀k = 1, · · · , K.
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Theorem 4 thus follows.

G. Proof of Theorem 5

We build up the solution uJ−SBkl
from the step below

u∗kl =
vkl

1 + γ∗ + λ∗a
, l ∈ I(a). (7.21)

Now, we have to find (1 + γ∗ + λ∗a), a = 1, · · · , A to complete the solution. We

consider two cases.

(i) λ∗a > 0 for Base Station “a": From complementary slackness theorem, one of the

KKT conditions (Boyd and Vandenberghe, 2004), we have that

λ∗a

( K∑
k=1

∑
l∈I(a)

‖u∗kl‖
2 − P̃a

)
= 0 (7.22)

From the condition λ∗a > 0, (7.21) and (7.22), it is clearly evident that

1

1 + γ∗ + λ∗a
= ξl, l ∈ I(a), ∀a : λ∗a > 0.

=

√√√√ P̃a∑K
k=1

∑
l∈I(a) ‖vkl‖2

(7.23)

Also, we should note that since λ∗a > 0,

P̃a∑K
k=1

∑
l∈I(a) ‖vkl‖2

<
1

(1 + γ∗)2
, ∀a : λ∗a > 0 (7.24)

(ii) λ∗a = 0 for Base Station “a": In this case, firstly the optimal u∗kl is given as

u∗kl =
vkl

1 + γ∗
, l ∈ I(a) : λ∗a = 0. (7.25)
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From the Per-Base Station power constraints, we have

K∑
k=1

∑
l∈I(a)

‖u∗kl‖
2 ≤ P̃a, ∀a = 1, · · · , A. (7.26)

From (7.25) and (7.26), we can conclude that

1

(1 + γ∗)2
≤ P̃a∑K

k=1

∑
l∈I(a) ‖vkl‖2

, ∀a : λ∗a = 0. (7.27)

Let “m" number of Base Stations satisfy λ∗a > 0 amomg a total of A BSs. The rest

of the “A−m" Base Stations satisfy λ∗a = 0.

Given the arrangement of Base Stations in the ordered set ∆ and a careful observa-

tion of the two equations (7.24) and (7.27), BSs corresponding to first m elements in

∆ will satisfy λ∗a > 0 and the BSs corresponding to the last A−m elements in ∆ will

satisfy λ∗a = 0.

Moreover, the sufficient conditions in (3.4) suggest that Psum ≤
∑A

a=1 P̃a. We have

also proved that the optimal {u∗kl} utilises the full available sum power in Lemma 2.

Therefore, we have

K∑
k=1

∆(m)∑
a=∆(1)

∑
l∈I(a)

‖u∗kl‖
2 +

K∑
k=1

∆(A)∑
a=∆(m+1)

∑
l∈I(a)

‖u∗kl‖
2

= Psum

(7.28)

Since λ∗a > 0 for a ∈ {∆(1), · · · ,∆(m)} and due to the virtue of complementary

slackness condition in (7.22), we can conclude that

K∑
k=1

∆(m)∑
a=∆(1)

∑
l∈I(a)

‖u∗kl‖
2 =

∆(m)∑
a=∆(1)

P̃a (7.29)
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From (7.28) and (7.29), we get

1

1 + γ∗
= ξ = ξl, l ∈ I(a) ∀a : λ∗a = 0.

=

√√√√ Psum −
∑∆(m)

a=∆(1) P̃a∑K
k=1

∑∆(A)
a=∆(m+1)

∑
l∈I(a) ‖vkl‖2

(7.30)

Now, it is only left to obtain “m". Because of our ordering in the set ∆, we can

argue that “m" is the only solution that satisfies the following two inequalities.

P̃∆(m)∑K
k=1

∑
l∈I(∆(m)) ‖vkl‖2

<
Psum −

∑∆(m)
a=∆(1) P̃a∑K

k=1

∑∆(A)
a=∆(m+1)

∑
l∈I(a) ‖vkl‖2

(7.31)

Psum −
∑∆(m)

a=∆(1) P̃a∑K
k=1

∑∆(A)
a=∆(m+1)

∑
l∈I(a) ‖vkl‖2

≤
P̃∆(m+1)∑K

k=1

∑
l∈I(∆(m+1)) ‖vkl‖2

(7.32)

Because of the ordering of the BSs in ∆, P̃∆(i)∑K
k=1

∑
l∈I(∆(i))

is non-decreasing in i.

Therefore, “m" is the least element i in {0, 1, 2, · · · , A − 1} that satisfies (7.32). “m"

is also the highest element i in {0, 1, 2, · · · , A− 1} that satisfies (7.31).

We specifically note that m = A− 1 satisfies (7.32) since we have already imposed

the condition, Psum ≤
∑A

a=1 P̃a. Therefore, we conclude that there exists atleast one

solution for “m" in {0, 1, 2, · · · , A− 1}.
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