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ABSTRACT 

 

KEYWORDS:  Iterative learning control, Asymptotic stability, Performance,                                  

                           transient response, Robustness. 

 

Iterative learning control (ILC) is a technique for improving the transient 

response and tracking performance of process, machines or systems that execute 

the same trajectory over and over under same operating conditions. The objective 

of ILC is to improve performance by incorporating error information into the 

control for subsequent iterations. In ILC, improvements are made to the input 

signal after each trial until desired output is acquired. 

The outline of this thesis is separated into four major parts. These are system 

representation, analysis, design and implementation example. ILC systems are 

developed using mainly two representations, Time domain and Frequency 

domain. The Analysis section deals with four basic consequential topics are 

stability, performance, Transient learning behaviour and robustness. 

We analyse the four different design methods, PD type, plant inversion, H∞ and 

quadratically optimal control. Finally, the design and implementation of an ILC 

controller for microscale robotic deposition. 
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                                  CHAPTER I 

                              INTRODUCTION 

 

Iterative learning control is based on the notion that the performance of a system that executes 

the same task multiple times can be improved by learning from previous executions. For 

example, a basketball player shooting a free throw from a fixed position and an industrial robot 

that has to repeat the same task. 

ILC is closely related to repetitive control and periodic control. Repetitive control is intended 

for continuous operation whereas ILC is intended for discrete type. Discrete type is natural 

domain for ILC because it clearly requires the storage of past iteration data, which is typically 

sampled. 

            The difference between Repetitive and ILC is the setting of initial conditions for each 

trial. In ILC, the initial conditions are set to same value on each trial where as in RC, the initial 

condition are set to the final conditions of previous trial. The resetting of initial conditions 

differences leads to different analysis methods and different results. 

The goal of ILC is to generate a feedforward control that tracks a specific reference or rejects 

a repetitive disturbance. ILC approach is motivated by the observation that, if the system 

controller is fixed and initial conditions remains same each time it executes, then any errors in 

the output response will be repeated during each operation. 

The main Objective of ILC is to improve the performance by incorporating error information 

into the control for the succeeding iterations and achieve high performance with low tracking 

error despite large model uncertainties and repeating disturbances. 

 ILC finds its use in Industrial applications where mass production requires repetition. ILC 

algorithm can also be applied to the systems that do not have identical repetition, but where the 

different tasks can be equalized by a time scale formation. 
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ILC Vs Feedback and Feed forward design 

Feedback control: 

A feedback control reacts to inputs and disturbances, and therefore always has a lag in 

transient transactions. It can accommodate variations or uncertainties in the system model. 

Robustness and stability problems can occur. Performance is good at the first trial but there is 

no improvement later on. 

Feed forward: 

Feed forward control can eliminate the transient lag but only for known or measurable signals, 

such as the reference and typically not for disturbances. A feed forward controller performs 

well only to the extent that the system is accurately known. 

ILC: 

It generates a feed forward control that can track a specific reference or rejects a repeating 

disturbance. ILC is anticipatory and can compensate for exogenous signals such as a repeating 

disturbance, in advance by learning from previous iterations. ILC learns feed forward through 

practice and it is highly robust to system uncertainties. 

 

 

 

 

Figure 1.1: An ILC algorithm Block diagram representation 
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ILC System description: 

Consider the following discrete time, LTI, SISO system 

                    yj(k) = p(q) uj(k) + d(k)                (1) 

Where k corresponds to time index and j corresponds to iteration index and 

q is forward time shift operator. 

qx(k) ≡ x(k+1) 

q-1x(k) ≡ x(k-1) 

where yj  is the output; uj is the control input and d is an exogenous signal that repeats after 

each iteration. p(q) is a proportional rational function of q and has a delay, or equivalently of 

relative degree m. we assume P(q) is asymptotically stable. A system delay m = 1 is assumed 

in most of the cases. 

Next consider the N – sample sequence of control inputs, outputs and desired outputs. 

Uj(k), k ∈ {0,1, 2……., N-1} 

yj(k), k ∈ {m, m+1……., N+m-1} 

d(k), k ∈ {m, m+1……, N+m-1} 

yd(k), k ∈ {m, m+1……., N+m-1} 

The performance or error signal is defined as the difference between the desired output and the 

acquired output. It can be written as 

ej(k) = yd(k) – yj(k) 

The Plant can be represented in transition or state space form. Considering non zero initial 

conditions, state space system is preferred. Consider the system 

                                       xj(k+1) = A xj(k) + B uj(k)                               (2) 

 yj(k) = C xj(k) (3) 

With xj (0) = x0, ∀ j 
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The state-space system is equivalent to 

yj(k) = C(q𝐈 − 𝐀)−1B uj(k) + C𝐀kx0 

Where P(q) corresponds to C(q𝐈 − 𝐀)−1B and d(k) corresponds to C𝐀𝑘x0. The signal d(k) is  

the free response to the initial conditions. 

Most popularly used ILC learning algorithm is given by 

                              uj+1(k) = Q(q) [uj(k) + L(q) ej(k+1) ]                         (4) 

From LTI dynamics, Q(q) is defined as Q filter and L(q) is defined as learning function. 

At the end of each iteration, the error is filtered through learning filter and then added to the  

previous control input and passed again through Q-filter. This updated open loop control  

input is applied to the plant in the next iteration.  

  

 

Figure 1.2: A 2D representation of first order ILC system 
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CHAPTER 2 
 

SYSTEM REPRESENTATION 

 

 

Analysis of ILC systems is based on two system representations. 

1. Time domain analysis using the lifted system framework. 

2. Frequency domain analysis using Z – domain representation. 

2.1 Time domain analysis: 

The lifted system framework is based on impulse response representation of system. To get 

lifted system representation, the proportional rational function is expanded as an infinite 

power series by dividing its denominator into its numerator which gives 

p(q) = p1q
-1 + p2q

-2 + p3q
-3 + ……. 

Here the coefficients pk are markov parameters and the sequence p1 , p2 ,… is the impulse 

response. Note that p1 ≠ 0, as m =1 is assumed. 

For the state space description of system (2) and (3), it is given pk = C Ak-1 B. 

N x N dimensional lifted system can be written as: 

[
 
 
 
𝑦𝑗(1)

𝑦𝑗(2)

⋮
𝑦𝑗(𝑛)]

 
 
 

  = [

𝑝1 0 … 0
𝑝2 𝑝1 … 0
⋮ ⋮ ⋱ ⋮

𝑝𝑛 𝑝𝑛−1 … 𝑝1

] 

[
 
 
 
𝑢𝑗(1)

𝑢𝑗(2)

⋮
𝑢𝑗(𝑛)]

 
 
 

 + [

𝑑(1)
𝑑(2)

⋮
𝑑(𝑛)

] 

And the performance signal is 

[
 
 
 
𝑒𝑗(1)

𝑒𝑗(2)

⋮
𝑒𝑗(𝑛)]

 
 
 

 = [

𝑦𝑑(1)
𝑦𝑑(2)

⋮
𝑦𝑑(𝑛)

] −

[
 
 
 
𝑦𝑗(1)

𝑦𝑗(2)

⋮
𝑦𝑗(𝑛)]

 
 
 

 

Remark that if time delay is m > 1, the vectors ej, yj, yd and d change, that is their first 

element is the variable with time index k = m instead of k = 1. Also, the matrix P changes; by 

replacing all the coefficients pi by pm+i-1. 
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The ILC algorithm can also be expressed in lifted system representation. 

Q filter and L(q) can be non-causal functions and their impulse responses are 

Q(q) = q + q0 + q1 q
-1 + Q2 q

-2 + ……… 

L(q) = L0 + L1 q
-1 +L2 q

-2 + ……… 

Uj+1(k) = Q(q) (Uj(k) + L(q) ej(k+1)) 

[
 
 
 

Uj+1(0)

Uj+1(1)

⋮
Uj+1(n − 1)]

 
 
 

  =  [

q0 q−1 ⋯ q−n+1

q1 q0 ⋯ q−n+2

⋮ ⋮ ⋱ ⋮
qn−1 qn−2 ⋯ q0

] 

(

   

[
 
 
 

Uj(0)

Uj(1)

⋮
Uj(n − 1)]

 
 
 

 +

                                  [

L0 L−1 ⋯ L−n+1

L1 L0 ⋯ L−n+2

⋮ ⋮ ⋱ ⋮
Ln−1 Ln−2 ⋯ L0

] 

[
 
 
 
𝑒𝑗(1)

𝑒𝑗(2)

⋮
𝑒𝑗(𝑛)]

 
 
 

)

  

When Q(q)and L(q) are causal filters, then q-1 = q-2 = ……… = 0 and  

L -1 = L -2 = ………. = 0. Also, the matrices Q and L are lower triangular matrices. 

P, Q and L are Toeplitz meaning that all the elements along each diagonal are identical. 

2.2 Frequency domain analysis: 

The Z-transformation of the signal is given by X(z) = ∑ x(k)z−1∞
k=0  and Z transformation of 

the system is obtained by replacing q with z. To apply Z transformations to ILC system we 

assume N = ∞, because Z transform requires that the signal be defined over an infinite time 

horizon. Since all the practical applications of ILC have a finite horizon the Z domain is an 

approximation of ILC system. 

Yj(z) = p(z) Uj(z) + D(z) 

Uj+1 = Q(z) [Uj(z) + z q(z) Ej(z)] 

Ej(z) = yd(z) – yj(z). 
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CHAPTER 3 

ANALYSIS 

 

This section comprises of four basic topics of great importance for understanding ILC 

systems and behaviour. They are Stability, Performance, Transient learning behaviour and 

Robustness. 

3.1 Stability 

If the ILC system is AS then there exists ū ∈ ℝ, Such that 

|uj(k)| ≤  ū 

For all  k = {0, 1, … . , n − 1} and j = {0, 1, ……} 

lim
j→∞

uj(k) exists. 

We define converged control as 

u∞(k) = lim
j→∞

uj(k) 

Yj(k) = p(q) Uj(k) + d(k) 

UJ+1(k) = Q(q) [Uj(k) + L(q) ej(k+1)] 

By Substituting ej = yd – yj in learning algorithm we get  

Uj+1 = Q (I – LP) Uj + QL (yd – d) 

Let ρ(A) = max |λi(A)| be the spectral radius of matrix A and λi(A) be the eigen value of 

matrix A. 
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Theorem 1: 

The ILC system is AS if and only if  

ρ (Q (I – LP)) < 1 

 

When the Q filter and the learning filter are causal, the matrix Q (I – LP) is a lower triangular 

and Toeplitz with repeated eigen values. 

λ = q0 (1- L0 p1) 

|q0(1 − L0 p1)| < 1 

Theorem 2: 

If ‖Q(z)[1 − z L(Z) p(z)]‖∞ < 1 

Then the ILC system with N = ∞ is AS. 

When Q(z) and L(z) are causal filters the above theorem also implies AS for a finite duration 

ILC systems. Their stability conditions are only sufficient and in general much more 

conservative than the need and sufficient condition ρ (Q (I – LP)) < 1. 

3.2 Performance 

Performance of ILC is measured by looking at the asymptotic value of the error. 

e∞ (k) = lim
𝑗→∞

ej(k) 

e∞ (k) = lim
𝑗→∞

(𝑦𝑑(𝑘) − 𝑝(𝑞)𝑢𝑗(𝑘) − 𝑑(𝑘)) 

e∞ (k) = yd(k) – d(k) – p(q) U∞(k) 

If the ILC is AS, then the asymptotic error is 

e∞ = [I – p [I – Q (I – LP)]-1 QL] (yd – d) 

For the lifted system and  

E∞ = 
[1−Q(z)][Yd(z) − D(z)]

1−[Q(z)[1−z L(z) p(z)]]
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for the z domain representation. 

We obtain the above results by replacing the iteration indices with ∞. 

U∞ = Q (I – LP) U∞ + QL (yd – d) 

U∞ = [I – Q (I – LP)]-1 QL] (yd – d) 

Theorem 3: 

Suppose that P and L are not identically zero. 

Then for the ILC system e∞(k)= 0 for all values of k, yd and d, if and only if the system is AS 

and Q(q) = 1. 

Many ILC algorithms set Q(q) = 1 and thus do not include Q filtering and consequently yield 

a perfect performance. However, Q – filtering can improve the transient learning behaviour 

and robustness. 

In most applications the Q filter is a low pass filter with DC gain equal to one. As a result, it 

yields perfect performance at low frequencies and gradually shuts off the ILC algorithm to 

achieve a tracking error equal to yd(e
jw) – D(ejw) at high frequencies. 

3.3 Transient learning behaviour 

Transient learning behaviour can be problematic, even if the stability conditions are satisfied.  

It is difficult to distinguish transient growth from instability in practice. Large transient 

growth is a fundamental topic of ILC and preventing it is an essential objective in ILC design 

To avoid large learning transients, monotonic convergence is desirable. 

ILC system is monotonically convergent if  

‖e∞ − ej+1‖ ≤ γ ‖e∞ − ej‖   

∀ j ∈ {1, 2, 3, ……….} where 0 ≤ γ < 1 is the convergence rate. 

In the lifted system representation, the asymptotic error result is given by  

e∞ − ej+1 = pQ (I – LP) P-1 (e∞ − ej) 

When P, Q and L are causal, P, Q, L commute. 

e∞ − ej+1 = Q (I – LP) (e∞ − ej) 
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For z domain 

E∞(z) – Ej+1(z) = Q(z) (1 – z L(z)p(z)) (E∞(z) – Ej(z)) 

Let �̅�  be the maximum singular value and let us consider the z norm to measure 

convergence, then the following monotonic convergence conditions can be derived. 

Theorem 4: 

If ILC system (1) and (4) satisfies 

γ1 ≜ �̅�  (PQ (I – LP) P-1) < 1 

then 

 ‖e∞ − ej+1‖2 ≤ γ1 ‖e∞ − ej‖2 ∀ j ∈ {1, 2, 3, ……….} 

Theorem 5: 

If the ILC system (1) and (4) with N = ∞ satisfies 

γ2 ≜ ‖Q(z)[1 − z L(z) P(z)]‖∞ < 1 

then  

‖E∞(z) − Ej+1(z)‖∞ < γ2‖E∞(z) − Ej(𝑧)‖∞ 

∀ j ∈ {1, 2, 3, ……….} 

When Q(z) and L(z) are causal filters also implies that  

‖e∞ − ej+1‖2 ≤ γ2 ‖e∞ − ej‖2 

∀ j ∈ {1, 2, 3, ……….}, for the ILC system with a finite duration N. 

3.4 Robustness 

An important issue for ILC because if the system model would be known exactly other, more 

direct approaches for the perfect tracking are preferable. 

There we consider robustness as related to stability and monotonic convergence 

Consider uncertain system: 

                                P(q) = P̂(q) [1 + W(q) Δ(q)]                                             (5) 
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Where P̂(q) is normal system model and W(q) is known and stable. 

Δ(q) is unknown and stable with ‖Δ(z)‖∞ < 1 

 

 

Theorem 6: 

If   |W(ejθ)|  ≤  
γ∗− |Q(e

jθ
)||1−ejθL((e

jθ
)P̂(ejθ)|

|Q(e
jθ

)||ejθL((e
jθ
)P̂(ejθ)|

   ∀ θ ∈ [-π,π], 

Then ILC is monotonically convergent with N = ∞, with convergence rate γ∗ < 1. 

From theorem 5, the ILC system is monotonically convergent with rate γ∗ < 1, if 

γ∗ ≥ ‖Q(z)[1 − z L(z)  P̂(z) [1 +  W(z) Δ(z)]]‖∞ 

                                = max
θ

|Q(eiθ)[1 − eiθ L(eiθ)  P̂(eiθ) [1 +  W(eiθ) Δ(eiθ)]]| 

= max
θ

|Q(eiθ)[1 − eiθ L(eiθ)  P̂(eiθ)]| +  

 |Q(eiθ)eiθL(eiθ)  P̂(eiθ) W(eiθ)| 

Which is equivalent to theorem 5 equation. 

The monotonic robustness condition depends on dynamics of P(q), Q(q) and L(q). 

The most direct way to increase robustness at a given θ is to decrease the Q – filter 

gain|Q(𝑒𝑗𝜃)|.Decreasing |Q(𝑒𝑗𝜃)| negatively impacts the converged performance. 

 

 

 

 

 

 

 



12 
 

CHAPTER 4 

DESIGN 

Practically the goal of ILC is to generate an open loop signal that approximately inverts the 

system dynamics to track a reference signal reject a repeating disturbance. 

Design section essentially comprises of four methods which are popularly used. These are  

1. PD – type and Tunable design 

2. Plant inversion method 

3. H∞ method 

4. Quadratically optimal design 

4.1 PD – Type and Tunable design 

PD – Type learning function consists of proportional and derivative gain on the error. The P – 

type, D – type and PD – type are probably most widely used types of learning functions. The 

integrator term is sparsely used because ILC has natural integrator action from one trail to 

another. The PD - type learning function relies on tuning and can be applied to a system that 

does not require an accurate model and analysis. 

The PD – type learning function can be written as  

uj+1(k) = uj(k) + Kp ej(k+1) + Kd [ej(k+1) – ej(k)] 

where Kp is proportional gain and Kd is derivative gain. 

The PD – type learning algorithm is AS if and only if |1 − (KP + Kd)p1| < 1 from theorem 1. 

Monotonic convergence is not always possible with PD – type ILC. 

The most favourable and generally applicable approach to achieve monotonic convergence is 

to include a low pass Q – filter in learning algorithm. As Q – filter disables learning at higher 

frequencies which has the additional benefits of added robustness and high frequency noise 

filtering. 
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For tuning of Q – filter, Kp and Kd, select a filter type and order and use the bandwidth of the 

filter as the tuning variable. For each set of Kp and Kd the learning is reset and run for sufficient 

iterations to determine the transient behaviour and asymptotic error. Begin with low learning 

gains and filter bandwidth. Generally learning gains effects the rate of convergence and the Q 

– filter influences the converged error performance. By increasing the Q – filter bandwidth, 

robustness decreases whereas the performance increases. 

In two step tuning method, based on the asymptotic stability and monotonic convergence 

condition,  

from theorem 2  

|1 − eiθL((eiθ)P(eiθ)| < 
1

|Q(eiθ)|
  ∀ θ ∈ [-π, π]. 

By using the Nyquist plot of ejθL((ejθ)P(ejθ), tune the learning gains to maximize the range 

θ ∈ [0, θc], over which ejθL((ejθ)P(ejθ) lies inside the unit circle centred at one. 

The Q – filter bandwidth is selected last to satisfy the stability condition. 

4.2 Plant inversion method 

In this method we use the model of inverted system dynamics in ILC algorithm. 

uj+1(k) = uj(k) + P̂−1(q) ej(k) 

This corresponds to (4) with Q(q) = 1 and L = q-1 P̂−1(q), which is causal. 

If �̂�(q) is an exact model of the system and the inversion of this model does not introduce 

errors, it can be verified from theorem 4 and theorem 5 that the convergence rate γ = 0: the 

convergence occurs in just one iteration and e∞ = 0. 

The Problem with this method is that the non-minimum phase system results in an unstable 

filter. To avoid it, use a stable inversion approach that results in non-causal learning filter. 

In case on minimum phase systems, the success depends on the accuracy of the model. 

Mismatch between model P̂(q) and actual system P(q) prevents the convergence from 

occurring in one iteration, and can even lead to poor transient behaviour. 

Consider an uncertain system with multiplicative uncertainty (5), and based on theorem 6, 

monotonic convergence with rate better than γ* occurs if |W(𝑒𝑗𝜃)| < γ* ∀ θ ∈ [-π, π]. 



14 
 

If at certain uncertainty θ0, |W(𝑒𝑗𝜃)| > 1, signifying an uncertainty greater than 100%, 

then the ILC system will not be robustly monotonically convergent. 

Large uncertainty typically occurs at high frequencies: remedy here is to include a low 

pass Q – filter. 

4.3 H∞ methods 

Offers a systematic approach to ILC design  

The goal of this design is to find the learning function L(q) that offers the fastest convergence 

rate for a given Q – filter. 

 

Figure 4.1: Model problem for H∞ design method. 

L*(z) = argL min‖Q(z)(I − z L(z)P(Z))‖∞ 

Q (I – z LP) = G11 + G12 L (I – G22 L)-1 = FL (G, L) 

Where G = [
G11 G12

G21 G22
] = [

Q Q
−zP 0

] 

4.4 Quadratically optimal design 

In Q – ILC, the learning functions are designed in the lifted system representation to 

minimize a quadratic next iteration cost criterion. 

Jj+1 (uj+1) = ej+1
T QLQ ej+1 + uj+1

T RLQ uj+1 + δj+1 u
T SLQ δj+1 u 

where δj+1u ≜ uj+1 - uj,  

QLQ is an N x N positive definite matrix and RLQ, SLQ are N x N positive semi definite 

matrices. 
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Minimizing the cost criterion with respect to uj+1 gives the optimal Q – filter and learning 

functions. 

Qopt = (PT QLQ P + RLQ + SLQ)-1 (PT QLQ + SLQ) 

Lopt = (PT QLQ P + SLQ)-1 PT QLQ 

e∞, opt = [I – P (PT QLQ P + RLQ)-1 PT QLQ] (yd – d) 
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CHAPTER 5 

IMPLEMENTATION EXAMPLE -Microscale Robotic 

Deposition 

For practical demonstration on the effectiveness of ILC on a real system, we consider the 

microscale robotic deposition (𝜇 − 𝑅𝐷)as shown in figure. 

 

Figure 5.1: Microscale robot deposition system. 

𝜇 − 𝑅𝐷 uses a solid-freeform-fabrication manufacturing technique whereby ink is exited 

through the nozzle and deposited on a substrate. The highly thixotropic ink solidifies quickly 

after exiting through the nozzle, allowing the ink to spread out in open gaps and support high 

aspect-ratio features. 

A robot is used to position the nozzle continuously in the three-dimensional space to deposit 

the ink. We are interested in improving the tracking performance of the robot using ILC. As 

the robot is cartesian, the axes are dynamically decoupled by design, hence consider an 

individual axis. 
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Figure 5.2: Schematic motion system layout. 

 

Figure 5.3: Experimental frequency response and model of 

the 𝜇 – RD x axis with sampling period Ts = 0.001 s. 

From the experimental results, we obtain a bode plot of frequency range 1 – 70 Hz. From the 

obtained bode plot the transfer function which is calculated through sampling is given by, 

GX(z) = 
0.00083315 (𝑧+0.9604) (𝑧2−1.981𝑧+0.9918)(𝑧2−1.874𝑧+0.9747)

(𝑧−0.9994)(𝑧−1)(𝑧2−1.978𝑧+0.9894)(𝑧2−1.738𝑧+0.8672)
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By executing the transfer function in MATLAB, we verified the bode plot. 
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The nominal controller uses both a feedback control and reference feedforward control. The 

feedback controller is designed using loop shaping for fast transient response. 

CFBK(z) = 
12.3359(𝑧−0.9874)(𝑧−0.9577)(𝑧−0.945)

(𝑧−0.9991)(𝑧−0.9174)(𝑧−0.9164)
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This controller designed to provide fast transient response without exciting resonant modes of 

the motor and the amplifier by tuning with high frequency gain. It also attempts to 

compensate for friction and cogging forces while minimizing the oscillatory response of the 

system to reference changes. For further improvement of system response, the reference 

feedforward controller is given by  

CFFD(z) = GX
-1(z) F(z) 

Where F(z) is the low pass filter with 100 Hz bandwidth given by, 

F(z) = 
0.1568(𝑧+0.8093)

𝑧2−1.25𝑧+0.5535
 

Which makes CFFD causal. 

Tuning: 

The design methods in the design section are applicable to the system. We choose the 

simplest method, the tuned PD learning function and its algorithm is given by 

uj+1(k) = Q(q)[uj(k) + Kp ej(k+1) + Kd [ej(k+1) – ej(k)]] 

where Q(q) is a zero-phase low pass filter added for robustness. 

A position step trapezoidal velocity profile for the above figure is used as sample trajectory 

for tuning the ILC parameters. The maximum velocity and acceleration of this trajectory are 

10 mm/sec and 250 mm/sec2. 

We begin tuning with conservative gains Kp = 1 and Kd = 10 and Q – filter bandwidth of 20 

Hz. By keeping bandwidth constant with different gains, the maximum and RMS errors Vs 

iteration are plotted. 
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Figure 5.4: Transient behaviour and asymptotic performance 

for PD gain tuning. 

From the above results the gains Kp = 2 and Kd = 50 are selected. By keeping these gains 

fixed with different Q – filter bandwidths, the maximum and RMS errors Vs iteration are 

plotted. 

 

Figure 5.5: Transient behaviour and asymptotic performance 

For Q – filter bandwidth tuning. 
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Tracking performance results: 

From the figure (7), the gain combination Kp = 5 and Kd = 20 has low asymptotic error and 

the learning transients do not converge monotonically like the others. Hence it may not be 

good choice of gains. The other three combinations have nearly monotonic transients but Kp 

= 2 and Kd = 50 converges fastest with the lowest asymptotic error. 

From the figure (8), the plot shows that Q – filter has little effect on convergence rate of the 

error but instead primarily determines the magnitude of the converged error and the stability 

of the system. Although increase bandwidth improves the error, a bandwidth that is too high 

results in learning transients. 
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CONCLUSION 

In this project, we have analysed the ILC algorithm and system representation. For 

understanding of ILC system behaviour, we have studied the important issues such as stability, 

performance, transient learning behaviour and robustness. Performance of a system can be 

improved with ILC for repeating tasks and disturbances. Hence ILC algorithm is widely used 

in industrial applications where mass production requires repetition. Good learning transient 

behaviour is identified as the practical stability condition where good transient behaviour is 

defined as monotonic convergence. When robustness is considered uncertainty of the model 

leads to limitations on the performance of LTI learning algorithm. 

We have discussed the popular design techniques and we implemented the easiest one among 

them that is PD type for microscale robotic deposition which enhanced its performance. 
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