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ABSTRACT

KEYWORDS: FTN; OFDM; Single Carrier; Precoding; SVD; Inversion Precod-

ing; MLSE; Nyquist Theorem

Faster-Than-Nyquist (FTN) Signaling is a non-orthogonal transmission scheme which

violates the Nyquist zero-ISI criterion providing higher throughput and better spec-

tral efficiency than a Nyquist transmission scheme. This comes with a cost of higher

transceiver complexity. In this thesis, we focus on understanding pulse shapes and their

inter-symbol-interference (ISI) and show that, under certain conditions on pulse shapes

and τ (time acceleration factor), the ISI can be avoided completely with the help of

precoding. This leads to a symbol-by-symbol detection. Further, we extend this idea

to Orthogonal Frequency Division Multiplexing (OFDM) FTN systems and show that,

under certain conditions, the average performance of OFDM system reaches that of a

Nyquist system. Finally, simulation results of the performance of precoded and non-

precoded single carrier and OFDM FTN systems are compared to a Nyquist system.
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CHAPTER 1

INTRODUCTION

In a modern digital communication system, the information bits are transmitted by map-

ping them them to symbols in the (I,Q) space (e.g. M-QAM) [1]. These symbols are

passed through a pulse shaping filter to obtain a continuous-time waveform. This wave-

form is up-converted and transmitted through the antenna. The pulse shaping ensures

that the transmit signal is bandlimited, but it does not introduce ISI. Nyquist and Shan-

non formulated the Nyquist zero-ISI criterion which serves as the basis of all modern

digital communication systems. The pulse should satisfy the Nyquist criterion for the

continuous-time waveform to be ISI-free.

1.1 Prerequisite

Linear modulation is the technique of fundamental importance for communication over

bandlimited channels. The complex baseband transmitted waveform for linear modula-

tion can be written as

u(t) =
∑
n

b[n]gTX(t− nTs) (1.1)

Here b[n] are the transmitted symbols taking values in a constellation. The modulat-

ing pulse gTX(t) is a fixed baseband waveform. The symbol rate, or baud rate is 1/Ts,

and Ts is the symbol interval.

Typically, a linearly modulated system is designed so as to avoid intersymbol inter-

ference at the receiver, assuming an ideal channel.

Symbols {b[n]} 

@ Nyquist rate

Transmit filter
    Channel filter

with noise addition
Receive filter Sampler @ Nyquist rate

z[n]z(t)

Figure 1.1: The block diagram representing Nyquist system



From Figure, the noiseless signal at the output of the receive filter is given by

z(t) =
∑
n

b[n]x(t− nTs) (1.2)

where

x(t) = (gTX ∗ gC ∗ gRX)(t) (1.3)

x(t) is the overall response of the system to a single symbol. The Nyquist citerion

ensures that z(nTs) = b[n] as given below.

Nyquist criterion for ISI avoidance:

Inter-symbol-interference can be avoided in the symbol-spaced samples, i.e., z(nTs) =

b[n] for all n if,

x(mTs) = δm0 =

1, m = 0

0, m 6= 0

(1.4)

Letting X(f) denote the Fourier Transform of x(t), the preceding condition can be

equivalently written as

1/Ts

k=∞∑
k=−∞

X(f +
k

Ts
) = 1 for all f (1.5)

Most of the wireless communication technologies use raised cosine pulses for trans-

mission as they are practical to implement compared to the sinc pulse or any other pulse

shape for that matter, and they have a configurable excess bandwidth.

This rate is called the Nyquist rate. If the pulses are transmitted at this rate there is no

ISI and the adjacent pulses are orthogonal to each other. If the symbols are transmitted

above than this rate, orthogonal pulses will not be orthogonal and this introduces ISI.

During pulse shaping, if symbols are spaced by Ts, Nyquist criterion ensures that there

is no ISI. Such a system is called a Nyquist system. In recent years, transmitting the

symbols faster than Ts has attracted attention. This technique is called the Faster-Than-

Nyquist (FTN) Signaling. In FTN, pulse shaping is done with a pulse that is Nyquist

with respect to Ts, but the symbols are spaced with a time period of τTs where τ < 1.

The factor τ is called the time acceleration factor. This violates the Nyquist criterion

with respect to τTs and hence introduces ISI. This necessitates a complex transceiver
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structure which is capable of mitigating ISI introduced by FTN signaling.

1.2 Focus of the Thesis

FTN is some of the more attractive ideas in terms of increasing the spectral efficiency.

FTN helps to reach higher throughput by violating the Nyquist zero ISI criteria. Due

to the violation of the zero ISI criteria, we have inherent ISI in the system. We focus

on understanding the ISI and noise coloration present in FTN systems and analyzing

the BER performance of Nyquist systems with traditional MLSE based decoders. We

shift our focus to techniques which can help mitigate ISI. Precoding as a tool is used

to mitigate ISI with the objective of doing symbol by symbol detection. Conditions on

pulse shapes and acceleration factor (τ ) are derived for which complete ISI mitigation

is possible and BER performance of Nyquist systems is achieved. This is done with the

help of precoding, specifically inversion based precoding. The derivation of condition

for invertibility of the channel is derived in a very intuitive manner. Similar analysis

can be done for any other pulse shape. For single carrier systems, we have focused on

the SRRC pulse and for the OFDM systems, we have taken the rectangular pulse.
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CHAPTER 2

LITERATURE SURVEY

In this chapter, we are going to discuss a survey on literature in FTN signaling. Initially,

we will start with some early papers on FTN and then we discuss some recent papers.

In the early 1950s and 1960s, most of the communication advancements were pub-

lished in the field of FTN. A Lot of findings were published but none of them had

concrete results. In 1975 Mazo’s work in the field of FTN played a significant role [2].

Mazo and Landau showed that if the acceleration factor τ is greater than τMazo there

is no decrease in the minimum distance in the transmitted waveforms [2, 3]. This re-

sult implied that if the minimum distance in the waveforms doesn’t decrease then the

probability of bit error doesn’t increase.

There were many claims by researchers that data cannot be transmitted at a rate

faster than the Nyquist rate. Tufts derived an analytical framework for FTN signal-

ing with an MMSE equalizer and showed that it is possible to send data faster than

Nyquist rate in short busts [4]. Few results were shown in the field by reducing sys-

tem bandwidth slightly below Nyquist bandwidth which effectively was like simulating

FTN signaling [5]. It was shown that the signals can be decoded with not much of a

difficulty.

Around the 1970s, Forney’s worked on the framework proposed by Viterbi and

showed that the Viterbi decoder can be used for ISI channels [6, 7]. After some time

Foschini studied the feasibility of FTN with certain modulation schemes like binary and

QAM modulation [8]. But most of them were dropped as due to a large number of ISI

taps in FTN the decoder complexity was very high for larger modulation schemes.

In the 1990s some Wang and Lee showed some significant improvements in the

transmit filter and used a white and matched filter at the receiver [9].

In recent years some significant work is done by John B. Anderson and Fredrik

Rusek. They showed the major benefits of the FTN signaling [10]. The major work

shown is that the capacity of FTN systems for a finite alphabet is significantly higher

than that of the orthogonal signaling schemes [11, 12].



In the work by Young Geon Etal, They examine the asymptotical optimality of

binary FTN signaling [13]. They show that capacity can be achieved by using a transmit

pulse which results in the same PSD as the water filling solution. To counter the issue

of large ISI length ideas like MMSE channel shortening with MLSE equalizers were

proposed [14]. It was shown that there is a trade-off between receiver complexity and

performance.

Ideas like automatic trellis generation for Nyquist systems was also proposed [15]

and it was shown that with certain constraints on channel length an automatic trellis can

be generated. Mohamed G.El-Barbary et al discussed the performance of Simplified

faster than Nyquist transceivers [16]. They presented results on Non-orthogonal OFDM

which is like Faster than Nyquist signaling but in frequency. They used modified IDFT

function and based on channel CQI discussed the use of adaptive non-orthogonality

ratio.

Shoran Li et al proposed the use of different pulse shapes so as to get some gain

over the traditional SRRC pulse [17]. They use Gaussian pulse and extended Gaussian

function and show gains over the SRRC pulse. Different types of liner precoding tech-

niques such as Singular Value Decomposition (SVD), G-to-Minus-Half (GTMH) and

Cholesky Decomposition were proposed [18, 19]. It was shown that Cholesky Decom-

position and GTMH precoding performed better than the SVD precoding at the cost of

broadening the signal spectrum. Some improvements on GTMH precoding were also

proposed. This gave a slight improvement in performance [20].

A frequency domain precoding technique was proposed which performed much

better than the time domain GTMH and SVD precoding techniques. This frequency

domain precoding allowed symbol-by-symbol detection at the receiver [16, 21]. The

precoding based on matrix decomposition was also explored. Geometric mean decom-

position (GMD) was shown to perform much better than DFE [18].

In this thesis, we build upon the previous work and analyze the pulse shapes closely

and study the effect of ISI. We look at the performance of the MLSE receiver with

constrained channel length. The major focus is on the analysis of pulse shapes and to

derive the constraints on pulse shapes to reach Nyquist BER performance for a single

carrier as well as OFDM systems. We also simulate the FTN system with whitening

and precoding to achieve the Nyquist BER performance. We focus on showing the

6



conditions for channel inversion. The precoder used for the cases is a channel inversion

based precoder.
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CHAPTER 3

FTN signaling

In a Nyquist Communication system, at the transmitter, orthogonal pulses ( orthogonal

with respect to Ts) are transmitted at the rate 1/Ts. The symbols can be independently

received because of the orthogonality of pulse shapes. Symbols can be retrieved but

using a matched filter which is matched to the transmit pulse shaping filter. But in case

of faster than Nyquist signaling the same is not true. The pulse shapes are orthogonal

with respect to time period Ts but are sent at an interval of τTs (τ < 1). For such a

system the pulses sent are no longer orthogonal and give rise to intersymbol interference

(ISI). This calls for a complex receiver structure.

We start by looking at the SRRC pulse. The following is the equation of SRRC

pulse

gSRRC(t) =


1
Ts

(1 + α( 4
π
− 1)), t = 0

α
Ts
√
2
[(1 + 2

π
) sin( π

4α
) + (1− 2

π
) cos( π

4α
)] t = ± Ts

4α

1
Ts

sin(π t
Ts

(1−α))+4α t
Ts

cos(π t
Ts

(1+α))

π t
Ts

(1−(4α t
Ts

)2)
otherwise

(3.1)

where, α is the roll-off factor. SRRC pulse is shown in the figure 3.1

The pulse for the nth symbol in case of a faster than Nyquist system with accelera-

tion factor τ (τ < 1) is given as follows

gnSRRC(t) = gSRRC(t− nτTs) (3.2)

3.1 Premise of FTN signaling

In FTN systems to get a discrete time system model, we use a matched filter similar to

the one used in the Nyquist system. For the SRRC pulse, the matched filter is the same
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Figure 3.1: The SRRC pulse in time domain for different values of roll off α

as the transmit pulse. The received signal is passed through the matched filter and then

sampled at a rate of 1/(τTs) to obtain a discrete time model.

yn = 〈r(t), gnSRRC(t)〉|τT =
N∑
m=1

am〈gmSRRC(t), gnSRRC(t)〉+〈η′(t), gnSRRC(t)〉 n = 1, . . . , N

(3.3)

This equation in discrete time simplifies to

y = Ga+ η′ (3.4)

where,

Gm,n = 〈gmSRRC(t), gnSRRC(t)〉 = gRC((m− n)τTs) (3.5)
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and gRC(t) is given as

gRC(t) =


π

4Ts

sin( π
2α

)
π
2α

, t = ± Ts
2α

1
Ts

sin( πt
Ts

)
πt
Ts

cos(παt
Ts

)

1−( 2αt
Ts

)2
otherwise

(3.6)

where, α is the roll-off factor. Figure 3.2 shows the RC pulse in time domain for differ-

ent values of roll off α.
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Figure 3.2: The RC pulse in time domain for different values of roll off α

G is matrix thus formed is a Toeplitz, Gram matrix. In the orthogonal Nyquist

case G was diagonal and the noise was i.i.d. Gaussian distributed vector. The optimal

Maximum-likelihood estimation was equivalent to a symbol by symbol detection.

In the case of FTN, G is not a diagonal matrix and the noise is no longer white

Gaussian. This case introduces ISI depending on the value of τ and pulse shape. The

noise is still zero mean and the covariance is calculated as follows

Cov(η′m, η
′
n) = E[η′m, η

′
n] = σ2Gm,n (3.7)
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Hence the Co-variance matrix of the noise is G. The overall τTs spaced discrete

time channel is as follows

In the figure 3.3, all channels are normalized to unit energy. As the value of τ

reduces the length of the channel increases.

3.2 Solving ML estimation

Let’s Simplify the equation for ML estimation by assuming G is an invertible matrix.

It is shown in subsequent chapters that under certain constraints on the pulse shape and

acceleration factor τ , G matrix can be proved to be invertible.

On assuming that invertibility of G, the ML estimation is simplified is as follows

Ga+ η′ = y (3.8)

a+G−1 + η′ = G−1y (3.9)

a+ v = z (3.10)

where, z = G−1y and v ∼ N (0, σ2G−1). Using ML estimation theory z ∼

N (a, σ2G−1) and the probability of z given a is as follows

P(z|a) =
( 1

2σ2π

)N/2 1√
det(G−1)

e−
1

2σ2
(z−a)TG(z−a) (3.11)

To maximize the probability of we need to minimize (z−a)TG(z−a). This becomes

a quadratic program.

min
a

(z − a)TG(z − a)

s.t. a ∈ Sn

where, S belongs to the constellation or symbol space of transmission. This problem

12
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is an NP-hard problem as the size of G increases. This implies that the complexity of

solving this will be exponential.

In subsequent chapter, we propose methods to solve this problem by using different

techniques.
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CHAPTER 4

FTN signaling with MLSE

In this chapter, we discuss the methods to solve the problem by analyzing the ISI and

then focusing on the whitening and other aspects of the FTN digital communication

system.

4.1 Characterization of ISI and Spectrum Analysis

In this section, we look at the spectrum for the transmit pulse of the FTN system as well

as the spectrum of the received waveform. We will also discuss the eye diagram and

look at the effect of acceleration factor τ on the eye diagram and signal spectrum.

4.1.1 Signal Spectrum

After modulation, the modulated symbols are passed through a pulse shaping filter. The

pulse shape used in the pulse shaping filter is orthogonal with respect to period Ts. The

symbols are passed through the pulse shaping filter at a rate of 1/(τTs). This waveform

is passed through the AWGN channel. At the receiver, a matched filter is used which is

matched to the transmit pulse shaping filter. After which a waveform is obtained. We

analyze the spectrum at both the locations and look at the effect of τ . The pulse shaping

filter used is an SRRC pulse with a roll-off factor α.

The transmit pulse is given as follows

r(t) =
N∑
n=1

an ∗ gSRRC(t− nτTs) (4.1)

where, an is the symbol at nth time instant and τ is the acceleration factor. To plot the

spectrum of the r(t) we normalize it by the number of symbols.



We plot the magnitude response of

R(f) = F(r(t)/N) (4.2)

To simplify this we use the shifting property of Fourier transform as follows

F(g(t− t0)) = e−i2πft0G(f) (4.3)

So the overall function R(f) is given as follows

R(f) =
1

N
GSRRC(f)

N∑
n=1

ane
−iπτnfTs (4.4)

As we can see from the above equation that the shape of |R(f)| is upper bounded

by |GSRRC(f)| by using Cauchy Schwartz inequality. Hence there is no bandwidth

expansion w.r.t. acceleration factor τ . The figure below shows the normalized spectrum

of transmit waveform r(t) for different values of τ .
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Figure 4.1: Transmit signal bandwidth for different values of τ

The similar analysis as above can be done for the received waveform after the
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matched filtering. Let us call the waveform after match filtering as y(t). The normalized

Fourier transform of y(t) can be given as follows

Y (f) = |GSRRC(f)|2 1

N

N∑
n=1

ane
−iπτnfTs (4.5)

hence the magnitude of Fourier transform of y(t) i.e. |Y (f)| is upper bounded by

|GSRRC(f)|2. In this case, as well there is no bandwidth expansion w.r.t. τ . The figure

below shows the normalized spectrum of received waveform after matched filtering i.e.

y(t) for different values of τ . The figure below shows the normalized spectrum of

received waveform after matched filtering i.e. y(t) for different values of τ .
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Figure 4.2: Received signal bandwidth after matched filtering for different values of τ

From the above explanation, we can see that the magnitude spectrum of r(t) and

y(t) both are upper bounded by the pulse shape and not on the value of τ . Hence FTN

doesn’t expand the bandwidth of the transmitted waveform.
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4.1.2 Eye Diagram

In this section, we analyze the effect of τ on eye-opening and eye-opening locations for

the received waveform after the matched filtering. The timing locations at which the

maximum eye opening occurs can be calculated by finding the time instances where the

correlation is maximum which can be seen as below

y(t) = (
N∑
n=1

angSRRC(t− nτTs)) ∗ gSRRC(−t) (4.6)

where ∗ means convolution. Here gSRRC(−t) is the matched filter which is convoluted

with r(t) to get y(t). This gives rise to the correlation of gSRRC(t) with itself. This

correlation is maximum when its argument is zero. Hence the sampling should take at

intervals of τTs. Hence the eye-opening will be seen at intervals of τTs.

As the value of τ decreases, there is a significant increase in ISI. This will also be

reflected in the eye diagram. The number of states in the eye diagram at the sampling

intervals will increase as the value of τ decreases. For lower values of τ it will be

difficult to see the eye openings at the sampling intervals.

The eye diagrams are shown for some values of τ in figure 4.3

From the eye diagrams in figure 4.3, we can infer that the eye openings are at inter-

vals of τTs. As the values of τ decreases the size of openings decreases. The decrease

in eye openings results due to increase in ISI. In the next section we try and analyze the

MLSE performance in presence of noise for different values of τ .

4.2 Performance of FTN with MLSE

In this section, we do simulations and study the effect of acceleration factor τ on the

BER performance. The focus in this section is to understand noise coloration and how

it affects the BER performance.

The setup for the simulation is give in figure 4.4

At the transmitter, the information bits are modulated to a symbol space. These

symbols are then passed through a transmit pulse shaping filter. In these simulations
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Figure 4.3: Eye diagram for different values of τ
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Figure 4.4: Block diagram for FTN with MLSE
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the transmit pulse shaping filter used is SRRC pulse with a roll-off factor α = 0.35.

The symbols are input to the matched filter at intervals τTs. The output waveform from

the transmit pulse shaping filter is passed through an AWGN channel and noise is added

at the receiver.

The waveform received is passed through a matched filter. This matched filter is

matched to the transmit filter. The waveform obtained from the matched filter is sam-

pled at an interval of τTs. After sampling we get a discrete sequence y[n]. The sequence

y[n] is passed through MLSE. The MLSE is implemented using the Viterbi algorithm.

The ISI channel length increases as the value of τ decreases. The complexity of

MLSE using Viterbi algorithm is exponential with ISI length. So because of the highly

complex receiver, we limit the channel length to 15 taps. These 15 taps are calculated

by sampling RC pulse at an interval of τTs. The ISI is given by

h[n] = gRC(t)|τTs = gRC(nτTs) n ∈
{
− 7,−6, . . . ,−1, 0, 1, . . . 6, 7

}
(4.7)

The MLSE estimation is done and BER is calculated with h[n] as channel input to

MLSE. The modulation scheme chosen is BPSK. The BER performance of MLSE with

the above-mentioned constraints is shown below.

The figure 4.5 shows that as the value of τ reduces the MLSE BER performance

reduces.

4.2.1 Issues with above simulation

In the above simulations, we put some constraints on the channel ISI. To keep simula-

tion complexity in check we limited the number of states in the Viterbi algorithm to 214

for a BPSK scheme. But the validity of this approximation reduces as the value of τ

reduces. The length of the ISI increases and the approximation of limiting the number

of states is not valid. For low values of τ the number of states required for the Viterbi

algorithm is very large and requires a highly complex receiver. To compensate for this

issue some other algorithms like BCJR, M-BCJR, etc. can be implemented.

After passing through the matched filtering and sampling, the sampled data is di-

rectly fed to an MLSE algorithm. The noise just before the MLSE is colored as the
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Figure 4.5: BER performance of FTN with MLSE

covariance of noise is given by σ2GRC . GRC is not a diagonal matrix for τ < 1. As

the noise is colored the MLSE via Viterbi algorithm is not the optimal estimation. In

the next section, we will study the effect of noise coloration and channel dispersion and

look at the BER performance of both under MLSE.

4.2.2 Noise Coloring Simulation

For this simulation we follow the following block diagram

Modulation h_channel
Pulse Shape

     SRRC

Matched Filter

       SRRC
MLSE Demodulation+

n

T

b x x
^ b

^

h_noise

Figure 4.6: Noise coloration block diagram

the bits are modulated to BPSK modulation and then Nyquist SRRC pulse (roll off

α = 0.35) shaping is done. Waveform is then passed through a normalized channel

of the form hch[n] = 1√
1+γ2

(1 + γz−1). For noise colouration a white Gaussian noise
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is passed through a filter of the form hnoise[n] = 1√
1+β2

(1 + βz−1). this filter adds

coloration to noise. The colored noise is added to the signal. The overall signal obtained

is then passed through a matched filter. the Output of the matched filter is sampled and

sent to MLSE. Then MLSE estimation is done at the receiver and the BER performance

is plotted for multiple values of γ for a given value of noise coloration i.e. β. The BER

curves are shown below
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Figure 4.7: BER performance for different values of γ given a value of β

The BER performance is also plotted for multiple values of β given a value of γ.

The plots are shown in figure 4.8

4.2.2.1 Effect of channel dispersion and noise coloration

The effect of channel dispersion can be seen clearly in all the figures [refer]. As the

value of γ increases, the BER performance degrades significantly for all noise col-

oration.

On the other hand for a given value of channel dispersion, the effect of noise col-

oration is not very significant. We can see that with the increase in the value of β the
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Figure 4.8: BER performance for different values of β given a value of γ

BER degradation is not very severe.

From the above observation, we can say that the effect of noise coloration is very

minimal as compared to that of channel dispersion. In the next section, we explore a

new matched filter which can eliminate noise coloration.

4.2.3 Rx Matched Filter

In this section, we explore a way to remove noise coloration. Instead of using a filter

matched to the transmit SRRC filter (orthogonal with Ts), we use a matched filter with

SRRC pulse which is orthogonal with τTs. Thus the covariance matrix of the noise

calculated in this case is diagonal. Hence the noise, in this case, becomes white. The

block diagram of the setup is shown in figure 4.9

In this case, we simulate the BER performance and the results are shown in figure

4.10 for some values of τ close to 1.

From the curves above we can see that the matched filter matched to τTs performs
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Figure 4.9: Block diagram for τTs matched filter at receiver
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Figure 4.10: BER performance of τTs matched received filter for τ close to 1 compared
to Ts matched received filter
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slightly better than the filter matched to Ts. But as the value of τ decreases the BER

performance degrades. The main factor in BER performance degradation is ISI.
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CHAPTER 5

Precoding

As seen in the previous chapter, ISI is the key factor in BER performance degradation.

The ISI present in the system was handled by use of an MLSE based Viterbi decoder.

But due to the large ISI length, the complexity of the optimal decoder was very high.

Precoding is one of the effective ways to mitigate ISI. With the help of proper pre-

coding techniques, we can do a symbol by symbol detection and the high receiver com-

plexity can be eliminated. Precoding also provides flexibility in power allocation and

can be very useful in OFDM like multicarrier systems.

In this chapter, we explore precoding techniques like SVD and inversion based pre-

coding and derive the framework for it.

5.1 SVD based precoding
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Figure 5.1: Block diagram of a single carrier system

From the block diagram, the equation for y[n] can be written as follows

GRCa+ η′ = y (5.1)

where, η′ is a colored noise with mean zero and covariance matrix σ2GRC . As the

G matrix is symmetric the SVD can be written in the following form.

GRC = UΣU∗ (5.2)



Using the decomposition in 5.2 equation in 5.1 can be simplified as follows

UΣU∗a+ U
√

ΣU∗η = y (5.3)

Instead of transmitting symbols we pre-code them with a precoding matrix as fol-

lows

â = Ua (5.4)

Now at the receiver, we multiply the received symbols by matrix U∗. the equations

simplify as follows

UΣU∗â+ U
√

ΣU∗η = y (5.5)

UΣa+ U
√

Ση̂ = y (5.6)

where, η̂ is also white Gaussian noise as multiplication by a unitary matrix doesn’t

change the covariance. Now both sides are multiplied by U∗ and the simplification is as

follows

U∗(UΣa+ U
√

Ση̂) = U∗(y) (5.7)

Σa+
√

Ση = ŷ (5.8)

Σa+ w = ŷ (5.9)

where, Σ is a diagonal matrix and w is a white Gaussian noise with zero mean and

co-variance σ2Σ. The overall system can be represented as follows

Σa+ w = ŷ (5.10)

Now from the above equation as Σ is a diagonal matrix so symbol by symbol de-

tection is possible. The BER performance depends on the values of Σi corresponding

to that symbols. If the value of Σi = 0 then the symbol ai cannot be recovered. The
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overall block diagram is given as follows
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Figure 5.2: Block diagram of a single carrier system with SVD precoder

5.2 Inversion based precoding

In this section, we focus on inversion based precoding to achieve the BER performance

of a Nyquist system. In the case of SVD based Precoding the system performance

depends on the value of Σi. So to remove that also we try an inversion based precoding

technique where we try to invert the effect of ISI so that symbol by symbol detection

can be done and the Nyquist BER performance can be achieved. To be able to check

for invertibility of the ISI we derive the conditions on pulse shapes and acceleration

factor τ in the subsequent sections. If the channel is invertible then Σi 6= 0 ∀i. In this

case we precode it with inverse of the channel. The precoding is mentioned in depth in

section 5.3.

5.3 Conditions on channel/pulse shape for perfect re-

covery

In this section, we try to derive the conditions on pulse shape and acceleration factor τ

so that the channel can be inverted. We do the same for both Single carrier systems as

well as OFDM systems. We also look at whitening the noise and provide expressions for

noise whitening filter. In cases where channel inversion is not possible we implement a

precoding filter which tries to reduce channel ISI so the MLSE estimation can be used.

5.3.1 Single Carrier

The FTN baseband single-carrier communication system is represented by the block

diagram shown in figure 5.3. At the transmitter, the modulated symbols are passed at a

rate of τTs (τ < 1) through a pulse shaping filter that is Nyquist with respect to Ts. The
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Figure 5.3: The block diagram representing single-carrier FTN system.

FTN waveform thus obtained is transmitted through an AWGN channel. At the receiver,

the received waveform is passed through a filter that is matched to the transmit pulse

shaping filter. The output of the filter is sampled at τTs to get discrete time samples.

The overall system can be represented as

y[n] = hRC [n] ∗ x[n] + η′[n] (5.11)

where, hRC [n] is RC pulse sampled at τTs, η′ is the colored noise due to the FTN

signaling and ∗ represents convolution. This can be represented in the matrix form as

y = HRCx + η′ (5.12)

where, x and y are transmitted and received sequences respectively, η′ is the corre-

sponding colored noise and HRC is a circulant matrix formed by the channel hRC [n].

To estimate the transmit sequence x̂ symbol-by-symbol from received sequence y,

HRC should be invertible. It is invertible when its eigenvalues are non-zero. Since

HRC is a circulant matrix, its eigenvalues are given by the DFT coefficients of hRC [n].

Hence, the analysis of DFT coefficients of hRC [n] is done below.

The continuous time Fourier transformHRC(f) of RC pulse is bandlimited by (1 +

α)/2Ts where, α is the roll-off factor i.e. HRC(f) = 0 for |f | > (1 + α)/2Ts. As the

RC pulse is sampled at τTs, the DTFT HRC(ejω) is given by

HRC(ejω) =
1

τTs

∞∑
k=−∞

HRC

(
1

2π

(
ω

τTs
− 2πk

τTs

))
. (5.13)

If the DTFT HRC(ejω) is non-zero for all frequencies ω, the DFT coefficients are non-

zero. To satisfy this condition, the passbands or the transition bands of adjacent copies

should overlap as shown in figure 5.4. In this case, the overall response HRC(ejω) is

non-zero for all frequencies ω i.e. HRC(ejω) > 0, ∀ω.

If the values of τ are very small, the adjacent copies are non-overlapping as shown
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in figure 5.5. In this case, there are certain frequencies ω where the overall response is

zero i.e. HRC(ejω) = 0, for some ω.
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Figure 5.5: The DTFT HRC(ejω) when the adjacent copies of the CTFT HRC(f) are
non-overlapping. In this case, there are certain frequencies ω where the
overall response is zero.

In order to ensure that the adjacent copies are overlapping, τ should satisfy the

following condition.
1 + α

2Ts
>

1

τTs
− 1 + α

2Ts
,

(1 + α)τ > 1. (5.14)

If the condition in (5.14) is satisfied, the DFT coefficients of hRC [n] are non-zero.

This implies that the circulant matrix HRC in (5.12) has all non-zero eigenvalues and
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hence is invertible. So, symbol-by-symbol detection can be done with the help of pre-

coding.

In the following sub-sections, the precoding and whitening in single-carrier FTN

system model is discussed. Sub-section 5.3.1.1 considers the case when (5.14) is satis-

fied and Sub-section 5.3.1.2 considers the case when (5.14) is not satisfied.

5.3.1.1 Single-carrier FTN with (1 + α)τ > 1

If the condition in (5.14) is satisfied, the DTFT HRC(ejω) > 0, ∀ω. So, hRC [n] does

not have any zeros on the unit circle. As hRC [n] is real, symmetric and has no zeros on

the unit circle, it can be spectral factorized as

HRC(z) = γ2Hin(z)H∗in(1/z∗) (5.15)

where, Hin(z) is the monic and causal factor of HRC(z). Now, the noise can be

whitened by a whitening filter given byHW (z) = 1/ (γH∗in(1/z∗)). Along with whiten-

ing, the system model with rate τT is

y[n] = γhin[n] ∗ x[n] + η[n] (5.16)

where, hin[n] is the monic and causal IDFT of Hin(z) from (5.15), and η[n] is white

noise. Now, this system can further be simplified by precoding the transmit sequence

using a filter 1/γHin(z). Finally, with both whitening and precoding, the overall system

model is as follows

y[n] = x[n] + η[n]. (5.17)

Symbol-by-symbol detection can be done on this overall model.

5.3.1.2 Single-carrier FTN with (1 + α)τ < 1

If the condition in (5.14) is not satisfied, the DTFT HRC(ejω) = 0, for some ω. So,

hRC [n] has some zeros on the unit circle. Hence, the spectral factorization of HRC(z)

is done as follows

HRC(z) = γ2Hin(z)Hon(z)Hout(z)
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= γ2Hin(z)Hon(z)H∗in(1/z∗) (5.18)

where, the factorsHin(z),Hon(z) andH∗in(1/z∗) contain all zeros inside, on and outside

the unit circle respectively. As complete whitening is not possible, unlike the previous

case, partial whitening is done as HW (z) = 1/γH∗in(1/z∗). A precoding filter given

by 1/γHin(z) is used. Finally, with both whitening and precoding, the overall system

model is as follows

y[n] = hon[n] ∗ x[n] + η[n] (5.19)

where, hon[n] is the IDFT ofHon(z) and has zeros on the unit circle. Symbol-by-symbol

detection cannot be used to estimate the complete sequence x in this case. Hence, a

Maximum likelihood sequence estimation is employed.

5.3.2 Multicarrier (OFDM)

The FTN baseband multi-carrier OFDM communication system is represented by the

block diagram shown in figure 5.6. At the transmitter, after the N-point IFFT operation

and parallel-to-serial conversion, the symbols are passed at a rate of τTs (τ < 1) through

a rectangular pulse shaping filter. The pulse shaping has a response of rect(t/Ts). At

the receiver, the matched filter has a response of rect(t/Ts). The output of the matched

filter is then sampled at rate τTs making the overall response a triangular pulse htri(t)

sampled at τTs.
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Figure 5.6: The block diagram representing OFDM FTN system.

The overall system model of OFDM is given by

y[i] = Htri[i]x[i] + η′[i] i = 0, . . . , N − 1 (5.20)

where, Htri[i] is the i-th coefficient of N-point DFT of htri(t)|τTs and η′[i] is the colored

noise. It should be noted that each value of i corresponds to each sub-carrier of OFDM.

To estimate x[i] from y[i], none of the Htri[i] should be equal to zero i.e. none of the
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DFT coefficients of htri(t)|τTs should be zero. The continuous time Fourier transform

of htri(t) is given below

Htri(f) =

(
sin(πfTs)

πfTs

)2

. (5.21)

Now, the DTFT Htri(e
jω) is

Htri(e
jω) =

1

τTs

∞∑
k=−∞

Htri

(
1

2π

(
ω

τTs
− 2πk

τTs

))

=
1

τTs

∞∑
k=−∞

(
sin((ω − 2πk)/2τ)

(ω − 2πk)/2τ

)2

. (5.22)

The value of Htri(e
jω) will be zero at some frequencies ω if all the copies in the sum-

mation are zero at ω. This situation occurs when

(ω − 2πk)/2τ = πl ∀l ∈ Z \ {0}. (5.23)

Noting that 0 < τ < 1, this condition simplifies to

τ = 1/l ∀l ∈ Z+ \ {1}. (5.24)

So, the condition for Htri(e
jω) to be non-zero is

τ 6= 1/l ∀l ∈ Z+ \ {1}. (5.25)

If the condition (5.25) is satisfied, then Htri(e
jω) is non-zero for all frequencies ω.

In figure 5.7(a), the channel does not satisfy the condition in 5.25 and has some

frequencies ω where Htri(e
jω) goes to zero. The sub-carriers corresponding to those

frequencies have Htri[i] = 0. Thus, those sub-carriers cannot be used to transmit sym-

bols. In figure 5.7(b), the channel satisfies condition in 5.25 and is non-zero for all

frequencies ω. Precoding can be used in this case to utilize all the sub-carriers and

reach the BER performance of a Nyquist system.

In the following sub-sections, the precoding and whitening in OFDM FTN system

model is discussed. Sub-section 5.3.2.1 considers the case when equation 5.25 is satis-
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Figure 5.7: (a) The channel does not satisfy the condition (5.25) and is zero for some
frequencies. (b) The channel satisfies condition (5.25) and is non-zero for
all frequencies.

fied and Sub-section 5.3.2.2 considers the case when equation 5.25 is not satisfied.

5.3.2.1 OFDM FTN with τ 6= 1/l

In this case, Htri[i] from (5.20) is ensured to be non-zero. So, Htri(z) can be spectral

factorized as

Htri(z) = γ2Hin(z)H∗in(1/z∗). (5.26)

As the noise is colored, the whitening filter is derived from the above equation as

Hw(z) = 1/γH∗in(1/z∗). (5.27)

The system model along with whitening becomes

y[i] = γHin[i]x[i] + η[i] i = 0, . . . , N − 1 (5.28)

where, η[i] is white noise and Hin[i] is the DFT of hin[n] the monic and causal factor of

htri(t)|τTs .

Since Hin[i] is ensured to be non-zero, x[i] can be precoded as x̃[i] = x[i]/γHin[i].

The overall system with both whitening and precoding is

y[i] = x[i] + η[i] i = 0, . . . , N − 1. (5.29)
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The system model for each sub-carrier in (5.29) is equivalent to a Nyquist sys-

tem model. So the performance of OFDM FTN system with precoding and whitening

reaches that of a Nyquist system.

5.3.2.2 OFDM FTN with τ = 1/l

In this case, Htri[i] is zero for some sub-carriers i. Hence the spectral factorization of

Htri(z) is done as

Htri(z) = γ2Hin(z)Hon(z)Hout(z)

= γ2Hin(z)Hon(z)H∗in(1/z∗) (5.30)

where, the factorsHin(z),Hon(z) andH∗in(1/z∗) contain all zeros inside, on and outside

the unit circle respectively. A whitening filter is implemented asHW (z) = 1/γH∗in(1/z∗).

The precoding is done as x̃[i] = x[i]/γHin[i]. The overall model after whitening and

precoding is

y[i] = Hon[i]x[i] + η[i] i = 0, . . . , N − 1 (5.31)

where, η[i] is white noise and Hon[i] are the DFT coefficients of hon[n], the inverse

z-transform of Hon(z). In this system model, Hon[i] is zero for some sub-carriers i

and those sub-carriers cannot be used to transmit symbols. Hence, the average BER

performance over all the sub-carriers is not close to that of a Nyquist system.
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CHAPTER 6

SIMULATION

In this chapter, we describe the setup for simulation and present the results of simula-

tions. The theory for the simulations is discussed in the previous chapter. The simula-

tions are done for both single carrier and multi-carrier(OFDM) systems.

6.1 Single-Carrier FTN System

The simulation of single carrier FTN system was performed using BPSK modulation.

The pulse used in this case was square-root-raised-cosine (SRRC) pulse with a roll-off

factor α = 0.35. The BER curves obtained without and with precoding are shown

in Fig. 6.1(a) and Fig. 6.1(b) respectively. In the simulations without precoding,

MLSE was used at the receiver. In the simulations with precoding, MLSE was used

in cases where symbol-by-symbol detection was not possible. All the results are com-

pared against the Nyquist system (i.e. the system with τ = 1).

From (5.14), the condition on τ for symbol-by-symbol detection is τ > 1/(1 + α)

which gives τ > 0.7407 for α = 0.35. This implies that for values of τ > 0.7407, it is

possible to reach the BER performance of Nyquist systems if precoding is used.

Figure 6.1(a) shows the BER curves for the case where the symbols were transmitted

without precoding. A whitening filter was used at the receiver as discussed in Section

5.3.1. MLSE detection was used as precoding is not done. As the value of τ decreases,

the amount of ISI increases and hence the complexity of MLSE increases. But for this

simulation, the maximum number of states in MLSE trellis was kept fixed. So, the BER

performance degrades as τ decreases. Further for the value of τ < 0.7407, only partial

whitening can be done as the zeros of hRC [n] are on the unit circle (Section 5.3.1.2).

Since MLSE is optimal only when the noise is white, the BER performance for τ = 0.7

is further degraded.

The eye diagrams of the received signal in the case without precoding are shown in

figure 6.2
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Figure 6.1: (a) Simulation results for single carrier FTN system with BPSK modulation
using SRRC pulse (roll-off 0.35) without precoding. (b) Simulation results
for single carrier FTN system with BPSK modulation using SRRC pulse
(roll-off 0.35) with precoding.
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Figure 6.2: (a) Eye diagram for τ = 0.7 without precoding. (b) Eye diagram for τ = 0.8
without precoding.

There is no clear eye opening in both cases as precoding is not done and symbol-

by-symbol detection is not possible.

Figure 6.1(b) shows the BER curves for the case where the symbols were transmit-

ted with precoding and a whitening filter was used at the receiver. For τ > 0.7407, the

ISI channel hRC [n] has no zeros on the unit circle. So, the channel was inverted using

precoding and symbol-by-symbol detection was done. Hence the BER performance of

the system for these values of τ reaches that of a Nyquist system. But for τ < 0.7407,

the ISI channel hRC [n] has zeros on the unit circle and symbol-by-symbol detection

and whitening cannot be done. So, MLSE was used at the receiver and partial whiten-

ing was done as discussed in Section 5.3.1.2. As noise is not completely white, MLSE

is not optimal. Hence, the performance of the system in this case (τ = 0.7) does not

reach that of a Nyquist system.

The eye diagrams of the received signal in the case with precoding are shown in

figure 6.3.

For τ = 0.7, there is no clear eye opening as ISI is present even with precoding.

But for τ = 0.8, there is clear eye opening as precoding enables symbol-by-symbol

detection.

6.2 Multi-Carrier OFDM FTN System

The simulation of OFDM FTN system was performed using BPSK modulation. The

pulse shape used in this case was rectangular. The BER curves obtained without and

39



-1.5 T - T -0.5 T 0 0.5 T T 1.5 T

(a)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-1.5 T - T -0.5 T 0 0.5 T T 1.5 T

(b)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 6.3: (a) Eye diagram for τ = 0.7 with precoding. (b) Eye diagram for τ = 0.8
with precoding.

with precoding are shown in Fig. 6.4(a) and Fig. 6.4(b) respectively.

From (5.25), the condition for all the sub-carrier channels to be non-zero is τ 6=

1/l ∀l ∈ Z+ \ {1} i.e. τ 6= 1/2, 1/3, . . .. For these values of τ , it is possible to

reach the BER performance of a Nyquist system with precoding as discussed in Section

5.3.2.1. For other values of τ , symbols on certain sub-carriers cannot be estimated,

hence the average BER performance of this system does not reach that of a Nyquist

system as discussed in Section 5.3.2.2.

Figure 6.4(a) shows the BER curves for the case where symbols were transmitted

without precoding and a single tap equalizer was used at the receiver. The channel

response Htri[i] of each sub-carrier i is given by the DFT coefficients of htri(t)|τTs as

shown in (5.22). As the value of τ decreases, the separation between adjacent copies in

Fig. 5.7 increases. As a result, some of the sub-carriers experience very small values of

Htri[i] and the BER performance of these sub-carriers degrade. Hence, as the value of

τ decreases, the average BER performance of the OFDM system degrades.

Figure 6.4(b) shows the BER curves for the case where symbols were transmitted

with precoding. For the values of τ 6= 1/2, the condition (5.25) is satisfied and hence,

as discussed in Section 5.3.2.1, Htri[i] 6= 0 for all sub-carriers. So, after precoding as

x̃[i] = x[i]/γHin[i], the overall system model for each sub-carrier (5.29) is the same as

that of a Nyquist system. So, the performance of OFDM system when τ 6= 0.5 reaches

that of a Nyquist system. But for τ = 0.5, as discussed in Section 5.3.2.2, there are

some sub-carrier for which Htri[i] = 0. The sub-carriers having Hon[i] 6= 0 reach the

BER performance of a Nyquist system with precoding. But some of the sub-carriers
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Figure 6.4: (a) Simulation results for OFDM FTN system with BPSK modulation using
rectangular pulse without precoding. (b) Simulation results for OFDM FTN
system with BPSK modulation using rectangular pulse with precoding.
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that have Hon[i] = 0 cannot be used to transmit symbols. Hence, the average BER

performance for τ = 0.5 is worse compared to other values of τ (even τ = 0.4).
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CHAPTER 7

DISCUSSIONS

FTN signaling has a huge potential in terms of its higher capacity as compared to the

Nyquist signaling scheme. Due to the large ISI length and noise coloration present in

the FTN system the overall BER performance did not reach that of a Nyquist system.

With the help of precoding, we showed that the performance of Nyquist system can

be achieved under certain conditions on pulse shapes and acceleration factor τ . The

higher sampling rate causes the sampled spectrum copies to spread apart. This causes

the sampled signal spectrum to become zero for a certain set of frequencies. Hence,

inversion based precoding is not possible.

In a single carrier system, the transmit pulse shaping filter and the received matched

filter together form RC pulse. The FTN technique gains its benefit from the excess

bandwidth of the RC pulse. For pulse shapes with excess bandwidth lower than the RC

pulse, the conditions on time acceleration factor τ will be more stringent.

Rectangular pulses are used for OFDM systems in the 4G standards (LTE Adv).

Hence, the OFDM FTN system was analyzed with a rectangular transmit pulse shaping

filter. OFDM systems using pulses other than the rectangular pulse (possibly with a

lower time-bandwidth product and better spectral confinement) can be analyzed in a

similar fashion.

The BER performance of OFDM FTN system reaches that of a Nyquist system

with the use of the proposed precoding scheme. As the value of τ decreases, more and

more sub-carriers experience bad channel. So the channel inversion based precoding

scheme discussed in this paper requires higher transmit power for those sub-carriers.

This, in turn, results in an increase of PAPR of the OFDM FTN system. Instead, other

schemes like water-filling can be explored. Also, techniques like choosing higher order

modulation for good sub-carriers can be explored.





CHAPTER 8

KEY RESULTS and SUMMARY

The transceiver of FTN systems can become highly complex as the value of τ reduces.

We simulated the BER performance of MLSE based Viterbi decoder for values of τ .

It was seen that the BER performance degrades as the value of τ reduces. We showed

that under certain conditions, simple precoding techniques can be used to mitigate ISI

completely with the help of precoding. After complete mitigation of ISI, symbol-by-

symbol detection can be done. In those cases, we showed that the BER performance

can reach that of a Nyquist system in both single carrier and OFDM FTN systems. This

comes with a cost of higher transmit power as we are packing more and more symbols

in a given time period while keeping the average symbol energy same.

Single carrier systems with SRRC pulse shape with roll-off factor α as the transmit

filter reach the Nyquist BER performance if the following Condition is satisfied

(1 + α)τ > 1 (8.1)

where, τ is the acceleration factor for the FTN system.

For OFDM systems with rectangular pulses the condition is as follows

τ 6= 1

l
l ∈ Z+ (8.2)

where,τ is the acceleration factor.

If the pulse shape satisfies the conditions mentioned above then inversion based

precoding can be used to achieve Nyquist BER performance for the system.

The complete block structure is explained in the cases were 8.1 is satisfied as well

as when condition 8.1 is not satisfied. The same is also done for the OFDM system

based on condition 8.2.





CHAPTER 9

FUTURE WORK

FTN signaling schemes have a lot of avenues to explore. It is a relatively new area of

research and a lot of stones unturned. Some of the areas that can be explored are as

follows

• Implement and analyze a Deep learning based receiver and compare the BER
performance with the MLSE based system.

• Use error coding schemes to get better BER performance

• Study the effect of precoding and analyze the BER performance with the maxi-
mum power constraint.

• Optimize the current precoding scheme to increase the capacity of the FTN sys-
tem.

• Pulse shape can also be optimization for FTN systems to limit the ISI length. A
similar analysis for condition on τ can be done.
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