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ABSTRACT

KEYWORDS: Markov chain, prediction risk, minimax risk

In the field of statistical learning, a significant problem is trying to estimate an unknown

distribution from its samples. This problem has been studied very thoroughly with respect to

iid distributions. However, the same problem in a Markov chain setting has not seen much

research. Markov chains have a lot of practical significance as they increase the complexity

of the unknown distribution. In many real life applications, like speech processing, words in

sentences can be modelled as a markov chain - as the next word in a sentence depends on the

previous words.

In this report, we first discuss the minimax squared error(SE) risk for the 2-state Markov

chain and show that it is O
(

1
n

)
. We then extend this to the k-state Markov chain showing

the lower bound O
(

1
kn

)
and upper bound O

(
k
n

)
respectively. Finally, we improve the upper

bound for the KL-divergence risk to O
(
k log logn

n

)
which also equals an existing lower bound.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The prediction problem in statistical learning has been a fundamental problem for a long time.

Essentially, the problem is to estimate an unknown finite distribution after observing a certain

number of samples. This problem has been studied extensively for the iid distribution.

A similar problem on estimating Markov chains, has not been studied. Markov chains add

a layer of complexity to the problem, while still remaining relatively simple. Markov chains

can also be used to model lots of practical distributions like in speech processing - words going

to appear in a sentence depends on the previous words; ecology, finance-stock markets etc.

In this report, we focus on the prediction problem for Markov chains. We quantify this by

defining a quantity called risk and try to quantify the minimax risk ( essentially the ”worst-case

risk”) by finding upper and lower bounds for it.

1.2 Problem Definition

A sequence of random variablesXn = X1, X2, . . . withXi ∈ [k] , {0, 1, . . . , k−1} satisfying

Pr(Xn = xn) = Pr(X1 = x1)
n∏
i=2

Pr(Xi = xi|Xi−1 = xi−1), n = 1, 2, . . . ,



is said to belong to a k-state, memory-1 stationary Markov chain if the state transition prob-

ability P (v|u) , Pr(Xi = v|Xi−1 = u), u, v ∈ [k], is independent of i, and the initial state

distribution Pr(X1) is the unique stationary distribution π , Pr(u), u ∈ [k], for P (v|u) satisfy-

ing π(v) =
∑

u π(u)P (v|u), u, v ∈ [k]. The collection of such Markov chains is denoted Mk

and each chain in the collection is parametrized by P (v|u), and we will let P denote the matrix

of values P (v|u), u, v ∈ [k].

Given a sequence Xn = [X1, X2, . . . , Xn] from Mk with P (v|u) unknown, we are inter-

ested in the prediction problem Falahatgar et al. [2016], which is the estimation of the random

vector

Θ(P,Xn) , [P (0|Xn) P (1|Xn) · · · P (k−1|Xn)].

An estimator for Θ(P,Xn) using an observation Xn = xn, denoted Θ̂(xn), is defined as

Θ̂(xn) = [P̂ (0|xn) P̂ (1|xn) · · · P̂ (k−1|xn)],

where P̂ (a|xn) : [k]× [k]n → [0, 1], a ∈ [k].

We consider the minimax prediction squared-error risk, defined as

ρSEn (Mk) = min
Θ̂

max
P∈Mk

E
Xn∼P

∥∥∥Θ(P,Xn)− Θ̂(Xn)
∥∥∥2

= min
P̂

max
P∈Mk

E
Xn∼P

k−1∑
a=0

∣∣∣P (a|Xn)− P̂ (a|Xn)
∣∣∣2 . (1.1)

1.3 Outline of Thesis

The rest of the thesis is organised as follows. Chapter 2 discussed a standard method called the

Le Cam’s method and a modification. Chapter 3 analyses the the squared error risk for a 2-state

Markov chain. Chapter 4 extends similar ideas to the minimax risk of a k-state Markov chain.
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CHAPTER 2

Useful Techniques for analysing minimax risk

The ideas from this chapter are discussed in Duchi [2016] and Kahlon [2018].

2.1 Le Cam’s Method

Let P be a set of distributions and let X1, X2, . . . , Xn be a sample from some distribution

P ∈ P . Let θ = θ(P ) be some function of P . Let ˆtheta = ˆtheta(X1, X2, . . . , Xn) denote an

estimator and d be some distance metric satisfying triangle inequality and Φ : R+ → R+ be a

non-decreasing function with Φ(0) = 0. Let the minimax risk be defined as

R∗n = inf
θ̂

sup
P∈P

EP

[
Φ(d(θ̂, θ)

]
(2.1)

Then, for any pair P0, P1 ∈ P , let ∆ =
d(θ(P0), θ(P1))

2
, then

R∗n ≥
1

2
Φ(∆)

[
1− ||P0 − P1||TV

]
(2.2)

For our lower bound calculations, our risk functions are not in the form of 2.1. Hence, we

need to modify the Le Cam method.



2.2 Modified Le Cam’s Method

Let P be a set of distributions and let X1, X2, . . . , Xn be a sample from some distribution

P ∈ P . Let θ1 = θ1(P ), θ2 = θ2(P ), γ1 = γ1(P ) and γ2 = γ2(P ) be some functions of

P . Let θ̂1 = θ̂1(X1, X2, . . . , Xn) and θ̂2 = θ̂2(X1, X2, . . . , Xn) be the estimators of θ1 and θ2

respectively.d is some metric distance satisfying triangle inequality and Φ : R+ → R+ be a

non-decreasing function with Φ(0) = 0. Let the minimax risk be defined as

R∗n = inf
θ̂

sup
P∈P

EP

[
γ1Φ(d(θ̂1, θ1)) + γ2Φ(d(θ̂2, θ2))

]
(2.3)

Then the lower bound on R∗n is given by

Theorem 1. For any pair P0, P1 ∈ P . Let ∆1 = d(θ1(P0),θ1(P1))
2

and ∆2 = d(θ2(P0),θ2(P1))
2

. Then,

R∗n ≥
1

2
min(γ1(P0), γ1(P1))Φ(∆1)

[
1−

√
1

2
DKL(P0||P1)

]
+

1

2
min(γ2(P0), γ2(P1))Φ(∆2)

[
1−

√
1

2
DKL(P0||P1)

]
(2.4)

Proof. An estimator θ̂1 defines a test static ψ1, namely,

ψ1(X1, X2, . . . , Xn) =


1, if d(θ̂, θ1(P0)) ≥ d(θ̂, θ1(P1))

0, if d(θ̂, θ1(P0)) < d(θ̂, θ1(P1))

(2.5)

4



Similarly estimator θ̂2 defines a test static ψ2

ψ2(X1, X2, . . . , Xn) =


1, if d(θ̂, θ2(P0)) ≥ d(θ̂, θ2(P1))

0, if d(θ̂, θ2(P0)) < d(θ̂, θ2(P1))

(2.6)

If P = P0 and ψ = 1, then

2∆1 = d(θ1(P0), θ1(P1)) ≤ d(θ1(P0), θ̂1(P1)) + d(θ1, θ̂) ≤ 2d(θ1(P0), θ̂) (2.7)

=⇒ d(θ1(P0), θ̂) ≥ ∆1 (2.8)

and so Φ(d(θ1(P0), θ̂)) ≥ Φ(∆). Hence,

EP0

[
γ1(P0)Φ(d(θ̂, θ1(P0)))

]
≥ EP0

[
γ1(P0)Φ(d(θ̂, θ1(P0)))I (ψ1 = 1)

]
≥ γ1(P0)Φ(∆1)EP0 [I (ψ1 = 1)]

= γ1(P0)Φ(∆1)P0(ψ1 = 1) (2.9)

Similarly,

EP1

[
γ1(P1)Φ(d(θ̂, θ1(P1)))

]
≥ γ1(P1)Φ(∆1)P1(ψ1 = 0) (2.10)

EP0

[
γ2(P0)Φ(d(θ̂, θ2(P0)))

]
≥ γ2(P0)Φ(∆2)P0(ψ2 = 1) (2.11)

EP1

[
γ2(P1)Φ(d(θ̂, θ2(P1)))

]
≥ γ2(P1)Φ(∆2)P1(ψ2 = 0) (2.12)

5



From the above, we can show that

RP1 = EP0

[
γ1(P0)Φ(d(θ̂, θ1(P0))) + γ2(P0)Φ(d(θ̂, θ2(P0)))

]
≥ γ1(P0)Φ(∆1)P0(ψ1 = 1) + γ2(P0)Φ(∆2)P0(ψ2 = 1)

(2.13)

RP2 = EP1

[
γ1(P1)Φ(d(θ̂, θ1(P1))) + γ2(P1)Φ(d(θ̂, θ2(P1)))

]
≥ γ1(P1)Φ(∆1)P1(ψ1 = 0) + γ2(P1)Φ(∆2)P1(ψ2 = 0)

(2.14)

We can thus write our risk as

sup
P∈P

RP ≥ max
P∈P0,P1

RP ≥
RP1 +RP2

2
(2.15)

≥ 1

2

(
γ1(P0)Φ(∆1)P0(ψ1 = 1) + γ2(P0)Φ(∆2)P0(ψ2 = 1)

)
(2.16)

+
1

2

(
γ1(P1)Φ(∆1)P1(ψ1 = 0) + γ2(P1)Φ(∆2)P1(ψ2 = 0)

)
(2.17)

≥ min(γ1(P0), γ1(P1))Φ(∆1) inf
ψ1

[
P0(ψ1 = 1) + P1(ψ1 = 0)

2

]
(2.18)

+ min(γ2(P0), γ2(P1))Φ(∆2) inf
ψ2

[
P0(ψ2 = 1) + P1(ψ2 = 0)

2

]
(2.19)

Using the result that

inf
ψ

(
P0(ψ = 1) + P1(ψ = 0)

)
= 1− ||P0 − P1||TV (2.20)

6



we get,

R∗n ≥
1

2
min(γ1(P0), γ1(P1))Φ(∆1)[1− ||P0 − P1||TV ]

+
1

2
min(γ2(P0), γ2(P1))Φ(∆2)[1− ||P0 − P1||TV ] (2.21)

We know,

||P0 − P1||2TV ≤
1

2
DKL(P0||P1) (2.22)

and therefore

R∗n ≥
1

2
min(γ1(P0), γ1(P1))Φ(∆1)

[
1−

√
1

2
DKL(P0||P1)

]
+

1

2
min(γ2(P0), γ2(P1))Φ(∆2)

[
1−

√
1

2
DKL(P0||P1)

]
(2.23)

Similarly, if we extended to other γi, θi terms we have

R∗n = inf
θ̂

sup
P∈P

EP

[
γ1Φ(d(θ̂1, θ1)) + γ2Φ(d(θ̂2, θ2)) + . . . γNΦ(d(θ̂N , θN))

]
(2.24)

Then the lower bound on R∗n is given by

Theorem 2. For any pair P0, P1 ∈ P . Let ∆1 = d(θ1(P0),θ1(P1))
2

, ∆2 = d(θ2(P0),θ2(P1))
2

, . . . and

7



∆N = d(θN (P0),θN (P1))
2

. Then,

R∗n ≥
1

2
min(γ1(P0), γ1(P1))Φ(∆1)

[
1−

√
1

2
DKL(P0||P1)

]
+

1

2
min(γ2(P0), γ2(P1))Φ(∆2)

[
1−

√
1

2
DKL(P0||P1)

]
+ . . .

+
1

2
min(γN(P0), γN(P1))Φ(∆N)

[
1−

√
1

2
DKL(P0||P1)

]
(2.25)

The proof follows similar to Eqn 1.
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CHAPTER 3

Analysis of squared error risk for 2-state Markov chain

3.1 Problem Definition and Results

The prediction problem defined in chapter 1 can be rewritten here specifically for the 2-state

Markov chain.

0 1

α

β

1− α 1− β

The Markov chain represents the transition probabilities from the only two possible observ-

able states 0 and 1. Given a sequence Xn = [X1, X2, . . . , Xn] from M2 with α, β unknown, we

are interested in the prediction problem - that is what is the risk in estimating the next symbol

Xn+1.

We show the following.

Theorem 3.

ρSEn (M2) = min
P̂

max
P∈M2

E
Xn∼P

(
P (0|Xn)− P̂ (0|Xn)

)2

+
(
P (1|Xn)− P̂ (1|Xn)

)2

= 2 min
P̂

max
P∈M2

E
Xn∼P

(
P (0|Xn)− P̂ (0|Xn)

)2

. (3.1)

0.9992

27n
− o

(
1

n

)
≤ ρSEn (M2) ≤ O

(
1

n

)
. (3.2)



3.2 Lower Bound

The lower bound idea and proof in this subsection is got from Kahlon [2018].

Define ρ as follows.

ρ = E
Xn∼M2

[
|p(xn+1 = 0|xn)− q(xn+1 = 0|xn)|2

]
= p(xn = 0) E

Xn∼M2|xn=0

[
|p(xn+1 = 0|xn)− q(xn+1 = 0|xn)|2

]
+ p(xn = 1) E

Xn∼M2|xn=1

[
|p(xn+1 = 0|xn)− q(xn+1 = 0|xn)|2

]
= p(xn = 0) E

Xn∼M2|xn=0
|α− α̂|2 + p(xn = 1) E

Xn∼M2|xn=1
|β − β̂|2 (3.3)

Using the modified Le Cam method 1, we show that

ρSEn (M2) ≥ min

(
p0(xn = 0), p1(xn = 0)

)(
|α0 − α̂0|2

2

)[
1−

√
1

2
DKL(P0|Xn=0||P1|Xn=0)

]
+ min

(
p0(xn = 1), p1(xn = 1)

)(
|β0 − β̂0|2

2

)[
1−

√
1

2
DKL(P0|Xn=1||P1|Xn=1)

]
(3.4)

where P0 and P1 are 2-state markov chains with parameters (α0, β0) and (α1, β1) respectively.P0|Xn=0

is the conditional distribution of P0 given that Xn = 0. Similarly the other terms are defined.

For finding the lower bound, the following distributions are considered.

P0 : α0 = 1− β0 =
1 + δ

2

P1 : α1 = 1− β1 =
1− δ

2

10



Since α = 1 − β, the samples Xn = X1, X2, . . . , Xn will become iid Bernoulli with

P (X = 0) = 1 − α and P (X = 1) = α. Now, since both P0 and P1 are iid Bernoulli,

P (Xn|Xn) = P (Xn−1). Thus,

DKL

(
P0(Xn|Xn = 0)||P1(Xn|Xn = 0)

)
= DKL

(
P0(Xn−1)||P1(Xn−1)

)
(3.5)

DKL

(
P0(Xn|Xn = 1)||P1(Xn|Xn = 1)

)
= DKL

(
P0(Xn−1)||P1(Xn−1)

)
(3.6)

Since the distributions are iid,

DKL

(
P0(Xn−1)||P1(Xn−1)

)
= (n− 1)δ log

(
1 + δ

1− δ

)
(3.7)

Noting that δ log

(
1+δ
1−δ

)
≤ 3δ2 for δ ∈ [0, 1

2
], we obtain

DKL

(
P0(Xn−1)||P1(Xn−1)

)
≤ 3(n− 1)δ2 (3.8)

Plugging the above in equation 3.4, we get

ρSEn (M2) ≥min

(
1 + δ

2
,
1− δ

2

)(
δ

2

)2[
1−

√
3(n− 1)δ2

2

]
+ min

(
1 + δ

2
,
1− δ

2

)(
δ

2

)2[
1−

√
3(n− 1)δ2

2

]
=⇒ ρSEn (M2) ≥1

4
(1− δ)δ2

(
1− δ

√
3(n− 1)

2

)
(3.9)

For δ = 2
3

√
2

3(n−1)
,

ρSEn (M2) ≥ 2

81n
− o
(

1

n

)
(3.10)

11



3.3 Improvements to Lower Bound

First we consider these slightly modified distributions P0 and P1:

P0 : α0 = 1− β0 =
1 + aδ

2

P1 : α1 = 1− β1 =
1− aδ

2

Since the distributions are iid, we have for some λ,

DKL

(
P0(Xn−1)||P1(Xn−1)

)
= (n− 1)aδ log

(
1 + aδ

1− aδ

)
≤ (n− 1)λδ2 (3.11)

We can then modify Eqn 3.9 to get

ρSEn (M2) ≥1

4
(1− aδ)a2δ2

(
1− δ

√
λ(n− 1)

2

)
(3.12)

For δ = 2
3

√
2

λ(n−1)
,

ρSEn (M2) ≥ 2a2

27λn
− o
(

1

n

)
(3.13)

We find that for a = 0.1 and λ = 0.020166, a2/λ = 0.4996. The author believes that the

supremum of the set of values a2/λ is 0.5 while never equalling it.

Thus,

ρSEn (M2) ≥ 0.9992

27n
− o
(

1

n

)
(3.14)
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3.4 Upper Bound

In Falahatgar et al. [2016], they analyse the lower and upper bounds for the minimax KL

divergence risk of the same problem. They show that

ρKLn (M2) = min
P̂

max
P∈M2

ρKLn (P, P̂ ) ≤ 2 log log n

n
+O

(
1

n

)
(3.15)

They prove this by taking 2 cases - single transition sequences and the remaining sequences.

We modify these arguments to get results for the SE case.

3.4.1 Single transition sequences

Consider sequences zl = 0n−l1l of the form 00 . . . 0011 . . . 1111, where the number of zeros

are l. These sequences form the set 01. Similarly, we can define the set 10.

Define the add-β estimator p̂(Xn+1 = 0|Xn = xn) = N10+β
N1+1

, where N10 is the number of

times a state 0 follows state 1 in xn ,N1 is the number of occurrences of state 1 in xn and any

β ∈ [0, 1]. Here, for the single transition sequence zl, N10 = 0, N1 = l. Hence, P̂ = β
l+1

. Then,

ρSEn (01) =
n−1∑
l=1

2p(zl)

(
p0 −

β

(l + 1)

)2

=
n−1∑
l=1

µ0p1(1− p1)n−l−1(1− p0)l−1

[
p2

0 −
2p0β

l + 1
+

β2

(l + 1)2

]

≤
n−1∑
l=1

µ0p1(1− p1)n−l−1(1− p0)l−1

[
p2

0 +
β2

(l + 1)2

]

≤ 2µ0p0

n
+ β2µ0

n−1∑
l=1

p1(1− p1)n−l−1(1− p0)l−1.
1

l2

13



≤ 2µ0p0

n
+ β2µ0

n−1∑
l=1

p1(1− p1)n−l−1 1

l2

≤ 2µ0p0

n
+ β2µ0

n−1∑
l=1

1

n− l − 1

1

l2

≤ 2µ0p0

n
+ β2µ0

n−1∑
l=1

(
1

(n− 1)l2
+

1

(n− 1)2l
+

1

(n− 1)2(n− l − 1)

)
≤ 2µ0p0

n
+ β2µ0

(
2

(n− 1)
+

1

(n− 1)
+

1

(n− 1)

)
≤ O

(
1

n

)
(3.16)

We used the facts that p0, p1 ≤ 1 and the lemma (from Falahatgar et al. [2016]) below

Lemma 4.
t∑
l=1

p0(1− p0)lp1(1− p1)t−l ≤ 1

t+ 1

Note that his upper bound is true for any β ∈ [0, 1].

Similarly, one can show for the 10 case and hence

ρSEn (01 ∪ 10) ≤ O

(
1

n

)
(3.17)

3.4.2 Remaining sequences

In Falahatgar et al. [2016] , they show that

ρKLn (X n \ (01 ∪ 10)) ≤ O

(
1

n

)
(3.18)

by assuming any add-β estimator, and then analysing for the typical and atypical sets.
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To show the similar result for the square error case, We first show the following result:

Lemma 5. For 0 ≤ a, b ≤ 1,

(a− b)2 ≤ D(a||b) = a log

(
a

b

)
+ (1− a) log

(
1− a
1− b

)

Proof. From Pinkser’s inequality we know that for any two probability distributions P and Q,

dTV (P,Q)2 ≤ 1

2
DKL(P ||Q)

where dTV is the total variation distance.

Now, define P = a, 1− a and Q = b, 1− b, where 0 < a, b < 1. As the set is finite,

dTV (P,Q) = 1
2
||P −Q|||1 = |a− b|. Thus,

|a− b|2 ≤ 1

2
DKL(a||b) ≤ DKL(a||b) = a log

(
a

b

)
+ (1− a) log

(
1− a
1− b

)
(3.19)

Using this lemma, we can show that

ρSEn (X n \ (01 ∪ 10)) ≤ ρKLn (X n \ (01 ∪ 10)) ≤ O

(
1

n

)
(3.20)
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By combining 3.17 and 3.20, we can see that

ρSEn (M2) ≤ O

(
1

n

)
(3.21)

3.5 Understanding the Upper Bound

In our proof of the upper bound we used an already existing result. The proof of that result

is very complicated and while it does give the correct order, the constant factor in the order is

very large. Hence, we would like to see if we can find a simpler proof of the same.

Let the last symbol Xn be 1. The probability of this occurring is β
β+α

. The square error risk

given that the observed sequence ends in 1 is

EXn(α− α̂)2

=
n∑
k=1

∑
l

(
k − 1

l

)
αl(1− α)k−l−1

(
n− k − 1

l − 1

)
βl−1(1− β)n−k−l(α− α̂)2

≤
n∑
k=1

min(k−1,n−k)∑
l=1

(
k − 1

l

)
αl(1− α)k−l−1

(
n− k − 1

l − 1

)
βl−1(1− β)n−k−l

≤
n∑
k=1

n/2∑
l=1

(
k − 1

l

)
αl(1− α)k−l−1

(
n− k − 1

l − 1

)
βl−1(1− β)n−k−l (3.22)

The above steps follow as α, α̂ ∈ (0, 1) and max(min(k − 1, n− k)) = n/2.

Now we split the summation into 2 parts and deal with each one. First we state a standard

lemma which is used:

16



Lemma 6.
λn′∑
l=0

(
n′

l

)
βl(1− β)n

′−l ≤ e−n
′D(λ||β) (3.23)

3.5.1 For 0 ≤ k ≤ n/2

Thus n′ = n− k ≥ n/2. Hence 3.22 is less than

n′∑
k=1

n/2∑
l=1

(
k − 1

l

)
αl(1− α)k−l−1

(
n′ − 1

l − 1

)
βl−1(1− β)n

′−l

≤
n/2∑
k=1

n/2∑
l=0

(
n′

l

)
βl(1− β)n

′−l

≤
n/2∑
k=1

e−
n
2
D[ 1

2
||p1] =

n

2
e−

n
2
D[ 1

2
||p1] (3.24)

3.5.2 For n/2 ≤ k ≤ n

Thus n′ = k − 1 ≥ n/2. Hence 3.22 is less than

n∑
k=n/2

n/2∑
l=0

(
k − 1

l

)
αl(1− α)k−l−1

≤
n∑

k=n/2

n/2∑
l=0

(
n′

l

)
αl(1− α)n

′−l

≤
n∑

k=n/2

e−
n
2
D[ 1

2
||p0] =

n

2
e−

n
2
D[ 1

2
||p0] (3.25)

Both 3.24 and 3.25 are of the form f(x) = n
2
e−

n
2
D[ 1

2
||x] = n

2
e−

n
4

loge( 1
4x(1−x)

)

17



Evaluating f(x) ≤ 100
n

,we can see that this is true when 0 ≤ x ≤ 0.283 and 0.717 ≤ x ≤ 1.

One reason for not capturing the entire range is that we are dropping the (α−α̂)2 term. This

result is reassuring because it takes care of probabilities which are very low and very high. The

other probability ranges centered around 0.5 can be possibly dealt with by using concentration

results.
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CHAPTER 4

Analysis of squared error risk for k-state Markov chain

4.1 Lower bound

Define ρ as follows.

ρ = E
Xn∼Mk

[
|p(xn+1 = 0|xn)− q(xn+1 = 0|xn)|2

]
=

n∑
i=1

p(xn = i) E
Xn∼M2|xn=i

[
|p(xn+1 = i|xn)− q(xn+1 = i|xn)|2

]
(4.1)

We first show the lower bound for a k-state markov chain with even k. The odd case follows

similarly.

Let P0 and P1 be two distributions defined as

P0(xn+1 = i|xn = 0) = P0(xn+1 = i|xn = 1) = · · · = P0(xn+1 = i|xn = k − 1)

P0(0|.) = P0(1|.) = · · · = P0(k/2− 1|.) =
1 + δ

k

P0(k/2|.) = P0(k/2 + 1|.) = · · · = P0(k|.) =
1− δ
k



P1(xn+1 = i|xn = 0) = P1(xn+1 = i|xn = 1) = · · · = P1(xn+1 = i|xn = k − 1)

P1(0|.) = P1(1|.) = · · · = P1(k/2− 1|.) =
1− δ
k

P1(k/2|.) = P1(k/2 + 1|.) = · · · = P1(k|.) =
1 + δ

k

(4.2)

Now using extended Le cam Theorem Eqn 2,

ρSEn (Mk) ≥
1

2

[ k∑
i=0

min(P0(i), P1(i))

][ k∑
i=1

(P0(0|i)− P1(0|i))2

4

](
1−

√
1

2
DKL(P0|Xn = 0||P1|Xn = 0)

)
(4.3)

From our construction of P0 and P1, for all i we have :

• min(P0(i), P1(i)) =
1− δ
k

• (P0(0|i)− P1(0|i))2

4
=

δ2

4k2

• DKL(P0|Xn = 0||P1|Xn = 0) = DKL(P0(Xn−1||P1(Xn−1)) = (n− 1)DKL(P0||P1) =

δ log

(
1+δ
1−δ

)

Hence,

ρSEn (Mk) ≥
1

2

(
1− δ

)(
δ2

4k

)(
1−

√
n− 1

2
δ log

(
1 + δ

1− δ

))
(4.4)

As δ log

(
1+δ
1−δ

)
≤ 3δ2, with δ = 2

3

√
2

3(n−1)
,
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ρSEn (Mk) ≥
4

81kn
− o
(

1

n

)
(4.5)

Similarly, when k is odd we can show the same lower bound. We just have to make small

changes to the construction of P0 and P1 which is described as:

P0(xn+1 = i|xn = 0) = P0(xn+1 = i|xn = 1) = · · · = P0(xn+1 = i|xn = k − 1)

P0(0|.) =
1 + 2δ

k

P0(1|.) = P0(2|.) =
1− δ
k

P0(3|.) =P0(4|.) = · · · = P0

(
k + 3

2
|.
)

=
1 + δ

k

P0

(
k + 5

2
|.
)

= P0

(
k + 7

2
|.
)

= · · · = P0(k|.) =
1− δ
k

P1(xn+1 = i|xn = 0) = P1(xn+1 = i|xn = 1) = · · · = P1(xn+1 = i|xn = k − 1)

P1(0|.) = P1(2|.) =
1− δ
k

P1(1|.) =
1 + 2δ

k

P0(3|.) =P0(4|.) = · · · = P0

(
k + 3

2
|.
)

=
1− δ
k

P0

(
k + 5

2
|.
)

= P0

(
k + 7

2
|.
)

= · · · = P0(k|.) =
1 + δ

k
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4.2 Upper Bound

ρSEn (Mk) = min
P̂

max
P∈Mk

ρSEn (Mk, P̂ )

= min
P̂

max
P∈Mk

E
Xn∼P

[ k−1∑
a=0

|p(xn+1 = a|Xn = xn)− p̂(xn+1 = a|Xn = xn)|2
]

= min
P̂

max
P∈Mk

k−1∑
a=0

E
Xn∼P

[
|p(xn+1 = a|Xn = xn)− p̂(xn+1 = a|Xn = xn)|2

]

≤ min
P̂

k−1∑
a=0

max
P∈Mk

E
Xn∼P

[
|p(xn+1 = a|Xn = xn)− p̂(xn+1 = a|Xn = xn)|2

]
(4.6)

Now, we consider the add-β estimator P̂ , with β = 1
k

as follows:

P̂ (xn+1 = a|Xn = xn) =
Nxna + 1

k

Nxn + 1
, ∀ 0 ≤ a ≤ k − 1 (4.7)

where Nxn is the number of occurrunces of state xn in xn and Nxna is the number of times

that state a follows state xn in xn.

For the k state Markov chain and any state a, collapse the k-state Markov chain to a 2-state

Markov chain with states a and ā , where ā = [k] \ a

a ā

α

β

1− α 1− β

From the 2-state Markov chain upper bound (setting β = 1/k), we can show that for any

distribution P ,
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E
Xn∼P

[
|p(xn+1 = a|Xn = xn)− p̂(xn+1 = a|Xn = xn)|2 + |p(xn+1 = a|Xn = xn)− p̂(xn+1 = a|Xn = xn)|2

]
≤ O

(
1
n

)

=⇒ E
Xn∼P

[
|p(xn+1 = a|Xn = xn)− p̂(xn+1 = a|Xn = xn)|2|

]
≤ O

(
1

n

)
(4.8)

Plugging 4.8 in 4.6 for our estimator P̂ .

k−1∑
a=0

max
P∈Mk

E
Xn∼P

[
|p(xn+1 = a|Xn = xn)− p̂(xn+1 = a|Xn = xn)|2

]
≤ O

(
k

n

)
(4.9)

Thus, from our lower bound Eqn 4.5 and upper bound Eqn 4.9 we have

4

81kn
− o
(

1

n

)
≤ ρSEn (Mk) ≤ O

(
k

n

)
(4.10)

4.3 Extending the Upper Bound for KL Divergence

In Falahatgar et al. [2016], they analyse the upper bound for the minimax KL divergence risk

of the 2-state Markov chain. They show that

ρKLn (M2) = min
P̂

max
P∈M2

ρKLn (P, P̂ ) ≤ 2 log log n

n
+O

(
1

n

)
(or)

inf
p̂
sup
α,β

E
Xn∼M2

[
p(0|Xn) log

p(0|Xn)

p̂(0|Xn)
+ p(1|Xn) log

p(1|Xn)

p̂(1|Xn)

]
≤ 2 log log n

n
+O

(
1

n

)
(4.11)
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They show this by taking 2 cases

• Single transition Sequence : The consider sequences zl = 0n−l1l of the form 000 . . . 0011 . . . 11,
where the number of zeros are l.

Using the estimator P̂ (Xn+1 = 0|Xn) = 1
l logn

, they show the upper bound here.

• Remaining sequences : They assume an add-β estimator and show the upper bound for
this case.

Now, consider the upper bound for the minimax KL divergence risk of the k-state Markov

chain.

ρKLn (Mk) = min
P̂

max
P∈Mk

ρKLn (Mk, P̂ )

= min
P̂

max
P∈Mk

E
Xn∼P

[ k−1∑
a=0

p(xn+1 = a|Xn) log

(
p(xn+1 = a|Xn)

p̂(xn+1 = a|Xn)

)]

= min
P̂

max
P∈Mk

k−1∑
a=0

E
Xn∼P

[
p(xn+1 = a|Xn) log

(
p(xn+1 = a|Xn)

p̂(xn+1 = a|Xn)

)]

≤ min
P̂

k−1∑
a=0

max
P∈Mk

E
Xn∼P

[
p(xn+1 = a|Xn) log

(
p(xn+1 = a|Xn)

p̂(xn+1 = a|Xn)

)]
(4.12)

Define the estimator p̂ as follows:

P̂ (xn+1 = a|Xn) =



1
l logn

xn is a single transition sequence of form alān−l

1− 1
l logn

xn is a single transition sequence of form ālan−l

Nxna + 1
k

Nxn + 1
else

(4.13)
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From the 2-state Markov chain and for our estimator p̂

sup
α,β

E
Xn∼M2

[
p(a|Xn) log

p(a|Xn)

p̂(a|Xn)
+ p(ā|Xn) log

p(ā|Xn)

p̂(ā|Xn)

]
≤ 2 log log n

n
+O

(
1

n

)
(or) sup

α,β
E

Xn∼M2

[
p(a|Xn) log

p(a|Xn)

p̂(a|Xn)

]
≤ 2 log log n

n
+O

(
1

n

)
(4.14)

Plugging this in 4.12, we get

ρKLn (Mk) ≤
2k log log n

n
+O

(
1

n

)
(4.15)

In Hao et al. [2018], they study the KL-divergence risk for a k-state Markov chain and show

that

(k − 1) log log n

4en
. ρKLn (Mk) .

2k2 log log n

n
(4.16)

Thus, we improve the upper bound by a factor of k to get the same order of O
(
k log logn

n

)
in both the lower and upper bound. Thus,

ρKLn (Mk) = O

(
k log log n

n

)
(4.17)
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CHAPTER 5

Summary

In this report we have shown the following:

• For the 2-state Markov chain, we showed that

0.9992

27n
− o

(
1

n

)
≤ ρSEn (M2) ≤ O

(
1

n

)
. (5.1)

• For the k-state Markov chain,

4

81kn
− o
(

1

n

)
≤ ρSEn (Mk) ≤ O

(
k

n

)
(5.2)

• Lastly, for the KL-divergence risk of a k-state Markov chain

ρKLn (Mk) ≤
2k log log n

n
+O

(
1

n

)
(5.3)

and hence

ρKLn (Mk) = O

(
k log log n

n

)
(5.4)

The gap between the lower and upper bound for the k-state Markov chain in the SE case

can be improved.
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