
Investigation of Hippocampus Grid Cells in 3D space

A Project Report

submitted by

TRIVIKRAM THIRUKKONDA

EE14B062

in partial fulfilment of the requirements
for the award of the degree of

BACHELOR OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

MAY 2018

Page 1

REPORT CERTIFICATE

This is to certify that the report titled Investigation of Hippocampus Grid Cells in 3D space,
submitted by Trivikram Thirukkonda, to the Indian Institute of Technology, Madras, for the award
of the degree of Bachelor of Technology, is a bona fide record of the research work done by him under
our supervision. The contents of this thesis, in full or in parts, have not been submitted to any other
Institute or University for the award of any degree or diploma.

Srinivasa Chakravarthy
Project Guide
Professor
Dept. of Biotechnology
IIT-Madras, 600 036

Place: Chennai
Date: 11th May 2018

ACKNOWLEDGEMENTS

This project has been an eye-opening experience into the field of Biotech research. I was exposed to
the latest ground-breaking theories and its practical applications. I was given a sandboxed environment
from which to experience the cutting-edge of research.

For this, I would like to thank my guide Srinivasa Chakravarthy for giving me an opportunity to work
in this field and guiding me throughout the project. I would like to thank Karthik Soman, a Ph.D scholar
of the Biotech department for mentoring me.

I would like to thank both the Electrical and Biotech departments for giving me the flexibility to
pursue this project as part of my course curriculum.

Finally, I would like to thank all my friends who helped me complete this project successfully.

Trivikram Thirukkonda
EE14B062
Student
Dept. of Electrical Engineering
IIT-Madras, 600 036

Place: Chennai
Date: 11th May 2018

TABLE OF CONTENTS

Contents

1 Introduction 1

1.1 Simplified Neural Architecture . 2

1.1.1 Head Direction Cells . 2

1.1.2 Path Integration Layer . 2

1.1.3 Lateral Anti-Hebbian Networks . 2

1.1.4 Spatial Cell Patterns . 3

2 Previous Work 5

2.1 Analysis Techniques . 5

2.2 Simulations in 2D environment . 6

2.3 Simulations in 3D environment . 6

2.3.1 3D grid cell patterns . 7

2.3.2 Assumptions and Simulation Parameters . 8

3 Addition of Obstacles in 3D space 8

4 Random Path Generation 9

5 Simulation to train the network 12

5.1 Preparing the input for LAHN . 12

5.2 Training the LAHN . 13

5.3 Populating the firing fields . 15

6 Analysis of Firing Fields 15

6.1 Generating Firing rate maps . 15

6.2 Generating 3D autocorrelation map . 16

6.3 Taking 2D slices from 3D autocorrelation map . 18

6.4 Calculating Grid Scores . 20

7 Results 22

7.1 Projections onto 2D planes . 22

7.2 2D slices . 23

7.3 Interpreting the Results . 24

References 24

Page 1

1 Introduction

Navigating the environment is an essential part of an animal’s survival and accurately estimating its
location in the environment is central to this process. The animal uses sensory cues like vision and
proprioception (feedback from movement of limbs) to both familiarize itself with the environment and
locate itself in it. When experiments were carried out on animals to investigate the neural architecture
responsible for this, researchers found a hierarchy of neurons in the Hippocampus region of the brain
that seemed to respond to the animal’s position, speed and direction.

Further experiments done on animals navigating simple mazes revealed the way the neurons in this
hierarchical order are connected. Inputs from visual and proprioceptive neurons feed into sets of neurons
called Self Organising Maps (SOMs) which act as encoders to map the input onto a finite set of values.
These two types of encoded inputs are then combined in the Sensory Integration (SI) layer using a
weighted average which depends on the reliability of incoming information. If there is enough light for
reliable visual information, the visual SOM’s value will dominate, and vice-versa. At this point, the
information in the SI layer’s neurons have information on the direction and velocity of the animal(Soman
et al. [4]).

The SI layer feeds into the Path Integration (PI) layer via one-to-one connections. As the name sug-
gests, these neurons integrate the incoming velocity information, encoded in the form of phase difference
w.r.t theta oscillations (constant, low frequency oscillations independent of Hippocampus). Finally, the
PI layer feeds into a Lateral Anti-Hebbian Network (LAHN) of neurons in a fully-connected fashion.
These neurons encode the incoming information in a manner similar to Principal Component Analysis.
Ultimately, the LAHN neurons help the animal locate itself as these neurons fire only when the animal is
in certain locations in the environment i.e. the firing patterns have relevant spatial information(Soman
et al. [4]). These "spatial cells" are the focus of this study.

Study of the firing patterns of these LAHN neurons in different environments can help us better
understand the way in which animals navigate their environments. This could ultimately help us improve
artificial techniques of navigation in closed, small environments where classical techniques like GPS are
not feasible.

(a) Full model (b) Simplified model

Figure 1: Neural hierarchy under consideration

Page 1

1.1 Simplified Neural Architecture

The main focus of this project is to investigate the firing field patterns of the LAHN cells. Hence, we do
not focus on the methods of acquiring inputs being given to the network. The speed and direction of the
animal is directly given as an input to the Head Direction layer instead of acquiring it using vision and
proprioception. See fig. 1.

1.1.1 Head Direction Cells

The Head Direction (HD) layer consists of neurons whose response depends on the projection of the
animal’s direction on their preferred direction.

HDi = cos(θ − θi) (1)

These HD neurons are of two types - azimuthal and pitch neurons. For animals navigating a 2D environ-
ment, the pitch neurons are non-existent. Even in animals such as birds, the percentage of pitch neurons
is less than azimuthal since the pitch distribution is not as uniform as azimuthal (i.e. the animal doesnt
undergo sharp ascents or descents). In the experiments conducted on bats, it was found that pitch and
azimuthal neurons were 30% and 70% of the total neurons.

1.1.2 Path Integration Layer

Using the input from HD cells and the supplied velocity information, the PI cells act as a dead reckoning
system. There is a one-to-one mapping from the HD cells to the PI cells. Each PI cell, under zero
input, undergoes a constant oscillation at a given base frequency. The output of HD cells modulates the
frequency of these oscillations and thus the phase of the oscillations encode for the integrated HD cell
output.

PIi = sin[

∫
2π(f0 + βsHDi)dt] (2)

where β is the spatial scaling parameter and HDi is the corresponding HD cell output.
These outputs are then thresholded using the following rule:

PIThr
i = H(PIi − εPI).PIi (3)

where H() is the Heaviside function and ε is the threshold. This thresholding is to simulate the neuron’s
continuous firing threshold.
Finally, these outputs are connected to a single LAHN (as opposed to two LAHNs in the full network
model) in a fully connected fashion.

1.1.3 Lateral Anti-Hebbian Networks

The LAHN is a set of neurons connected to each other such that incoming inputs are connected in a
Hebbian manner (forward weights) and connections between neurons are connected in an anti-Hebbian
manner (lateral weights). The anti-Hebbian connections act as a decorrelation network, removing cor-
relations between incoming inputs as far as possible (P.Foldiak 1989 [5]). As a result, the LAHN acts
as an effective dimensionality reduction network while maintaining maximum mutual information flow
between input and output. Similar to PCA, this network projects the input onto a subspace of its largest
principal components (dimensions with greatest variance) having least cross-correlation between them.

Page 2

Training this network happens in an unsupervised manner, using simple localized rules for modification
of connection weights. Not only is the training faster this way, it is also biologically more plausible than
classical error propagation rules. The network training is said to have converged when the maximum
change in weight of a connection (both forward and lateral) is less than a specified threshold.

Figure 2: A sample LAHN. White circles - Hebbian connections. Black circles - anti Hebbian

The output of each neuron is as follows:

yi =

m∑
j=1

qijxj +

n∑
j=1

wijyj (4)

where wij and qij are forward and lateral weights respectively. Written in matrix form:

y = Qx + Wy

y = (1−W)−1Qx
(5)

During training, the rules for modification of these weights are as follows:

∆wij = −αyiyj

∆qij = β(xjyi − qijy
2
i)

(6)

where α and β are the learning rates for each connection.

In the full model of the neural architecture, there are two sets of LAHNs - the spatial cell layer
LAHNSC and the place cell layer LAHNPC, each producing different types of firing fields. The simplified
model, on the other hand, has just one layer of LAHN neurons.

1.1.4 Spatial Cell Patterns

The LAHN neurons are classified based into the following categories based on their firing field patterns:

• Place cells - These cells only fire when the animal is in the vicinity of a particular point in the
environment.

• Grid cells - These cells only fire when the animal is on the vertices of a repeating pattern on the
environment. These repeating patterns may be overlapping hexagons or squares.

• Border cells - These cells only fire when the animal is in the vicinity of a border of the environment.

• Plane cells - These cells only fire when the animal is on a particular 2D plane.

The last two categories are not considered for analysis in this project.

Page 3

(a) Hexagonal grid cell (b) Square grid cell (c) Place cell

Figure 3: Sample firing fields of different LAHN neurons. Red dots indicate neuron firing at that location

Page 4

2 Previous Work

Previous experiments and model simulations have been done on two scenarios - one in which the animal
is constrained to a 2D plane (rats) and one in which it isn’t (Egyptian fruit bats). The same neural
architecture is present in both creatures but the firing patterns of the LAHN neurons differ. Techniques
to analyze the firing patterns and determine the type of spatial cell involve three main steps - generating
neuron firing map, autocorrelation, calculating spatial information index and gridness scores.

2.1 Analysis Techniques

Neuron Firing Map - The neuron firing fields obtained from the simulations contain a set of points
where the neuron fires. This needs to be converted into a 2D/3D map of strength of activation of the
neurons at these points. The entire environment is divided into bins and if a point in the firing field
exists in that bin, its value is increased.

Figure 4: Firing fields and their respective firing maps

Autocorrelation Map - In order to bring out the symmetry present in the firing fields, their auto-
correlation is taken according to the following formula:

r(τx, τy) =

M
∑
x,y
λ(x, y)λ(x − τx, y − τy) −

∑
x,y
λ(x, y)

∑
x,y
λ(x − τx, y − τy)√√√√√

M
∑
x,y
λ(x, y)2 −

[
M
∑
x,y
λ(x, y)

]2M
∑
x,y
λ(x − τx, y − τy)2 −

[∑
x,y
λ(x − τx, y − τy)

]2
where M is the total number of pixels in the firing map, λ(x, y) is the value at that location in the
firing map, τx, τy are the coordinate spatial lags between the signal and its copy. This formula for
autocorrelation normalizes the values such that the central peak does not dominate. This formula can
be extended in a similar manner to 3D space.

Figure 5: Firing maps and their autocorrelation maps

Spatial Information Index - This is a score that’s used to judge if a neuron carries any relevant
spatial information. A high SII indicates the neuron fires in very few regions and when combined with

Page 5

other neuron outputs, the position of the animal can be estimated. It is computed as follows:

SI =
∑
i

pi
λi
λ

log2

(
λi
λ

)
(7)

where pi is the probability of animal being in the ith pixel of the firing map, calculated as number of
times the animal visited that pixel to the total time spent in the environment. λi is the firing rate of
the ith pixel and λ is the mean firing rate over the entire map. For the simulations, if SII>1 the cell was
considered a spatial cell.

Grid scores - Once the autocorrelation map is calculated, we can check for hexagonal and square
symmetries. To do so, we calculate the Pearson coefficient between rotated versions of the maps and
assign hexagon and square grid scores (HGS and SGS) as follows:

HGS = min
[
cor(r, r60°), cor(r, r120°)

]
− max

[
cor(r, r30°), cor(r, r90°), cor(r, r150°)

]
SGS = cor(r, r90°) − max

[
cor(r, r45°), cor(r, r135°)

] (8)

where cor(.) indicates the Pearson cross-correlation coefficient, r - 2D autocorr map, rθ - autocorr map
rotated by θ degrees. In order to be classified as a map with hexagon firing symmetry, HGS should be
greater than 0 and SGS less than 0. For square symmetry, its vice-versa. If the cell’s spatial information
index > 1 but no definite grid patterns can be seen, it is probably another type of cell such as place,
border or plane cell.

2.2 Simulations in 2D environment

A virtual animal was allowed to freely navigate a square, 2D environment without any obstacles. Three
of the walls were blackened and the fourth contained a white cue card. This acted as the visual input
for the rat. For this simulation, the full network model was used. Once the LAHN weights converged,
the firing patterns of the LAHN cells were of four types - non-spatial cells, place, grid, border cells. The
percentages found in the LAHNSC layer were as follows:
Hexagon grid cells ≈ 37%

Square grid cells ≈ 39.6%

Border cells and non-grid cells ≈ 24%

This matched the experimental observations performed on the foraging rat’s Hippocampus and Endorhinal
Cortex.

2.3 Simulations in 3D environment

A virtual animal was once again allowed to freely navigate a cubical enclosure and after the LAHN
converged, some of the LAHN neurons evolved distinct 3D firing fields. Analysis of 3D grids is not as
straightforward as the 2D case and requires an extra step.

As with the 2D environment, a firing map is populated from the firing fields and its 3D autocorrelation
is taken. But calculation of grid scores is only defined for 2D autocorrelation maps. Depending on the
3D structure under scrutiny, different ways of taking 2D slices out of this 3D autocorrelation map are
used.

The simulations revealed that 95% of the LAHN neurons evolve as spatial cells. Out of these:
Place cells - 32.43%
Grid cells - 23.97%

Page 6

Border cells - 28.1%
Plane cells - 15.5%
Unfortunately, there isn’t enough experimental data to verify these observations. The fruit bat was
engaged in full flight only during recording of place cells. For the grid and border cell recording, the bat
was constrained to move only on the floor.

2.3.1 3D grid cell patterns

While visualizing 3D grid cell patterns, we usually look at the structure as comprised of spheres stacked
in certain patterns (due to its origins in crystallography). Here, we treat local maxima of the autocorre-
lation map as the centers of these spheres and look for patterns in the arrangement of these spheres.

Face-centered Cubic lattice - The FCC lattice is made of layers of hexagon symmetry stacked on
top of each other in an ABCABC fashion i.e. every third layer is exactly identical in terms of orientation
of hexagons. In order to determine presence of FCC structure, the following analysis is done:

1. The nearest peak from the center of the 3D autocorrelation map is found. It is assumed that these
two peaks are part of the pattern being searched for.

2. A 2D plane is rotated about the line joining these two peaks in steps of 1° and for each of these
planes, a grid score is calculated.

3. The plane with the maximum grid score is taken and grid scores for planes at angles of 72° from
this one are checked. The average of the top three grid scores is taken.

4. Step 3 is repeated for an analytically generated FCC lattice and the ratio of the two averages is
taken to be the "FCC score" for this autocorrelation map.

Upon calculating FCC score for all neurons and fitting a Gaussian distribution on FCC scores, it was
found that this simulation did not produce significant FCC structures.

(a) Transecting planes at 72° to
each other

(b) Fitting a Gaussian to distribution
of FCC scores

Figure 6: Analysis of FCC symmetry

Planar Symmetry - This structure consists of identical 2D hexagonal or square patterns stacked on
top of one another. In order to determine planar symmetry, the projections of the 3D map were taken
on the XY, YZ and ZX planes and grid scores were calculated for these 2D maps.
When the grid scores of all the projections were plotted on a scatter plot, a strong planar symmetry was
confirmed for the neurons in this model. Among the neurons whose grid scores were calculated:
Hexagon symmetry - 60%

Page 7

Square symmetry - 26%
Undetermined - 14%
In the figure given below, the green area indicates square symmetry and the red indicates hexagon
symmetry.

(a) Sample firing map and autocorrela-
tion of projections onto 2D coordinate
planes

(b) Scatter plot of grid scores of projections

Figure 7: Analysis of Planar Symmetry

2.3.2 Assumptions and Simulation Parameters

• Owing to the absence of sharp ascents or descents in the trajectory of a bat, the variance is pitch
is much smaller than the variance in the azimuth(a uniform distribution). Hence the trajectory
generated during simulations had a similar distribution. This is also the reason why a 70:30 ratio
was observed for the number of azimuthal:pitch head direction cells.

• A total of 50 LAHN neurons and 100 HD neurons were used.

• Thresholds for classifying cell types:
Spatial cell: SII > 1
Hexagonal Grid cell: HGS>0 and SGS<0
Square Grid cell: HGS<0 and SGS>0

3 Addition of Obstacles in 3D space

This project is an attempt to simulate this model in a 3D environment with obstacles such as a library
or a warehouse. The virtual animal is replaced by a virtual drone such as a quadcopter which can freely
move along all directions. Just like the empty 3D environment under consideration previously, there exists
no experimental data to verify the outcomes of this model. These simulations only predict the possible
patterns of spatial cells under these conditions. All simulations and analysis is done using MATLAB
2016a.
All obstacles under consideration are simple rectangular obstacles which can be modelled in MATLAB
with a few simple parameters.

Page 8

Figure 8: The 3D coordinte system used in simulations

Unsymmetric obstacles
Two shelf-like obstacle sets have been considered. One is a single shelf that runs along the length of the
Y axis and another consists of two such shelves. They are unsymmetric in the sense that the dimensions
of obstacles and position along the three axes are not the same.
Symmetric obstacles
In order to maintain symmetry along the X and Z axes, a floating cuboidal obstacle has been chosen for
the simulations.

(a) Single shelf (b) Two shelves (c) Floating cuboid

Figure 9: 3D views of obstacles

4 Random Path Generation

Since this simulation is carried out for an artificial drone, pitch and azimuth can be varied freely. Hence
the process is greatly simplified.

1. Define the walls of the enclosure and the obstacles in MATLAB using simple 3D coordinates for
each surface of the obstacle

2. At any given time instant, a random acceleration value is chosen from a normal distribution centered
about zero. This is then integrated to get velocity and position in the next time step using simple
Euler integration.

3. In order to prevent collision with obstacles and maintain a smooth path at the same time, the
distance from each obstacle is calculated at every time instant and an acceleration inversely pro-
portional to this distance is added to the randomly generated acceleration values.

Page 9

4. To reduce the chances of the virtual drone crossing an obstacle, the time resolution is chosen as a
small value (say 0.01s).

(a) Single shelf path (b) Two shelves path (c) Floating cuboid path

Figure 10: Random paths around obstacles

Listing 1: Defining obstacles and boundaries

% each obstacle is a rectangle with 4 points defining it (total 12 params)

% params order - xyz1 , xyz2 , xyz3 , xyz4

shelves = [];

% defining boundaries in this form

max_dim = [3, 3, 3];

min_dim = [1, 1, 1];

x = min_dim (1); X = max_dim (1);

y = min_dim (2); Y = max_dim (2);

z = min_dim (3); Z = max_dim (3);

shelves = [shelves; [x,y,z, X,y,z, X,Y,z, x,Y,z]]; %bottom

shelves = [shelves; [x,y,z, X,y,z, X,y,Z, x,x,Z]]; %face1

shelves = [shelves; [x,y,z, x,y,Z, x,Y,Z, x,Y,z]]; %face2

shelves = [shelves; [X,y,z, X,y,Z, X,Y,Z, X,Y,z]]; %face3

shelves = [shelves; [x,Y,z, x,Y,Z, X,Y,Z, X,Y,z]]; %face4

shelves = [shelves; [x,y,Z, X,y,Z, X,Y,Z, x,Y,Z]]; %top

% obstacle1 - floating cuboid

shelves = [shelves; [1.5,1,1.5, 1.5,1,2.5, 1.5,3,2.5, 1.5 ,3 ,1.5]]; % face1

shelves = [shelves; [2.5,1,1.5, 2.5,1,2.5, 2.5,3,2.5, 2.5 ,3 ,1.5]]; % face2

shelves = [shelves; [1.5,1,2.5, 1.5,3,2.5, 2.5,3,2.5, 2.5 ,1 ,2.5]]; % top

shelves = [shelves; [1.5,1,1.5, 1.5,3,1.5, 2.5,3,1.5, 2.5 ,1 ,1.5]]; % bottom

%

% similarly , other obstacles are defined

%

Listing 2: Checking for obstacles and updating acceleration

function updated = check_obs(ppos , pvel , npos , nvel , shelves , unit_vecs , ←↩
min_dim , max_dim)

pos = npos; vel = nvel;

% limit velocity

Page 10

vel(vel >0.2) = 0.2;

vel(vel <-0.2) = -0.2;

% check for box limits

inds = find(npos >= max_dim);

pos(inds) = ppos(inds);

vel(inds) = -pvel(inds);

inds = find(npos <= min_dim);

pos(inds) = ppos(inds);

vel(inds) = -pvel(inds);

% check if crossed over for each obstacle and update them

acc_up = [0,0,0];

deflection = [0.01 0.01 0.01];

for i = 1:size(shelves ,1)

% check which dimension is to be checked

dim = find(unit_vecs(i,:) ~=0);

xcheck = npos (1)>max(shelves(i,[1 ,4,7,10])) || npos (1)<min(shelves(i←↩
,[1 ,4,7,10]));

ycheck = npos (2)>max(shelves(i,[2 ,5,8,11])) || npos (2)<min(shelves(i←↩
,[2 ,5,8,11]));

zcheck = npos (3)>max(shelves(i,[3 ,6,9,12])) || npos (3)<min(shelves(i←↩
,[3 ,6,9,12]));

if((dim ==3) &&(xcheck || ycheck)) % check x and y limits

continue;

elseif ((dim ==1) &&(ycheck || zcheck)) % check y and z limits

continue;

elseif ((dim ==2) &&(xcheck || zcheck)) % check x and z limits

continue;

else

% add up deflection and reflect if it reaches edge

if(npos(dim)>=shelves(i,dim))

if(ppos(dim)<shelves(i,dim))

pos(dim) = ppos(dim);

vel(dim) = -vel(dim);

else

acc_up(dim) = acc_up(dim) + deflection(dim)/(npos(dim)-shelves←↩
(i,dim));

end

elseif(npos(dim)<=shelves(i,dim))

if(ppos(dim)>shelves(i,dim))

pos(dim) = ppos(dim);

vel(dim) = -vel(dim);

else

acc_up(dim) = acc_up(dim) + deflection(dim)/(npos(dim)-shelves←↩
(i,dim));

end

end

end

end

updated = [pos;vel;acc_up];

Page 11

end

5 Simulation to train the network

The input to the simulation program is an array of 3D points generated in the previous step. The program
aims to train the LAHN network and output the set of LAHN weights as well as the firing fields of each
neuron. There are 3 main steps involved:

5.1 Preparing the input for LAHN

The position data is first converted into velocity(magnitude) and direction data. The direction data will
be fed to the HD layer and the velocity will be fed to the PI layer.

Listing 3: Calculating speed and direction

% pos - set of 3D positions given as input

% calculating azimuth and pitch angles at each time instant

delx = diff(pos(:,1)); delx(end+1) =0;

dely = diff(pos(:,2)); dely(end+1) =0;

delz = diff(pos(:,3)); delz(end+1) =0;

theta_az = rad2deg(atan2(dely ,delx));headdir_az=deg2rad(theta_az);

theta_pitch = rad2deg(atan2(delz ,sqrt(delx .^2+ dely .^2)));headdir_pitch=deg2rad←↩
(theta_pitch);

% calculating speed at each time instant

speed=zeros ([1,size(pos ,1) -1]);

for ii=2: size(pos ,1)

speed(ii -1) = pdist2(pos(ii -1,:),pos(ii ,:));

end

s_az=speed;s_pitch=speed;

Next, the outputs of HD cells and PI cells are calculated and populated for training the LAHN. The ratio
of HD azimuthal:pitch cells is set to 1:1 and the total number of neurons is seto to 100. The threshold
value for the PI layer neurons is set to 0.75.

Listing 4: Calculating LAHN inputs

% calculating number of cells

n=100; % total number of hd cells

n_Az_fraction = 50/100; n_pitch_fraction = 1-n_Az_fraction; % ratio of Azimuth←↩
and Pitch neurons.

n_Az = n_Az_fraction*n;

n_pitch = floor(n_pitch_fraction*n) -1;

% defining preferred direction of HD cells

dth_Az =360/ n_Az;

dth_pitch =360/ n_pitch;

theta_pref_deg_Az =0: dth_Az :360- dth_Az;

theta_pref_Az=deg2rad(theta_pref_deg_Az);

Page 12

theta_pref_deg_pitch =0: dth_pitch :360- dth_pitch;

theta_pref_pitch=deg2rad(theta_pref_deg_pitch);

%% PI Azimuthal layer

basefreq =1;

speed_az=s_az ’;

dendphase =0;

dt=0.1;

betaa =2; %Frequency modulation factor

dendfreq =(basefreq *(ones(length(pos) -1,n_Az)))+betaa*repmat(speed_az ,1,n_Az).*←↩
cos(repmat(theta_pref_Az ,length(pos) -1,1)-repmat(headdir_az (1:end -1) ,1,←↩
n_Az));

X = zeros(n_Az ,1); Y = ones(n_Az ,1);

piosc_az =[];

for ii=1: length(pos)-1

dendphase=dendphase +2*pi*dendfreq(ii ,:)*dt;

dendosc=sin(dendphase);

piosc_az(:,ii)=dendosc ’;

end

%% PI Pitch layer

speed_pitch=s_pitch ’;

dendphase =0;

RBP = 100;

betaa2=RBP*betaa /100;

dendfreq =(basefreq *(ones(length(pos) -1,n_pitch)))+betaa2*repmat(speed_pitch ,1,←↩
n_pitch).*cos(repmat(theta_pref_pitch ,length(pos) -1,1)-repmat(←↩
headdir_pitch (1:end -1) ,1,n_pitch));

Xp = zeros(n_pitch ,1); Yp = ones(n_pitch ,1);

piosc_pitch =[];

for ii=1: length(pos)-1

dendphase=dendphase +2*pi*dendfreq(ii ,:)*dt;

dendosc=sin(dendphase);

piosc_pitch (:,ii)=dendosc ’;

end

%% Stacking piosc_Az and piosc_pitch and thresholding

piosc_tot = [piosc_az ;piosc_pitch];

piosc_thresh_tot =((piosc_tot) >0.75).* piosc_tot;

5.2 Training the LAHN

To improve the training, the thresholded PI layer values are mean subtracted before start of training. All
training operations are done in matrix form to speed up calculations. LAHN training equations written

Page 13

in matrix form are:

T(t) =
(

1 − W(t)
)−1

Q(t)

C
(t)
Y = T(t)CXT(t)T

W(t+1) = W(t) − α.offdiag
(

C
(t)
Y

)
Q(t+1) = Q(t) + β

(
T(t)CX − diag

(
C

(t)
Y

)
Q(t)

)
(9)

where var(t) is the variable at time t. A total of 50 LAHN neurons are present. The threshold for LAHN
convergence is set to 0.001x(learning rate) for both kinds of weights. A limit of 2 million is set on the
number of iterations.

Listing 5: LAHN training function

function [T,Q,W, InfoTransferRatio] = foldiak_linear_fn(X, alphaa , betaa , ←↩
output_neuron_nmbr , maxiter)

X=removemean(X);

[N K] = size(X); %N --> Dimension K---> # of samples

%% initialize weights

Q=rand(N,output_neuron_nmbr) -0.5; % Feedforward weights

W=zeros(output_neuron_nmbr ,output_neuron_nmbr); %Lateral weights

Y=zeros(output_neuron_nmbr ,K);

%% Main loop

ii = 1;

convergeflag = 1;

while (1)

T = inv(eye(output_neuron_nmbr)-W)*Q’;

CY = T * CX * T’;

offdiagCY = CY; offdiagCY(logical(eye(size(offdiagCY)))) = 0;

diagCY = CY.*eye(output_neuron_nmbr);

dW = offdiagCY;

dQ = (T*CX - diagCY*Q’);

W = W - alphaa*dW;

Q = Q + (betaa*dQ)’;

if(mod(ii ,10000) ==0)

disp(ii);

end

ii = ii + 1;

dW_max = max(max(abs(dW))); dQ_max = max(max(abs(dQ)));

if(dW_max <0.001 && dQ_max <0.001)

convergeflag = 1;

break;

end

if ii > maxiter

convergeflag = 0;

break;

end

Page 14

end

5.3 Populating the firing fields

The position vectors are simply multiplied by the transformation matrix T to get the values of each
neuron. This is then thresholded at 75% of the maximum value to get the firing fields of each neuron.
The firing fields are acquired in the form of 3D points as well as projections on XY, YZ, ZX planes.

Listing 6: Populating firing fields

%% Get LAHN outputs for each neuron

neuron_number =1:50;

ot1_mat =[]; firposgrid =[];

for ii=1: length(neuron_number)

w=T(ii ,:); %Selecting the weights of that neuron

ot=w*piosc_thresh_tot; ot=ot ’; ot1_mat(:,ii) = ot;

thresh=max(ot)*.75;

firr=find((ot)>thresh);

pos1 = pos_az;

pos2 = [pos(:,1) pos(:,3)];

pos3 = [pos(:,2) pos(:,3)];

firposgrid1=pos1(firr ,:);

firposgrid2=pos2(firr ,:);

firposgrid3=pos3(firr ,:);

firposgrid=pos(firr ,:);

%%%

% further analysis is done inside this for loop itself

%%%

end

6 Analysis of Firing Fields

The analysis of populated firing fields involves similar techniques to previous experiments - generating
firing maps, autocorrelation maps and calculating grid scores.

6.1 Generating Firing rate maps

A firing rate map is a representation of how many times a neuron has fired in a given volume. This
function accepts the firing fields as input and creates a 3D firing rate map. An nX x nY x nZ 3D rate
map of zeros is first created. X,Y,Z are the dimensions of the environment and n is the resolution into
which the space is divided. For each coordinate in the input firing field, the corresponding bin (oe voxel)
in the rate map is incremented.

Listing 7: Generating firing rate maps

Page 15

function map = firing_map(field , resolution , limits1 , limits2 , limits3)

scale = 1/ resolution;

map = zeros ((limits1 (2)-limits1 (1))*scale , (limits2 (2)-limits2 (1))*scale , (←↩
limits3 (2)-limits3 (1))*scale);

bins = floor(field*scale);

bins (:,1) = bins (:,1) - limits1 (1)*scale + 1;

bins (:,2) = bins (:,2) - limits2 (1)*scale + 1;

bins (:,3) = bins (:,3) - limits3 (1)*scale + 1;

for i = 1:size(field ,1)

map(bins(i,1),bins(i,2),bins(i,3)) = map(bins(i,1),bins(i,2),bins(i,3)) + ←↩
1;

end

end

6.2 Generating 3D autocorrelation map

The previously mentioned formula for autocorrelation is used here to calculate the map. The edges of
the map with small overlap are ignored and set to zero.

Listing 8: Generating autocorrelation map

% primary function

function Rxy = correlation_map_3d(map1 ,map2)

bins = size(map1 ,1);

N = bins + round (0.64* bins);

if ~mod(N,2)

N = N - 1;

end

% Centre bin

cb = (N+1)/2;

Rxy = zeros(N,N,N);

for ii = 1:N

rowOff = ii -cb;

for jj = 1:N

colOff = jj -cb;

for kk = 1:N

chanOff = kk -cb;

Rxy(ii,jj,kk) = pointCorr3d(map1 ,map2 ,rowOff ,colOff ,chanOff ,bins);

end

end

end

end

% helper function pointCorr

function Rxy = pointCorr3d(map1 ,map2 ,rowOff ,colOff ,chanOff ,N)

Page 16

% Number of rows in the correlation for this lag

numRows = N - abs(rowOff);

% Number of columns in the correlation for this lag

numCol = N - abs(colOff);

% Number of channels in the correlation for this lag

numCh = N - abs(chanOff);

% Set the start and the stop indexes for the maps

if rowOff > 0

rSt1 = 1+abs(rowOff) -1;

rSt2 = 0;

else

rSt1 = 0;

rSt2 = abs(rowOff);

end

if colOff > 0

cSt1 = abs(colOff);

cSt2 = 0;

else

cSt1 = 0;

cSt2 = abs(colOff);

end

if chanOff > 0

chSt1 = abs(chanOff);

chSt2 = 0;

else

chSt1 = 0;

chSt2 = abs(chanOff);

end

sumXY = 0;

sumX = 0;

sumY = 0;

sumX2 = 0;

sumY2 = 0;

NB = 0;

for ii = 1: numRows

for jj = 1: numCol

for kk = 1: numCh

if ~isnan(map1(rSt1+ii,cSt1+jj ,chSt1+kk)) && ~isnan(map2(rSt2+ii,←↩
cSt2+jj,chSt2+kk))

NB = NB + 1;

sumX = sumX + map1(rSt1+ii ,cSt1+jj,chSt1+kk);

sumY = sumY + map2(rSt2+ii ,cSt2+jj,chSt2+kk);

sumXY = sumXY + map1(rSt1+ii,cSt1+jj ,chSt1+kk) * map2(rSt2+ii,←↩
cSt2+jj,chSt2+kk);

sumX2 = sumX2 + map1(rSt1+ii,cSt1+jj ,chSt1+kk)^2;

sumY2 = sumY2 + map2(rSt2+ii,cSt2+jj ,chSt2+kk)^2;

end

end

end

Page 17

end

if NB >= 4*4*4

sumx2 = sumX2 - sumX ^2/NB;

sumy2 = sumY2 - sumY ^2/NB;

sumxy = sumXY - sumX*sumY/NB;

if (sumx2 <=0 && sumy2 >=0) || (sumx2 >=0 && sumy2 <=0)

Rxy = 0;

else

Rxy = sumxy/sqrt(sumx2*sumy2);

end

else

Rxy = 0;

end

6.3 Taking 2D slices from 3D autocorrelation map

Three rotation axes passing through the center peak and parallel to each of the axes are considered for
taking 2D slices. The autocorr map is rotated in steps of 2 degrees and the central plane is taken as the
rotated 2D slice. For each angle, the autocorrelation map is rotated about the three axes and three slices
are taken from its center. Therefore, for each 3D map, we get (180/2)x3 = 270 2D slices for which we
calculate grid scores. The 3D map is treated as an image to exploit the image processing functions in
MATLAB.

Listing 9: 2D slices

% primary function

function [map2dx , map2dy , map2dz] = rotated_slices(map3d , angle)

size3d = size(map3d);

if(length(size3d)==2)

size3d = [size3d 1];

end

% add 1 to every value - needed to trim off zeros after rotation

map3d = map3d + 1;

%% rotate map3d about Z axis (Z coord remains same , XY transformed)

zrot = imrotate(map3d ,-angle);

map2dz = extract_middle_row(zrot);

% subtract the 1 initially added

map2dz = map2dz - 1;

%% rotate map3d about Y axis (Y coord remains same , ZX transformed)

% switch axes

map3d_xzy = zeros(size3d (2), size3d (3), size3d (1)); % X -> rows , Z -> cols , Y ←↩
-> depth

for ii = 1: size3d (1)

map3d_xzy (:,:,ii) = map3d(ii ,:,:);

end

Page 18

yrot = imrotate(map3d_xzy , -angle);

map2dy = extract_middle_row(yrot);

% subtract the 1 initially added

map2dy = map2dy - 1;

%% rotate map3d about X axis (X coord remains same , YZ transformed)

% switch axes

map3d_yzx = zeros(size3d (1),size3d (3),size3d (2)); % Y -> rows , Z -> cols , X ->←↩
depth

for ii = 1: size3d (2)

map3d_yzx (:,:,ii) = map3d(:,ii,end: -1:1); % Z reversed

end

xrot = imrotate(map3d_yzx ,-angle);

map2dx = extract_middle_row(xrot);

% subtract the 1 initially added

map2dx = map2dx - 1;

end

% helper function - extract_middle_row

function map2d = extract_middle_row(map3d)

size3d = size(map3d);

if(mod(size3d (1) ,2)) % odd number of rows - just select middle row values

map2d = map3d ((size3d (1) +1)/2, :, :);

else % take average of the middle two rows

map2d = (map3d(size3d (1)/2, :, :) + map3d(size3d (1)/2+1, :, :))/2;

end

size2d = size(map2d);

if(length(size2d)==2)

size2d = [size2d 1];

end

map2d = reshape(map2d , [size2d (2),size2d (3)]);

% trim zeros

first_ind = find(map2d (:,1) ,1,’first ’);

last_ind = find(map2d (:,1) ,1,’last’);

map2d = map2d(first_ind:last_ind , :);

end

The diagram below explains the idea behind taking the 2D slices:

Page 19

Figure 11: Taking three 2D slices for each angle

6.4 Calculating Grid Scores

As explained before, each map gets a hexagon and square grid score and depending on these, it gets
classified. The rotation of the 2D maps is about its center and the smallest common area is taken for
calculation of Pearson coefficient. The maps are interpolated as necessary in order to get a properly
centered overlap between the rotated maps.

Listing 10: Grid Scores

% primary function

function [hgs , sgs] = grid_scores(map)

%% calculate square grid score

map90 = imRotateCrop(map , 90);

map45 = imRotateCrop(map , 45);

map135 = imRotateCrop(map , 135);

dim_sq = min([size(map90);size(map45);size(map135)]);

trim_orig = trim_matrix(map , dim_sq);

cor1 = corrcoef(trim_orig ,trim_matrix(map90 ,dim_sq));

cor2 = corrcoef(trim_orig ,trim_matrix(map45 ,dim_sq));

cor3 = corrcoef(trim_orig ,trim_matrix(map135 ,dim_sq));

sgs = cor1 (2) - max([cor2 (2),cor3 (2)]); % cor(1) - self coeff. cor (2) - cross ←↩
coeff.

%% calculate hexagon grid score

map60 = imRotateCrop(map , 60);

map120 = imRotateCrop(map , 120);

map30 = imRotateCrop(map , 30);

map150 = imRotateCrop(map , 150);

dim_hex = min([size(map90);size(map60);size(map120);size(map30);size(map150)])←↩

Page 20

;

trim_orig = trim_matrix(map , dim_hex);

cor1 = corrcoef(trim_orig ,trim_matrix(map90 ,dim_hex));

cor2 = corrcoef(trim_orig ,trim_matrix(map60 ,dim_hex));

cor3 = corrcoef(trim_orig ,trim_matrix(map120 ,dim_hex));

cor4 = corrcoef(trim_orig ,trim_matrix(map30 ,dim_hex));

cor5 = corrcoef(trim_orig ,trim_matrix(map150 ,dim_hex));

hgs = min([cor2 (2),cor3 (2)]) - max([cor4 (2),cor1 (2),cor5 (2)]);

end

% helper function - trim_matrix

function trimmed = trim_matrix(mat , dim)

size_in = size(mat);

%% if sizes are same dont do anything

if(dim(1)== size_in (1) && dim(2)== size_in (2))

trimmed = mat;

return;

end

[Xin ,Yin] = meshgrid (1: size_in (2), 1: size_in (1));

%% check if interpolation is needed

% if both row dims and column dims are diff type

if((mod(size_in (1) ,2) && ~mod(dim (1) ,2) && mod(size_in (2) ,2) && ~mod(dim (2) ,2)←↩
) || ...

(~mod(size_in (1) ,2) && mod(dim(1) ,2) && ~mod(size_in (2) ,2) && mod(dim←↩
(2) ,2)))

[Xq ,Yq] = meshgrid (1:0.5: size_in (1), 1:0.5: size_in (2));

mat_int = interp2(Xin ,Yin ,mat ,Xq ,Yq);

mat = mat_int (2:2:end , 2:2: end); % alternate rows , alternate columns

% if row dimensions are diff type but column dimensions are same type

elseif ((mod(size_in (1) ,2) && ~mod(dim (1) ,2)) || (~mod(size_in (1) ,2) && mod(dim←↩
(1) ,2)))

[Xq ,Yq] = meshgrid (1: size_in (2), 1:0.5: size_in (1));

mat_int = interp2(Xin ,Yin ,mat ,Xq ,Yq);

mat = mat_int (2:2:end , :); % alternate rows , all columns

% if row dimensions are same type but column dims are diff type

elseif ((mod(size_in (2) ,2) && ~mod(dim (2) ,2)) || (~mod(size_in (2) ,2) && mod(dim←↩
(2) ,2)))

[Xq ,Yq] = meshgrid (1:0.5: size_in (2), 1: size_in (1));

mat_int = interp2(Xin ,Yin ,mat ,Xq ,Yq);

mat = mat_int(:, 2:2: end); % all rows , alternate columns

end

%% now trim the matrix accordingly

size_in = size(mat);

% if both final size and mat size are odds

if(mod(size_in (1) ,2) && mod(dim(1) ,2) && mod(size_in (2) ,2) && mod(dim (2) ,2))

center = (size_in +1) /2;

radius = (dim -1) /2;

Page 21

trimmed = mat(center (1)-radius (1):center (1)+radius (1), center (2)-radius (2)←↩
:center (2)+radius (2));

% if both final size and mat size are evens

else

center = size_in /2;

radius = dim/2-1;

trimmed = mat(center (1)-radius (1):center (1) +1+ radius (1), center (2)-radius←↩
(2):center (2)+1+ radius (2));

end

end

7 Results

For each neuron, its Spatial Information Index is first calculated and only if it is greater than 1, any
further analysis is done on it. For finding grid cell patterns, we take,as before, 2D slices from the 3D
map as well as projections onto 2D surfaces to evaluate symmetry. It was observed that 90%-95% of
all LAHN neurons had SII>1. The predominant type of symmetry found in all three simulations was
planar symmetry with square patterns.

7.1 Projections onto 2D planes

For each neuron, the grid scores for all three projections are calculated and plotted on a scatter plot:

(a) Single Shelf (b) Double Shelf (c) Floating Cuboid

Figure 12: Scatter plots of grid scores (projections)

From these figures, we can see that there is hardly any neuron which exhibits planar symmetry with
hexagon patterns. But 30%-40% of all spatially relevant neurons are exhibiting square planar symmetry.

Page 22

(a) Hexagon pattern (b) Square pattern

Figure 13: Sample grid patterns neurons when projected on 2D planes

7.2 2D slices

For each neuron, the scores of the planes with the best hexagon score and the best square score are
populated and a scatter plot was created with them:

(a) Single Shelf (b) Double Shelf (c) Floating Cuboid

Figure 14: Scatter plots of grid scores (slices)

From these figures, we cannot draw sufficient conclusions to the nature of grid patterns as, once
again, we see more of square symmetry than hexagon symmetry, which does not confirm FCC or HCP
structures. The grid scores recorded, though above the specified thresholds, are weak compared to
previous observations in other works.

(a) Hexagon pattern (b) Square pattern

Figure 15: Sample grid patterns neurons when 2D planes are transected from 3D maps

Page 23

7.3 Interpreting the Results

The key observation is the strong presence of planar square symmetry. This departs from the previous
observations of hexagonal planar symmetry in the no obstacles case. There may be several reasons for
this observation:

• Pitch variance - this model assumes free, uniform pitch variance as opposed to previous work
with constrained variance. This may drive the grid cells to assume planar square patterns. When
all constraints on movement are removed, such as in drones, a repeating pattern identical in all
directions makes the most sense. As opposed to this, animals prioritize location on the azimuth
plane over their altitude. This could lead to a more complex system of self-location in the azimuthal
direction compared to altitude.

• Consequence of small environment - The simulation is carried out in a 2x2x2 box with a
resolution of 0.1 for the firing rate map. As a result, peaks showing symmetry may not have
appeared or may have been cut out while finding grid scores. A bigger environment with finer
resolution could reveal more symmetries.

• Too few LAHN neurons - Since the environment, and hence the animal’s path, is more complex,
the limited number of LAHN neurons may be forced to learn simpler representations. Introduction
of more LAHN neurons could give the network the ability to learn more complex representations
such as FCC and Hexagonal Close Packing (HCP)(Stella and Treves 2015, Mathis et al 2015).

• Local vs Global grid scores - In the above analysis, grid scores were only calculated on the
autocorrelation map of the whole firing field. Some previous works have simulated 2D environments
with obstacles and concluded that as the size of obstacles increase, the network begins to learn the
presence of the separate regions. Some neurons only fire when the animal is in one region, but they
may also have hexagonal and square patterns. Similarly, a region wise analysis could be done in
this case as well to determine if neurons form grid cell patterns within those volumes.

The ultimate aim of this project was to investigate the grid cell patterns formed in 3D environments
with obstacles under unconstrained movement (such as a drone in a library or warehouse). Further
simulations with the above changes can help pinpoint the architecture which best suits our purpose. Once
the architecture is finalized, one can build specialized systems (using mutable parallel hardware such as
FPGAs) for real-time implementation of these networks on vehicles such as drones. These nature-inspired
systems will be more accurate and computationally efficient compared to existing neural network based
systems.

References

[1] K.Soman, V.Muralidharan, S.Chakravarthy. AN OSCILLATORY NETWORK MODEL OF HEAD
DIRECTION, SPATIALLY PERIODIC CELLS AND PLACE CELLS USING LOCOMOTOR IN-
PUTS. 2016.

[2] K.Soman, S.Chakravarthy, M.M.Yartsev. A Hierarchical Anti-Hebbian Network Model for the Forma-
tion of Spatial Cells in Three-Dimensional Space. 2018.

[3] K.Soman, V.Muralidharan, S.Chakravarthy. A Model of Multisensory Integration and its Influence
on Hippocampal Spatial Cell Responses. IEEE 2017.

Page 24

[4] K.Soman, V.Muralidharan, S.Chakravarthy. A unified hierarchical oscillatory network model of head
direction cells, spatially periodic cells, and place cells. European Journal of Neuroscience 2018.

[5] P. Foldiak. Adaptive Network for optimal Linear Feature Extraction. 1989.

[6] David Young. MATLAB helper function imRotateCrop() [Online].
Available: https://in.mathworks.com/matlabcentral/fileexchange/48624-rotate-images-with-
automatic-cropping

Page 25

	Introduction
	Simplified Neural Architecture
	Head Direction Cells
	Path Integration Layer
	Lateral Anti-Hebbian Networks
	Spatial Cell Patterns

	Previous Work
	Analysis Techniques
	Simulations in 2D environment
	Simulations in 3D environment
	3D grid cell patterns
	Assumptions and Simulation Parameters

	Addition of Obstacles in 3D space
	Random Path Generation
	Simulation to train the network
	Preparing the input for LAHN
	Training the LAHN
	Populating the firing fields

	Analysis of Firing Fields
	Generating Firing rate maps
	Generating 3D autocorrelation map
	Taking 2D slices from 3D autocorrelation map
	Calculating Grid Scores

	Results
	Projections onto 2D planes
	2D slices
	Interpreting the Results

	References

