
Ray Simulation of Photon in Water using Openacc

A Project Report

submitted by

SUBHAM AGRAWAL

EE14B059

in partial fulfilment of the requirements
for the award of the degree of

BACHELOR OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

MAY 2018

REPORT CERTIFICATE

This is to certify that the report titled Ray Simulation of Photon in Water using openacc,
submitted by Subham Agrawal, to the Indian Institute of Technology, Madras, for the
award of the degree of Bachelor of Technology, is a bona fide record of the research work
done by him under our supervision. The contents of this thesis, in full or in parts, have
not been submitted to any other Institute or University for the award of any degree or
diploma.

Harishankar Ramachandran

Project Guide
Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Place: Chennai
Date: 13th June 2018

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my guide Harishankar Ramachandran for
giving me an opportunity to work under him. Also I would like to thank you for constantly
guiding me thoughtfully and efficiently throughout this project, giving me an opportunity
to work at my own pace along my own lines, while providing me with very useful directions
and insights whenever necessary.

I would also take this opportunity to thank all my friends who have been a great
source of motivation and encouragement.

Finally I would also like to thank all of them who have helped me complete my project
successfully.

Subham Agrawal

EE14b059
Student
Dept. of Electrical Engineering
IIT-Madras, 600 036

Place: Chennai
Date: 11th May 2018

TABLE OF CONTENTS

Contents

1 Introduction 6

1.1 Amdahl’s law . 6

2 OpenMP 7

2.1 Fork-Join Model: . 7

2.2 Directives and clauses of OpenMP . 7

2.3 Example of Matrix multiplication . 8

3 Openacc 10

3.1 Directives . 10

3.2 How to speed-up using openacc . 12

3.2.1 Identify Parallel regions . 12

3.2.2 Parallelize Loops . 13

3.2.3 Optimize Data Movement . 13

3.2.4 Optimize Loop Performance . 13

3.3 Example of Matrix multiplication . 13

4 Profiling Sequential, OpenMP and Openacc code 15

5 Conversion into Openacc 16

6 Analyzing Performance in GPU 21

6.1 Profiling the Simulation Code in Openacc 22

6.2 Profiling Comparison between Python, C, OpenMp and Openacc 22

7 Plots 22

7.1 Basic Plots . 24

7.1.1 Initial Conditions . 25

7.2 Plots without Constant Extrapolation . 26

7.2.1 Output: . 28

7.3 Plots of Constant Extrapolation . 29

7.3.1 Conditions: . 31

7.3.2 Output: . 31

7.4 Plots with Index Constant . 32

7.4.1 Conditions: . 34

7.4.2 Output: . 34

7.5 Plots from Python . 35

7.5.1 Conditions: . 37

7.5.2 Output: . 37

7.6 Plots from Openacc . 38

7.6.1 Conditions: . 40

7.6.2 Output: . 40

8 Comparison: 40

8.1 Comparison with 100 iterations: . 41

8.2 Comparison with 1000 iterations: . 43

8.3 Comparison with 10002 iterations: . 45

9 References: 47

A Ray tracing C code 48

B Python Code for plotting 80

Page 5

1 Introduction

With the growing technology, We want everything to be faster and powerful. We look for
computers that has high graphics card, RAM, storage and then we look out for display
and looks. Why do we want high processing graphics card? GPUs (or popularly known
as Graphics Card) has a lot more cores as compared to 4 or 8 in CPUs. But as compared
to processing power, CPUs are faster than GPUs. But if we look overall, the GPU wins.
Now-a-days the pc games require gpu cards to do most of the processing. They can run
many threads in parallel and speeds-up the process.

Talking about the disadvantage, the memory transfers from main memory to CPU
is much faster than to GPU where it flows through PCI bus. Also its very difficult to
program a GPU than in CPU as things get complicated when they run in parallel. Also
to get speed-up, the memory transfers should be as minimal as possible.

In this project, we project 100000 (= N) rays into sea and track each ray in a time
step. The main objective is to find how many rays reach the submarine (which is inside
sea) in how many time steps, their standard deviation, their intensity and some other
parameters. To simulate this, we are given two input files which contains the attenuation
value and scattering values at different depths and angles. But we know these values at
distinct angles and depths. Therefore we interpolate these curves so that the values at any
angle and depths are known. This interpolation is done using UnivariateSpline function
in python.

1.1 Amdahl’s law

Now the question arises, how much speedup can one get. It is depicted by Amdahl’s
Law. Optimally, doubling the number of processing elements should halve the time taken
and so on. However, very few parallel algorithms achieve optimal speedup. he potential
speedup of an algorithm on a parallel computing platform is given by Amdahl’s law:

Theoretical Speed-up = 1
1−p+ p

s

where p is the fraction of the part that can be parallelized, s is the speed-up of the
parallel execution part. Also it suggests that the maximum speedup that can be achieved
is

Maximum Speed-up = 1
1−p

Page 6

2 OpenMP

OpenMp stands for Open Multi-Processing. It is an application programming interface
(API) that supports multi-platform shared memory multiprocessing programming in C,
C++, and FORTRAN. OpenMP is an implementation of multi-threading, a method of
parallelizing whereby a master thread (a series of instructions executed consecutively)
forks a specified number of slave threads and the system divides a task among them.
The threads then run concurrently, with the runtime environment allocating threads to
different processors. The section of the code that needs to be parallelized is marked with
a compiler directive that will divide the work into different threads. Each thread has
its own unique id i.e. an integer from 0. The master thread has an id of 0. We can
get thread id of any thread by calling the following function: omp_get_thread_num().
By default, each thread executes the parallelized section of code independently. We can
however divide the task among different threads.

2.1 Fork-Join Model:

OpenMp uses fork-join model for parallel execution. In this model, as soon as the compiler
encounters a parallel directive, it creates the specified number of threads (By default it
creates the same number of threads as the number of cores in the CPU) and then joins
all the threads after the work of the threads are done.

2.2 Directives and clauses of OpenMP

Now, I will mention some of the important or most used directives of openMP. The
directives are placed after "#pragma omp" and before any clause.

Page 7

Directives Use

parallel Defines the start of the parallel region. This block will
be executed by multiple threads in parallel.

for It is a work-sharing directive which divides the work of
the for loop or the iterations in the available threads.

single This directive causes the content of the block to be run
by a single thread not necessarily the master thread.

master This directive causes the content of the block to be run
only by the master thread.

critical This directive allows only one thread to execute the con-
tent of the block at a time.

barrier It is a forced synchronization i.e. no thread crosses this
point unless all the threads have reached this point.

task This directive divides the work into tasks and whichever
thread is free picks up a task and completes it.

Clauses Use

private Specifies that each thread should have a own copy of
that variable.

shared Specifies that the variable is shared among all other
threads

reduction Specifies that the private variable of each thread are to
be reduced as specified.

nowait Whichever thread has completed its job can proceed fur-
ther even if other threads haven’t. It overrides the bar-
rier directive.

ordered The block executes in the same order as in the case of
sequential.

schedule This clause is only for for directive. It allows to divide
the work in a static or dynamic way.

2.3 Example of Matrix multiplication

Listing 1: Matrix Multiplication

1 #include<omp.h>
2 #include<time.h>
3 #include<stdio.h>

Page 8

4 #include<stdlib.h>
5

6 int n = 2000;
7 int arr1[2000][2000], arr2[2000][2000], ans[2000][2000],trp←↩

[2000][2000];
8 int main(int argc, char const *argv[])
9 {

10 /* code */
11

12 clock_t start, end;
13 double cpu_time_used;
14 int sum = 0;
15 double diff,t;
16 int i,j,k;
17

18 for(i=0;i<n;i++){
19 for(j=0;j<n;j++){
20 arr1[i][j] = i;
21 arr2[i][j] = i;
22 ans[i][j] = 0;
23 }
24 }
25

26 start = clock();
27

28 #pragma omp parallel private(i,j,k) shared(arr1,arr2,ans)
29 {
30

31 #pragma omp for collapse(2) schedule(dynamic,1000)
32 for(i=0;i<n;i++){
33 for(j=0;j<n;j++){
34 trp[i][j] = arr2[j][i];
35 }
36 }
37

38 #pragma omp for collapse(2) schedule(dynamic,5000) nowait
39 for(i=0;i<n;i++){
40 for(j=0;j<n;j++){
41 for(k=0;k<n;k++){
42 //ans[i][j] += arr1[i][k]*arr2[k][j];
43 ans[i][j] += arr1[i][k]*trp[i][k];

Page 9

44 }
45 }
46 }
47 }
48

49 end = clock();
50 cpu_time_used = ((double) (end - start)) / CLOCKS_PER_SEC;
51 printf("Sequential time taken = %lf\n",cpu_time_used);
52

53 return 0;
54 }

3 Openacc

OpenACC is a programming standard for parallel computing developed by Cray, CAPS,
Nvidia and PGI. The standard is designed to simplify parallel programming of heteroge-
neous CPU/GPU systems. Openacc stands for Open Accelerators. OpenACC is an open
GPU directives standard, making GPU programming straightforward and portable across
parallel and multi-core processors. It is more or less similar to that of openmp except for
some of the directives and clauses. Openacc allows the user to run the code either serially
or multi-core CPU or the in the GPU. If some part of the code is to be accelerated, then
it sends the necessary variables in the GPU and does the computation there and copies
the results back.

3.1 Directives

Similar to openMP, openacc has a list of directives which are added to a block of code.
The directives are placed after "#pragma acc" and before any clause.

Page 10

Directives Use

kernel The compiler needs to decide whether that section can
be parallelized or not.

parallel The user decides whether that section can be parallelized
or not.

loop This directive tells the compiler that it is a parallel block
of code.

data This directive is used to transfer data to and fro the
GPU in a structured way. It has mainly four clauses
like copyin, copy, copyout, create and present.

enter data This directive is used to transfer data to and fro the
GPU but in a unstructured way. It has mainly four
clauses like copyin, copy, copyout, create and present.

update Updates the variable either in the GPU or the CPU as
specified.

wait Waits until the specified task is completed

async It allows that block to run asynchronously.

Page 11

Clauses Use

private Specifies that each thread should have a own copy of
that variable.

shared Specifies that the variable is shared among all other
threads

reduction Specifies that the private variable of each thread are to
be reduced as specified.

independent Forcing the compiler to parallelize the code even if the
compiler feels it can’t be.

sequence The block executes the code in a sequential order.

copy Copies the variable, in the GPU from CPU before the
start of the block and in the CPU from GPU after the
end of the block.

copyin Only copies the variable from CPU to GPU.

copyout Only copies the variable from GPU to CPU after the
end of the block.

create Creates a variable in the GPU of the specified memory.

present Tells the compiler that the variable is already present in
the GPU.

schedule This clause is only for loop directive. It allows to divide
the work in a static or dynamic way.

3.2 How to speed-up using openacc

In this sub-section, I will explain the basic four steps on how one can speed-up his code
using openacc. The four basic steps are identify parallelism, parallelize using openaccc,
optimize data locality and optimize loop.

3.2.1 Identify Parallel regions

The foremost step for a user is to identify the regions which can be parallelized. Then try
adding "#pragma acc kernels" to that section and infer the information while compiling.
In most of the cases, the compiler can say that complex loop carried dependency and
hence cannot be parallelized.

Page 12

3.2.2 Parallelize Loops

Once we have identified the parallel loops, we can add "#pragma acc parallel loop" to
the parallel loop and then compile it with Minfo flag set to all which allows the user to
see all the compiler information. If the compiler disagrees with the user and prevents
parallelism, then if the user is completely sure that the loop can be parallized then he can
add an independent clause after the loop directive which forces the compiler to parallelize
the loop without actually caring about he risk involved.

3.2.3 Optimize Data Movement

After the successful compiling of the code, we will actually see a dip in the speed-up of the
code. It becomes even more slower even after parallelizing it which doesn’t make sense.
The trick here is that, the compiler doesn’t know when to transfer the data to and fro the
GPU and hence it ends up doing it a lot more time than required which slows down the
code. To handle that issue, we need to take control over that and tell the compiler when
to transfer the data. It can be done in either structured way or in an unstructured way.

Structured Way - "#pragma acc data {} "
Unstructured Way - "#pragma acc enter data"

Both ways have clauses like copyin, copyout, copy, create but only unstructured way
has delete clause. In a structured way, there is curly brackets which contains the data
movement. And the data exits or deletes only at the end. While in unstructured way, we
can send the data to GPU whenever we want and copy it back or delete it if that variable
is no longer required.

After this step, we can see significant speed-up in the code. We can further increase
it by following the fourth step.

3.2.4 Optimize Loop Performance

Here we do work in asynchronous manner "#pragma acc async(1)", i.e. pre-fetching the
data required for the next loop. Then we have to add the wait clause to ensure that the
asynchronous task has been completed. With this step, we can increase the speed-up but
not to a much higher extent.

3.3 Example of Matrix multiplication

Page 13

Listing 2: Matrix Multiplication

1 #include<openacc.h>
2 #include<stdio.h>
3 #include<stdlib.h>
4 #include <time.h>
5

6 int n = 2000;
7 int arr1[2000][2000];
8 int arr2[2000][2000];
9 int ans[2000][2000];

10 int trp[2000][2000];
11 int main(int argc, char const *argv[])
12 {
13 /* code */
14

15 clock_t start, end;
16 double cpu_time_used;
17 int sum = 0;
18 double diff,t;
19 int i,j,k;
20

21 for(i=0;i<n;i++){
22 for(j=0;j<n;j++){
23 arr1[i][j] = i;
24 arr2[i][j] = i;
25 ans[i][j] = 0;
26 }
27 }
28 start = clock();
29 #pragma acc data copyin(arr1,arr2,n) create(i,j,k,sum,trp) ←↩

copyout(ans)
30 {
31 #pragma acc parallel loop gang
32 for(i=0;i<n;i++){
33 #pragma acc loop vector
34 for(j=0;j<n;j++){
35 trp[i][j] = arr2[j][i];
36 }
37 }
38

39 #pragma acc parallel loop worker

Page 14

40 for(i=0;i<n;i++){
41 #pragma acc loop gang
42 for(j=0;j<n;j++){
43 sum = 0;
44 #pragma acc loop gang reduction(+:sum)
45 for(k=0;k<n;k++){
46 sum += arr1[i][k]*trp[i][k];
47 }
48 ans[i][j] = sum;
49 }
50 }
51

52 }
53 end = clock();
54 cpu_time_used = ((double) (end - start)) / CLOCKS_PER_SEC;
55 printf("Time taken by parallel = %lf\n",cpu_time_used);
56

57 return 0;
58 }

4 Profiling Sequential, OpenMP and Openacc code

Dimension Sequential Time OpenMp Time Openacc Time

100 X 100 0.01 0.009 0.746

250 X 250 0.085 0.041 0.751

500 X 500 0.666 0.312 0.76

750 X 750 2.121 1.105 0.774

1000 X 1000 3.575 2.682 0.866

1200 X 1200 5.193 3.584 0.926

1400 X 1400 8.256 5.853 0.975

1600 X 1600 14.272 12.182 1.107

1800 X 1800 17.876 12.682 1.233

2000 X 2000 42.64 20.66 1.388

3000 X 3000 153.092 70.96 2.46

Page 15

5 Conversion into Openacc

There are nearly 8 to 9 for loops inside the main simulation loop. To increase the speed-
up, we have to parallelize as many loops as possible. In each paragraph, the problems
related to conversion will be discussed.

Listing 3: Finding Active Rays

1 for(int i3=0;i3<N;i3++){
2 if(status[i3]==0){
3 ii[nii]=i3;
4 nii++;
5 }
6 }

The problem faced here is if we parallelize this then there will be locks on nii variable
and hence it will delay the process than required. The other alternative is we can remove
the block and run all other for loops till N and in the beginning check whether the ray is
active(status = 0) or not. I’m following the latter approach and have completely removed
the block. This makes the code run even faster.

Listing 4: Random Number Loop

1 for(iii=0;iii<nii;iii++){
2 phi0[ii[iii]]=(1.0*rand()/RAND_MAX)*2*PI;
3 u[iii] = (1.0*rand()/RAND_MAX);
4 }
5 #pragma acc update device(u[:N],phi0[:N])

Listing 5: Pseudo Random Generation & its Use

1 #pragma acc routine seq
2 unsigned long rnd(long prev){
3 unsigned long a = 1103515245,m = 2147483648,c = 12345;
4 unsigned long nt = a*prev+c;
5 nt = nt%m;
6 return nt;
7 }
8

Page 16

9 #pragma acc parallel loop gang private(prev,prev1)
10 for(iii=0;iii<N;iii++){
11 prev = m*r_u[iii];
12 prev1 = m*r_phi[iii];
13

14 prev = rnd(prev);
15 u[iii] = (prev*1.0)/m;
16 r_u[iii] = u[iii];
17

18 prev1 = rnd(prev1);
19 phi0[iii] = (prev1*1.0)/m;
20 r_phi[iii] = phi0[iii];
21

22 }

There is no rand() function in openacc and therefore this loop can’t be accelerated. So
in that case, we have to run the above two loops in CPU and then transfer the variables
to GPU which costs a lot and slows down the overall process. The alternative is define a
pseudo random generator function and then accelerate it. But in this process the initial
seed must be different for each threads. Therefore, the threads must be limited. I tried
the above mentioned approach and saw that the above approach alone consumes nearly
0.08 to 0.1s per loop. So, I tried defining a pseudo random generator in GPU and run it
with a single thread. This process is much better as it takes only 0.01s per loop. Both
the methods are listed in the above listing. Both the above methods are slow. Therefore
the other alternate was to pass N seeds into GPU and use pseudo random generator in
GPU. This makes the loop efficient and is now much faster.

Listing 6: tj Loop

1 #pragma acc parallel loop gang independent present(tj,P,Pinv,angle)
2 for(int j2 = 0;j2<nj-1;j2++){
3 #pragma acc loop vector
4 for(int temp = 0;temp<N;temp++){
5 //@@Change 7 to j2
6 if(u[temp]>=P[j2][1] && status[temp] == 0){
7 tj[temp][j2] = splint((double *)P+j2*Nc+1,(←↩double *)angle+1,(double *)Pinv+j2*n,Nc-1,u[←↩temp]);
8 }
9 else tj[temp][j2] = 0.0;

Page 17

10 }
11 }

This loop is parallelizable with no issues being faced here except that the all the shared
variables must be present in the GPU.

Listing 7: theta0 Loop

1 #pragma acc parallel loop gang independent private(yp1,ypn,y2_0,←↩
y2_1,y2_2,y2_3,y2_4,y2_5,y2_6,y2_7) present(tj,sdepth)

2 for(int i2=0;i2<N;i2++){
3 if(status[i2] == 0){
4 yp1 = (tj[i2][1]-tj[i2][0])/(sdepth[1]-sdepth[0]);
5 ypn = (tj[i2][nj-2]-tj[i2][nj-3])/(sdepth[nj-2]-sdepth[←↩

nj-3]);
6 spline1(sdepth,tj[i2][0],tj[i2][1],tj[i2][2],tj[i2][3],←↩

tj[i2][4],tj[i2][5],tj[i2][6],tj[i2][7],nj-1,yp1,ypn←↩
,&y2_0,&y2_1,&y2_2,&y2_3,&y2_4,&y2_5,&y2_6,&y2_7);

7

8 theta0[i2]=splint1(sdepth,tj[i2][0],tj[i2][1],tj[i2←↩
][2],tj[i2][3],tj[i2][4],tj[i2][5],tj[i2][6],tj[i2←↩
][7],y2_0,y2_1,y2_2,y2_3,y2_4,y2_5,y2_6,y2_7,nj-1,←↩
pos[2][i2]);

9 }
10 }

This loop is also parallelizable but the private variables consume a lot of memory and hence
segmentation fault occurs. The private variable of each thread are i2,yp1,ypn,j3,ydep[:nj-
1],sdep2[:nj-1]. Hence we can run it in GPU but with constraints on number of threads.
This process shockingly consumes 8s. Hence to parallelize this, I wrote different versions
of spline and spline which will reduce the number of private variables per thread. The
alternate versions of spline and splint takes 8 variables instead of an array and hence
the for loops of the function are opened.Then the loop was paralleled which significantly
reduces the time taken to nearly 0.06s.

Listing 8: Theta0vals Loop

1 #pragma acc loop seq
2 for(int iii=0;iii<N;iii++){
3 if(theta0[iii]>0.08){

Page 18

4 iit[count]=iii;
5 count++;
6 }
7 //if(theta0[iii]==0) temp++;
8 }
9 printf("len(iit)=%d\n",count);

10

11 //#pragma acc update self(count)
12 if(count>1000) l1=1000;
13 else l1=count;
14

15 //#pragma acc update device(l1,l)
16 //#pragma acc parallel loop
17 for(count = l;count<l+l1;count++){
18 theta0vals[count][1]=theta0[iit[count-l]];
19 theta0vals[count][0]=pos[2][iit[count-l]];
20 }

In this loop, the same problem occurs as in the first loop and hence to initialize the iit
variable it must be done in CPU or with one thread in GPU. This is again a barrier loop
which restricts the speed-up. The second for loop in this listing can be parallelized. The
problem of running the first loop in CPU again puts barrier on speed-up due to memory
transfers. But this listing of code is not used anywhere after the main simulation loop.
Hence I have commented this listing in the code.

Listing 9: Updation Loop

1 #pragma acc parallel loop gang independent private(sx,sy,sz,phi,←↩
theta1,cosphi,costheta,sinphi,sintheta) present(status[:N],phi0←↩
[:N],flx[:3][:N],pos[:3][:N],x_att[:n_att],y_att[:n_att],y2_att←↩
[:n_att])

2 for(iii=0;iii<N;iii++){
3 if (status[iii] == 0){
4

5 sx= cos(phi0[iii])*sin(theta0[iii]);
6 sy= sin(phi0[iii])*sin(theta0[iii]);
7 sz= cos(theta0[iii]);
8 phi=atan2(flx[1][iii],flx[0][iii]);
9 theta1=atan2(sqrt(pow(flx[0][iii],2)+pow(flx[1][iii],2)←↩

),flx[2][iii]);
10 cosphi=cos(phi);sinphi=sin(phi);

Page 19

11 costheta=cos(theta1);sintheta=sin(theta1);
12

13 flx[0][iii]= (cosphi*costheta*sx) + (-sinphi*sy) + ←↩
cosphi*sintheta*sz;

14 flx[1][iii]= (sinphi*costheta*sx) + (cosphi*sy) + ←↩
sinphi*sintheta*sz;

15 flx[2][iii]= (-sintheta*sx) + costheta*sz;
16

17 //intensity[ii[iii]]=intensity[ii[iii]]*exp(-splint((←↩double *)Att+1,(double *)Att+13*i+1,y2_att,n_att,pos←↩[2][ii[iii]]));
18 intensity[iii]=intensity[iii]*exp(-splint(x_att,y_att,←↩y2_att,n_att,pos[2][iii]));
19

20 pos[0][iii] = pos[0][iii]+flx[0][iii];
21 pos[1][iii] = pos[1][iii]+flx[1][iii];
22 pos[2][iii] = pos[2][iii]+flx[2][iii];
23 if(pos[2][iii] < 0) pos[2][iii] = pos[2][iii]*(-1);
24 }
25

26 }

No issues were faced in accelerating this loop as the private variables per thread is less
and it is independent of other iterations. The only issue is there are lot of shared variables
but that is not of any concern as the GPU has 4Gb of shared memory.

Listing 10: Status Updation

1 #pragma acc parallel loop gang private(t2)
2 for(int i2=0;i2<N;i2++){
3 if(status[i2] == 0){
4 t2 = sqrt(pos[0][i2]*pos[0][i2]+pos[1][i2]*pos[1][i2]+(←↩pos[2][i2]-z0)*(pos[2][i2]-z0));
5 if(t2<=s){
6 status[i2] = i;
7 }
8 }
9 }

10 #pragma acc update self(status[:N]) async(i) //Depending on the ←↩
first Loop

Page 20

This loop is parallelized but depending on the how are we handling the first loop i.e.
initializing ii variables, we need to update the status array in CPU in an asynchronous
way to save time. If we run the first loop in GPU or remove the loop from the picture,
then there is no need to update the status variable in CPU and it will save time. We need
all the variables in the GPU for speed-up, hence I have eliminated ii array.

Listing 11: traj and beam2 Updation

1 #pragma acc parallel loop gang independent collapse(2) present(pos,←↩
traj)

2 for(int tt = 0;tt<3;tt++){
3 for(int tp = 0;tp<ntraj;tp++){
4 traj[tt][tp][i]=pos[tt][tp];
5 }
6 }
7

8 #pragma acc parallel loop independent present(pos,beam2)
9 for(int tt = 0;tt<N;tt++){

10 if((pos[2][tt] > z2) && (beam2[tt][0]<0)){
11 beam2[tt][0]=sqrt(pos[0][tt]*pos[0][tt]+pos[1][tt]*pos←↩[1][tt]);
12 beam2[tt][1]=atan2(pos[0][tt],pos[1][tt]);
13 }
14 }

This are independent loops and are paralleled by adding the accelerator directive.

6 Analyzing Performance in GPU

Copying all the variables from the CPU to GPU takes nearly 120 to 175s and similarly
copying all the results back from the GPU takes 75 to 100s. Initially, I was running three
loops(First loop, random number loop and theta0 loop) in CPU and copying memory to
and fro the GPU and it used to take nearly 11 to 15s per loop which is nearly 3 times
slower than the python code. I checked the GPU utilisation and it was only 35%. Then
I tried the first loop and theta0 loop in GPU in sequential order. Hence limiting the
memory transfer to random generator loop. But I didn’t get much of an improvement
due to sequential run of theta0 loop. And hence I modified splint and spline calls which
paralleled the theta0 loop. Next issue was to generate random number in GPU. And as
openacc doesn’t support in-built rand() function, the only solution was to write a pseudo

Page 21

random generator function in openacc. But giving different seeds to different threads was
difficult, I am running this loop in only one thread and it takes nearly 0.009 to 0.01s
per loop and hence consumes 43% of the time. The other alternative is I should pass a
different seed to each thread. Therefore I’m now passing N seeds to GPU and hence this
loop is also paralleled and this loop now runs much faster i.e. it takes only 0.001s.

6.1 Profiling the Simulation Code in Openacc

The below table depicts the time taken by GPU in seconds to run a loop of the simulation
code. The openacc time includes the copyin (nearly 80s) and copyout (nearly 15s) time.
The copyin and copyout depends on the number of simulations as the size of the variables
changes.

Loop Openacc

100 95.2

200 96.37

500 99.92

1000 105.65

2000 120.3

5000 162.33

10002 240

6.2 Profiling Comparison between Python, C, OpenMp and Openacc

The below table depicts the time taken by each of the architecture in seconds to run a loop
of the simulation code. The openacc time includes the copyin (nearly 80s) and copyout
(nearly 15s) time.

Loop Python C OpenMp Openacc

1 4 0.15 0.08 0.013

100 382 14.3 7.01 95.2

10002 - 1291.4 534.1 240

7 Plots

Here in this section, I will attach all the plots. This section is again divided into four sub
parts. The first part contains three basic plots are plotted before the main simulation

Page 22

loop and are same for all the cases. Remaining three part contains the output plots with
some variation in the code.

Page 23

7.1 Basic Plots

Page 24

7.1.1 Initial Conditions

All the sections while plotting are run for 10002 iterations with 100000 rays i.e.
N = 100000
nt = 10002

Page 25

7.2 Plots without Constant Extrapolation

Page 26

Page 27

7.2.1 Output:

The output of the final code is:
6789 rays (out of 100000) reached the submarine
Average time to reach submarine=1602.29 time steps
Stdeviation of time to reach submarine=2172.08 time steps

Page 28

7.3 Plots of Constant Extrapolation

Page 29

Page 30

7.3.1 Conditions:

The splint function is modified as whenever its extrapolating, it gives a constant value of
the first or the last coordinate depending on which side its extrapolating.

7.3.2 Output:

The output of the final code is:
7373 rays (out of 100000) reached the submarine
Average time to reach submarine=870.28 time steps
Stdeviation of time to reach submarine=1628.35 time steps

Page 31

7.4 Plots with Index Constant

Page 32

Page 33

7.4.1 Conditions:

As we saw the plot of tj array in C and Python above, there was differences in the values
but the value of the last point is same. And the value of a row in tj, in python, is same
therefore I assigned all the values of tj to the values of its last column. Hence I got similar
results as in the case of Python.

7.4.2 Output:

The output of the final code is:
9741 rays (out of 100000) reached the submarine
Average time to reach submarine=576.08 time steps
Stdeviation of time to reach submarine=1342.23 time steps

Page 34

7.5 Plots from Python

Page 35

Page 36

7.5.1 Conditions:

As the python code is very slow and it takes nearly 4 to 5s per loop. Running with 10002
time steps will take nearly 10hrs and hence I ran it with 100 time steps and 100000 rays.

7.5.2 Output:

The output of the final code is:
6022 rays (out of 100000) reached the submarine
Average time to reach submarine=91.04 time steps
Stdeviation of time to reach submarine=1.69 time steps

Page 37

7.6 Plots from Openacc

Page 38

Page 39

7.6.1 Conditions:

The openacc code takes nearly 0.015s per loop. To match the output with python, I ran
it for 100 time steps and 100000 rays. Also I have assumed constant extrapolation and
therefore there will be some difference in the plots and output.

7.6.2 Output:

The output of the final code is:
3541 rays (out of 100000) reached the submarine
Average time to reach submarine=91.17 time steps
Stdeviation of time to reach submarine=1.80 time steps

But if I keep index constant, the results match with those of python and then the output
is:
6032 rays (out of 100000) reached the submarine
Average time to reach submarine=91.03 time steps
Stdeviation of time to reach submarine=1.71 time steps

Also if I run it for 10002 time steps then the output is:
7213 rays (out of 100000) reached the submarine
Average time to reach submarine=1119.79 time steps
Stdeviation of time to reach submarine=2042.26 time steps

8 Comparison:

There are three subsection in this section. In the first two sections i.e. with 100 and
1000 iterations, I have included the plots for all the cases but for 10002 iterations, I have
excluded the Python case as it takes very long time to simulate. Also in the first two
cases where the python plots have been included, I have kept the index constant so as to
match with Python.

Page 40

8.1 Comparison with 100 iterations:

(a) Python (b) C

(c) OpenMp (d) Openacc

(a) Python (b) C

(c) OpenMp (d) Openacc

Page 42

8.2 Comparison with 1000 iterations:

(a) Python (b) C

(c) OpenMp (d) Openacc

(a) Python (b) C

(c) OpenMp (d) Openacc

Page 44

8.3 Comparison with 10002 iterations:

(a) C (b) OpenMp

(c) Openacc

(a) C (b) OpenMp

(c) Openacc

Page 46

9 References:

[1] Dr. Yogish Sabharwa. (2017, June 8). Introduction to Parallel Programming in
OpenMp [Online]. Available:
http://nptel.ac.in/courses/106102163/

[2] Dr. Subodh Kumar.(2013, Nov 14). Parallel Computing [Online]. Available:
http://nptel.ac.in/courses/106102114/

[3] Cscsch. (2013, Dec 18). An introduction to OpenACC [Online]. Available:
https://www.youtube.com/watch?v=KQ0SOx46Xf0

[4] Jeff Larkin. (2015, Oct 1). Introduction to OpenACC on x86 CPU and GPU
[Online]. Available:
https://www.youtube.com/watch?v=KgMJzmqenuclist=PL5B692fm6–u-
tdH8ct52nXWqmmp4B3C-index=1

[5] Wikipedia. Parallel computing [Online]. Available:
https://en.wikipedia.org/wiki/Parallel_computing

Page 47

Appendix

A Ray tracing C code

This is the main part of my project where I have converted the python code into c and
then ported it to GPU. I will explain each block of C code.

Listing 12: Ray tracing

1 #include<time.h>
2 #include<string.h>
3 #include<stdio.h>
4 #include<stdlib.h>
5 #include <math.h>
6 #include<openacc.h>
7

8 #define PI 3.14159265358979323846
9

10 #pragma acc routine seq
11 unsigned long rnd(long prev){
12 unsigned long a = 1103515245,m = 2147483648,c = 12345;
13 unsigned long nt = a*prev+c;
14 nt = nt%m;
15 return nt;
16 }
17

18 double randn (double mu, double sigma){
19 double U1, U2, W, mult;
20 static double X1, X2;
21 static int call = 0;
22

23 if (call == 1) {
24 call = !call;
25 return (mu + sigma * (double) X2);
26 }
27

28 do{
29 U1 = -1 + ((double) rand () / RAND_MAX) * 2;
30 U2 = -1 + ((double) rand () / RAND_MAX) * 2;
31 W = (double) pow(U1, 2) + (double) pow(U2, 2);
32 }while (W >= 1 || W == 0);

Page 48

33

34 mult = sqrt ((-2 * log (W)) / W);
35 X1 = U1 * mult;
36 X2 = U2 * mult;
37 call = !call;
38

39 return (mu + sigma * (double) X1);
40 }

In the above section there are some libraries which are imported and Gaussian random
function which takes two parameters that are mu(mean) and sigma(standard deviation).
As there is no inbuilt function in c for normalized random function, I had to define it
here. Also as we cannot use inbuilt rand() function in openacc, I had to define a pseudo
random generator function which can be paralleled.

Listing 13: Spline & Splint

1 //#pragma acc routine seq
2 void spline(double *x,double *y,int n,double yp1,double ypn,double ←↩

y2/,double *u*/){
3 // It is assumed that x,y,y2 and u have been allocated in the ←↩

calling program. u is a work array of the same size as x.
4 int i,k;
5 double p,qn,sig,un,u[n+1];
6

7 x--;y--;y2--; // NR adjustments
8 if (yp1 > 0.99e30) y2[1]=u[1]=0.0;
9 else {

10 y2[1] = -0.5;
11 u[1]=(3.0/(x[2]-x[1]))*((y[2]-y[1])/(x[2]-x[1])-yp1);
12 }
13 for (i=2;i<=n-1;i++) {
14 sig=(x[i]-x[i-1])/(x[i+1]-x[i-1]);
15 p=sig*y2[i-1]+2.0;
16 y2[i]=(sig-1.0)/p;
17 u[i]=(y[i+1]-y[i])/(x[i+1]-x[i]) - (y[i]-y[i-1])/(x[i]-x[i←↩

-1]);
18 u[i]=(6.0*u[i]/(x[i+1]-x[i-1])-sig*u[i-1])/p;
19 }
20 if (ypn > 0.99e30) qn=un=0.0;
21 else {

Page 49

22 qn=0.5;
23 un=(3.0/(x[n]-x[n-1]))*(ypn-(y[n]-y[n-1])/(x[n]-x[n-1]));
24 }
25 y2[n]=(un-qn*u[n-1])/(qn*y2[n-1]+1.0);
26 for (k=n-1;k>=1;k--){
27 y2[k]=y2[k]*y2[k+1]+u[k];
28 }
29 }
30

31

32 //#pragma acc routine seq
33 double splint(double *xa,double *ya,double *y2a,int n,double x){
34 // void nrerror();
35 int klo,khi,k;
36 double h,b,a,y;
37

38 xa--;ya--;y2a--; // NR adjustments
39 klo=1;
40 khi=n;
41 while (khi-klo > 1) {
42 k=(khi+klo) >> 1;
43 if (xa[k] > x) khi=k;
44 else klo=k;
45 }
46 h=xa[khi]-xa[klo];
47 if (h == 0.0){
48 printf("Bad xa input to routine splint");
49 exit(1);
50 }
51 a=(xa[khi]-x)/h;
52 b=(x-xa[klo])/h;
53 y=0.0+a*ya[klo]+b*ya[khi]+((a*a*a-a)*y2a[klo]+(b*b*b-b)*y2a[←↩khi])*(h*h)/6.0;
54 return y;
55 }

Spline and Splint function are taken from Numerical Recipes. Spline function takes
coordinates, number of coordinates and first order derivative at the first and last coor-
dinate as inputs. In return the function calculates the second order derivatives at all
the coordinates. Whereas Splint takes the coordinates, second order derivatives and one

Page 50

x-coordinate as input and it returns the corresponding y-value.

This spline produces a curve which passes through all the coordinates and is good for
interpolation of any curve. But for extrapolation, the error becomes large and hence I
have considered two cases i.e. let the function extrapolate in one case while in the other,
taking constant value for extrapolation.

Listing 14: Extra function for Spline & Splint in open acc

1

2 /*These two functions are only meant for openacc*/
3

4

5 #pragma acc routine seq
6 void spline1(double *x,double y0,double y1,double y2,double y3,←↩

double y4,double y5,double y6,double y7,int n,double yp1,←↩
double ypn,double *y2_0,double *y2_1,double *y2_2,double *←↩y2_3,double *y2_4,double *y2_5,double *y2_6,double *y2_7){

7 // It is assumed that x,y,y2 and u have been allocated in ←↩
the calling program. u is a work array of the same size ←↩
as x.

8 int i,k;
9 double p,qn,sig,un;

10 //double *u = malloc(sizeof(double)*110);
11 double u0,u1,u2,u3,u4,u5,u6,u7;
12 //x--;y--;y2--; // NR adjustments
13 if (yp1 > 0.99e30) *y2_0=u0=0.0;
14 else {
15 *y2_0 = -0.5;
16 u0=(3.0/(x[1]-x[0]))*((y1-y0)/(x[1]-x[0])-yp1);
17 }
18 i=1;
19 sig=(x[i]-x[i-1])/(x[i+1]-x[i-1]);
20 p=sig*(*y2_0)+2.0;
21 *y2_1=(sig-1.0)/p;
22 u1=(y2-y1)/(x[i+1]-x[i]) - (y1-y0)/(x[i]-x[i-1]);
23 u1=(6.0*(u1)/(x[i+1]-x[i-1])-sig*(u0))/p;
24

25 i=2;
26 sig=(x[i]-x[i-1])/(x[i+1]-x[i-1]);
27 p=sig*(*y2_1)+2.0;
28 *y2_2=(sig-1.0)/p;

Page 51

29 u2=(y3-y2)/(x[i+1]-x[i]) - (y2-y1)/(x[i]-x[i-1]);
30 u2=(6.0*(u2)/(x[i+1]-x[i-1])-sig*(u1))/p;
31

32 i=3;
33 sig=(x[i]-x[i-1])/(x[i+1]-x[i-1]);
34 p=sig*(*y2_2)+2.0;
35 *y2_3=(sig-1.0)/p;
36 u3=(y4-y3)/(x[i+1]-x[i]) - (y3-y2)/(x[i]-x[i-1]);
37 u3=(6.0*(u3)/(x[i+1]-x[i-1])-sig*(u2))/p;
38

39 i=4;
40 sig=(x[i]-x[i-1])/(x[i+1]-x[i-1]);
41 p=sig*(*y2_3)+2.0;
42 *y2_4=(sig-1.0)/p;
43 u4=(y5-y4)/(x[i+1]-x[i]) - (y4-y3)/(x[i]-x[i-1]);
44 u4=(6.0*(u4)/(x[i+1]-x[i-1])-sig*(u3))/p;
45

46 i=5;
47 sig=(x[i]-x[i-1])/(x[i+1]-x[i-1]);
48 p=sig*(*y2_4)+2.0;
49 *y2_5=(sig-1.0)/p;
50 u5=(y6-y5)/(x[i+1]-x[i]) - (y5-y4)/(x[i]-x[i-1]);
51 u5=(6.0*(u5)/(x[i+1]-x[i-1])-sig*(u4))/p;
52

53 i=6;
54 sig=(x[i]-x[i-1])/(x[i+1]-x[i-1]);
55 p=sig*(*y2_5)+2.0;
56 *y2_6=(sig-1.0)/p;
57 u6=(y7-y6)/(x[i+1]-x[i]) - (y6-y5)/(x[i]-x[i-1]);
58 u6=(6.0*(u6)/(x[i+1]-x[i-1])-sig*(u5))/p;
59

60 if (ypn > 0.99e30) qn=un=0.0;
61 else {
62 qn=0.5;
63 un=(3.0/(x[n-1]-x[n-2]))*(ypn-(y7-y6)/(x[n-1]-x[n-2]));
64 }
65

66 *y2_7=(un-qn*(u6))/(qn*(*y2_6)+1.0);
67

68 *y2_6=*y2_6*(*y2_7)+u6;//k=6
69 *y2_5=*y2_5*(*y2_6)+u5;//k=5

Page 52

70 *y2_4=*y2_4*(*y2_5)+u4;//k=4
71 *y2_3=*y2_3*(*y2_4)+u3;//k=3
72 *y2_2=*y2_2*(*y2_3)+u2;//k=2
73 *y2_1=*y2_1*(*y2_2)+u1;//k=1
74 *y2_0=*y2_0*(*y2_1)+u0;//k=0
75

76 }
77

78

79 #pragma acc routine seq
80 double splint1(double *xa,double ya0,double ya1,double ya2,←↩

double ya3,double ya4,double ya5,double ya6,double ya7,←↩
double y2a_0,double y2a_1,double y2a_2,double y2a_3,double ←↩
y2a_4,double y2a_5,double y2a_6,double y2a_7,int n,double x)←↩
{

81 // void nrerror();
82 int klo,khi,k;
83 double h,b,a,y;
84

85 if(x<xa[0]) return ya0;
86 else if (x>xa[n-1]) return ya7;
87

88 //xa--;ya--;y2a--; // NR adjustments
89 klo=0;
90 khi=n-1;
91 while (khi-klo > 1) {
92 k=(khi+klo) >> 1;
93 if (xa[k] > x) khi=k;
94 else klo=k;
95 }
96 h=xa[khi]-xa[klo];
97 if (h == 0.0){
98 return 0;
99 //printf("Bad xa input to routine splint");

100 //exit(1);
101 }
102 a=(xa[khi]-x)/h;
103 b=(x-xa[klo])/h;
104 double t1,t2,t3,t4;
105 switch(klo){
106 case 0:

Page 53

107 t1=ya0;
108 t3=y2a_0;
109 break;
110 case 1:
111 t1=ya1;
112 t3=y2a_1;
113 break;
114 case 2:
115 t1=ya2;
116 t3=y2a_2;
117 break;
118 case 3:
119 t1=ya3;
120 t3=y2a_3;
121 break;
122 case 4:
123 t1=ya4;
124 t3=y2a_4;
125 break;
126 case 5:
127 t1=ya5;
128 t3=y2a_5;
129 break;
130 case 6:
131 t1=ya6;
132 t3=y2a_6;
133 break;
134 case 7:
135 t1=ya7;
136 t3=y2a_7;
137 break;
138 }
139 switch(khi){
140 case 0:
141 t2=ya0;
142 t4=y2a_0;
143 break;
144 case 1:
145 t2=ya1;
146 t4=y2a_1;
147 break;

Page 54

148 case 2:
149 t2=ya2;
150 t4=y2a_2;
151 break;
152 case 3:
153 t2=ya3;
154 t4=y2a_3;
155 break;
156 case 4:
157 t2=ya4;
158 t4=y2a_4;
159 break;
160 case 5:
161 t2=ya5;
162 t4=y2a_5;
163 break;
164 case 6:
165 t2=ya6;
166 t4=y2a_6;
167 break;
168 case 7:
169 t2=ya7;
170 t4=y2a_7;
171 break;
172 }
173 //y=0.0+a*ya[klo]+b*ya[khi]+((a*a*a-a)*y2a[klo]+(b*b*b-b)*←↩y2a[khi])*(h*h)/6.0;
174 y=0.0+a*t1+b*t2+((a*a*a-a)*t3+(b*b*b-b)*t4)*(h*h)/6.0;
175 return y;
176 }

I had to write these alternate versions of spline and splint specifically to find values
of theta0. I was not able to privatize an array which either gave me wrong results or
segmentation faults. Therefore I defined these functions so as to remove any privatization
of array per thread instead now I have to privatize a bunch of variables.

Listing 15: Read File

1 int readfile(char* name,int n,double mat[][n],int max_r){
2 char buffer[1024];
3 char *record,*line;

Page 55

4 int i=0,j=0;
5 FILE *fstream = fopen(name,"r");
6 if(fstream == NULL){
7 printf("\n file opening failed ");
8 return 0;
9 }

10 /*else{
11 printf("\n file opened ");
12 } */
13 while((line=fgets(buffer,sizeof(buffer),fstream))!=NULL)
14 {
15 record = strtok(line,",");
16 if(record[0] == ’#’) continue;
17 while(record != NULL)
18 {
19 //here you can put the record into the array as per ←↩

your requirement.
20 mat[i][j++] = atof(record);
21 record = strtok(NULL,",");
22 if(j==n) break;
23 }
24 ++i;
25 if(max_r!=0 && i>=max_r) break;
26 j=0;
27 }
28 return i;
29 }

The function is used to read file. It takes file name, number of columns and number of
rows to read and an address to a 2-D array to store the values. The function is designed in
such a way that there is no need to read complete file and then take a smaller matrix out
of it. By giving correct dimensions, the function reads only smaller matrix and skips other
part with certain constraint like the left-top dimension of the matrix cannot be changed.
Also if a line starts with "#", it considers as a comment and skips it as in python.

Listing 16: Integral

1 double intgrl(double *theta,double *sangle,int ni,int nj,double ←↩
Sca_T[nj][ni],int n,double sc[8][98],int j,double start, double ←↩
end){

2 double r2deg = 180.0/PI;
Page 56

3 int N = 1000; //@@Increase it for accuracy.
4 double i, inc = (end-start)/N, sum = 0;
5 double a = splint(sangle,(double *)Sca_T +ni*j+1,(double *)sc+(←↩j-1)*(ni-1),n,start*r2deg)*2*PI*sin(start);
6 double b;
7 start+=inc;
8

9 for (i = start; i < end; i += inc) {
10 b = splint(sangle,(double *)Sca_T+ni*j+1,(double *)sc+(j-1)←↩

*(ni-1),n,i*r2deg)*2*PI*sin(i);
11 sum += 0.5 * inc * (a+b);
12 a = b;
13 }
14 return sum;
15 }

To replicate the quad function in Python, I have written this integral function. The
integration principle is based on finding the area of smaller trapezium and summing it
all. The points of trapezium are x, x+dx and their respective values at that points. The
accuracy of the function can be increased by decreasing dx and that can be done by
increasing N, which is inversely proportional to dx.

Listing 17: Main

1 int main(int argc, char const *argv[])
2 {
3 /* code */
4 clock_t start, end,p_start,p_end,p_st;
5 double cpu_time_used;
6

7

8 int nt = 250; /*# number of time steps to simulate. By this ←↩
time, active

9 # rays have decayed to exp(-attn*nt) of its initial value.
10 # Choose nt based on this.
11 # for reasons I don’t remember, nt is not a round number*/
12 int z0 = 100; /* # centre of submarine*/
13 int s = 10; /* # size of submarine (cube)*/
14 int ntraj = 10;/* # number of trajectories to track for ←↩

plotting*/
15

Page 57

16 //srand(time(0)); # randomize the random number generator
17 /*# Entering beam is assumed to have an intensity that is
18 # spatially normally distributed in r with stdeviation of r0.*/
19 int r0 = 5; /* # size of the input beam region*/
20 int wavelength=513; /*# nanometers*/
21 /*# file containing attenuation information*/
22 char fattenuation[] = "data/←↩

absorption_coefficient_april2017_T3D3.csv";
23 double attnConst = 0.001;
24 double attn; //Introduced by me. Removing the function
25

26 //@@Only else block
27 int i,j,n_att = 12,n;
28 double yp1,ypn;
29 double Att[351][13]; //Values from the file ←↩

absorption_coefficient
30 double y2_att[n_att]; //Contains 2nd order derivative
31 double y_att[n_att],x_att[n_att]; //Y and X coordinates ←↩

respectively
32 int row = readfile(fattenuation,13,Att,0);
33 for(i=0;i<row;i++){
34 if(Att[i][0] == wavelength){
35 for(j=0;j<n_att;j++){
36 x_att[j] = Att[0][j+1];
37 y_att[j] = Att[i][j+1];
38 }
39 yp1 = (Att[i][2]-Att[i][1])/(Att[0][2]-Att[0][1]);
40 ypn = (Att[i][n_att]-Att[i][n_att-1])/(Att[0][n_att]-←↩

Att[0][n_att-1]);;
41 //spline((double *)Att+1,(double *)Att+13*i+1,n_att,yp1←↩,ypn,y2_att);
42 spline(x_att,y_att,n_att,yp1,ypn,y2_att);
43 break;
44 }
45 }

Now the main function starts where initially all the variables have been declared.
Then it reads the absorption coefficient file. The file contains the attenuation values for
different wavelength and based on the wavelength provided, it calls the spline function
w.r.t the values in the given wavelength row.

Page 58

Listing 18: Reading Scattering Data

1 /*# fscattering contains the file name for scattering. If blank,
2 # model is used.
3 #fscatname="VSF-april2017-T3D3"*/
4 char fscatname[] = "VSF-sept2017-T2D3";
5 //# fscatname = "VSF-sept2017-T2D1"
6 char fscattering[] = "data/VSF-sept2017-T2D3.csv";
7

8 int ni,nj;
9 int Nc = 99;

10 ni = Nc;
11 nj = 9;
12

13 double Sca[ni][nj];
14 double Sca_T[nj][ni];//Transpose of Sca matrix
15 double sdepth[nj-1],sangle[ni-1],stheta[ni-1],dtheta[ni-1];
16 double r2deg = 180.0/PI,angle[ni],theta[ni];
17 double sc[nj-1][ni-1];//Contains 2nd order derivative
18

19 if (strcmp(fscattering,"") != 0){
20

21 char fsflag[] = "scatdata";
22 //Scb=loadtxt(fscattering,delimiter=",")
23

24 row = readfile(fscattering,nj,Sca,Nc);
25

26 angle[0] = 0.0;theta[0] = 0.0;
27 dtheta[0] = 0;dtheta[ni-2] = 0;
28 for(i=0;i<nj-1;i++){
29 sdepth[i] = Sca[0][i+1];
30 }
31 for(i=0;i<ni-1;i++){
32 sangle[i] = Sca[i+1][0];
33 stheta[i] = Sca[i+1][0]*PI/180.0;
34 angle[i+1] = Sca[i+1][0];
35 theta[i+1] = Sca[i+1][0]*PI/180.0;
36 if(i>=2){
37 dtheta[i-1] = (stheta[i]-stheta[i-2])*0.5;
38 }
39 }

Page 59

In the second section of the main function, it reads the scattering file and store the values
in the Sca matrix. In the python code, the whole file was read and then it was cropped
to (ni,nj). To save time, I didn’t read it at all. After reading it extracts the proper rows
and columns from the Sca matrix and stores in different arrays like angle, sangle, stheta,
theta,etc.

Listing 19: Scattering spline

1

2 for(i=0;i<ni;i++){
3 for(j=0;j<nj;j++){
4 Sca_T[j][i] = Sca[i][j];
5 }
6 }
7

8 n = 98;
9 for(j=1;j<nj;j++){

10 yp1 = (Sca[2][j]-Sca[1][j])/(sangle[1]-sangle[0]);
11 ypn = (Sca[Nc-1][j]-Sca[Nc-2][j])/(sangle[Nc-2]-sangle[←↩

Nc-3]);
12 spline(sangle,(double *)Sca_T+(Nc*j)+1,n,yp1,ypn,(←↩double *)sc+(j-1)*(Nc-1));
13 }
14 }

I have transposed Sca matrix and stored in Sca_T matrix to use the matrix as pointer
in spline calls. It is because spline function requires continuous memory address and a
column in Sca in not memory-contiguous. It saves a lot of time as by doing this there will
be cache hits. The second order derivatives are stored in sc variable whereas in python,
sc contains spline functions. The problem faced here was to avoid an extra loop to pass
the y coordinates in spline function which was avoided by sending correct pointer address
of the transposed matrix.

Listing 20: CDF

1 double P[nj][ni];
2 for(int temp1 = 0;temp1<nj;temp1++){
3 for(int temp2 = 0;temp2<ni;temp2++){
4 P[temp1][temp2] = 0.0;
5 }
6 }

Page 60

7 //# Pnorm=zeros(P.shape)
8 printf("Starting quad block\n");
9

10 for(j = 0;j<nj-1;j++){
11 for(i=0;i<ni-1;i++){
12 P[j][i+1] = intgrl(theta,sangle,ni,nj,Sca_T,n,sc,j+1,←↩

stheta[0],stheta[i]);
13 }
14 for(i=1;i<ni;i++){
15 P[j][i] = P[j][i] + 1 - P[j][ni-1];
16 }
17 }
18

19 FILE *fp1;
20 fp1 = fopen("P.csv", "w");
21 if(fp1 == NULL){
22 printf("Error!");
23 exit(1);
24 }
25

26 for(int i2=0;i2<nj;i2++){
27 for(int j2 = 0;j2<ni;j2++){
28 fprintf(fp1, "%lf",P[i2][j2]);
29 if(j2!=(ni-1)) fprintf(fp1, ",");
30 }
31 fprintf(fp1, "\n");
32 }
33 fclose(fp1);

The variable P is the CDF curve. To fill in each cell of the 2-D array, integral func-
tion is called with the function and start and end value. The intgrl function then calls
the splint function to get the value at that point and then it integrates the curve and
returns a double value i.e. the output. Now after that in the second for loop, it opens a
file named "P.csv" and writes the array in that csv file. It will be useful in plotting the
CDF in python where a python file reads from the csv file and do the necessary plotting.
Also the values in P array are not efficiently filled. As we can see that P[j][i+1] requires
integration from stheta[0] to stheta[i] and P[j][i+2] requires integration from stheta[0] to
stheta[i+1]. But the code is written in such a way that to find P[j][i+2] it integrates from
the beginning. Instead it can be written as:

Page 61

P[j][i+2] = P[j][i+1]+
∫ stheta[i+1]

stheta[i]
sc[j](theta ∗ r2deg) ∗ 2 ∗ pi ∗ sin(theta)dtheta

Listing 21: Inverse CDF

1 n = 98;
2

3 double Pinv[nj-1][n];
4 double tt,temp[Nc-1],temp2[Nc-1];
5 for(j = 0;j<nj-1;j++){
6 yp1 = (angle[2]-angle[1])/(P[j][2]-P[j][1]);
7 ypn = (angle[Nc-1]-angle[Nc-2])/(P[j][Nc-1]-P[j][Nc-2]);
8

9 spline((double *)P+Nc*j+1,(double *)angle+1,n,yp1,ypn,(←↩double *)Pinv+j*n);
10

11 }

In Python, Pinv variable was a function pointer to inverse CDF. But in C it contains
second order derivative values so as to reduce the number of spline calls. yp1 and ypn
are the first order derivative at the initial and last points. I have assigned it as the
slope between the first and second point. Having the second order derivatives, it needs a
splint call to get the output. If we observe the spline function is called from 2nd column
elements. So, when using a splint function, we should make sure that the input must lie
within its range and it shouldn’t extrapolate. So a if condition is required which ensures
the above statement. Also the other difference is that in Python, it was marked by a if-else
condition which I have eliminated in here. I have added the if-else condition whenever
the function was called.

Listing 22: Declaration and Allocation of Variables

1

2 //# Allocate arrays for storing the results
3 int N = 100000;// # number of rays in all
4

5 double *pos[3];// # tracks position of rays
6 for(int i=0;i<3;i++){
7 pos[i] = (double*)malloc(N*sizeof(double));
8 }
9

Page 62

10 double *direction[3];// # remembers dirction of ray
11 for(int i=0;i<3;i++){
12 direction[i] = (double*)malloc(N*sizeof(double));
13 }
14

15 double *intensity = (double*)malloc(N*sizeof(double));// # ←↩
intensity of ray initially one.

16 int *tsrc = (int*)malloc(N*sizeof(int));;// # time at which ←↩
ray was born.

17 //intensity = (double*)malloc(N*sizeof(double));
18

19

20 double *flx[3];// # direction from which the ray hit the ←↩
submarine.

21 for(int i=0;i<3;i++){
22 flx[i] = (double*)malloc(N*sizeof(double));
23 }
24 int *status = (int*)malloc(N*sizeof(int));;// # if zero active←↩

, if positive, reached sub at that time.
25

26 double channel[nt];// # will hold the channel
27 //double traj[3][ntraj][nt];//=zeros((3,ntraj,nt));// # holds ←↩

the trajectories of a selected number of rays
28 /*# We store the positions of rays when they first
29 # cross z=z1 and z=z2. The arrays are initialized
30 # to an impossible number.*/
31 double ***traj;
32 traj = (double***)malloc(sizeof(double**)*3);
33 for(int i=0;i<3;i++){
34 traj[i] = (double**)malloc(sizeof(double*)*ntraj);
35 for(int j=0;j<ntraj;j++){
36 traj[i][j] = (double*)malloc(sizeof(double)*nt);
37 }
38 }
39

40 double **beam1;/*# holds the (r,theta) positions of rays when ←↩
they first cross z1.*/

41 beam1 = (double**)malloc(N*sizeof(double*));
42 for(int i=0;i<N;i++){
43 beam1[i] = (double*)malloc(2*sizeof(double));
44 }

Page 63

45 int z1 = 0;
46 double **beam2;/*# holds the (r,theta) positions of rays when ←↩

they first cross z2*/
47 beam2 = (double**)malloc(N*sizeof(double*));
48 for(int i=0;i<N;i++){
49 beam2[i] = (double*)malloc(2*sizeof(double));
50 }
51

52

53 int z2 = z0-2*s; //Both the variables are ints and are defined ←↩
earlier

54 int rmax2 = 10000;
55 int nbins2 = 100;
56

57 int a2 = (nt*100) + 1000;
58 double **theta0vals;/*#to hold 100 random theta0
59 # values per time step .*/
60 theta0vals = (double**)malloc(sizeof(double*)*a2);
61 for(int i=0;i<a2;i++){
62 theta0vals[i] = (double*)malloc(2*sizeof(double));
63 }
64

65

66 double *phi0 = (double*)malloc(sizeof(double)*N);
67 double *theta0 = (double*)malloc(sizeof(double)*N);

Here all the required variables with the required data types are declared. Now all
the variables are allocated dynamic memory i.e. using malloc because of the memory
constraint otherwise. All these variables will be freed or deallocated at the end of the
simulation.

Listing 23: Initializing Variables

1

2 //# Main simulation loop
3 int k = 0;// # keeps track of where we can insert new rays
4

5 for(int temp1=0;temp1<3;temp1++){
6 for(int temp2=0;temp2<ntraj;temp2++){
7 for(int temp3=0;temp3<nt;temp3++){
8 traj[temp1][temp2][temp3] = 0.0;

Page 64

9 }
10 }
11 }
12

13 for(int temp1=0;temp1<N;temp1++){
14 phi0[temp1] = 0;
15 theta0[temp1] = 0;
16 status[temp1] = 0;
17 tsrc[temp1] = 0;
18 intensity[temp1] = 1;
19

20 for(int temp2=0;temp2<2;temp2++){
21 beam1[temp1][temp2] = -1.0;
22 beam2[temp1][temp2] = -1.0;
23 }
24

25 for(int temp2=0;temp2<3;temp2++){
26 //pos[temp2][temp1] = 0;
27 direction[temp2][temp1] = 0;
28 //flx[temp2][temp1] = 0;
29 }
30

31 }
32

33 double phi1,r;
34 FILE *fpt,*fp;
35

36 for(int i2=0;i2<N;i2++){
37 phi1= (1.0*rand()/RAND_MAX)*2*PI;
38 r= randn(0,1)*r0;
39 pos[0][i2]=r*cos(phi1);
40 pos[1][i2]=r*sin(phi1);
41 pos[2][i2] = 0;
42 flx[0][i2] = 0;flx[1][i2] = 0;flx[2][i2] = 1;
43 }
44

45

46 start = clock();//Storing clock value
47

48 int l = 0,iii,jjj,kk,cnt;
49 double **tj; //# to hold the Pinv[j](u)

Page 65

50 tj = (double **)malloc(N*sizeof(double*));
51 for(int j2 = 0;j2<N;j2++){
52 tj[j2] = (double *)malloc((nj-1)*sizeof(double));
53 }
54

55

56 int *iit; //Stores the index where theta0>0.08
57 iit= (int *)malloc(N*sizeof(int));
58 int *ii; //Stores the index where status is 0.
59 ii= (int *)malloc(N*sizeof(int));
60 double sx,sy,sz,phi,theta1,cosphi,sinphi,sintheta,costheta,t2;
61 double *u = (double *)malloc(N*sizeof(double)); //To store ←↩

random values
62 double sdep2[nj-1],ydep[nj-1];

In this block, all the variables listed in the previous listing are initialized to their initial
values. The "pos" variable is initialized to random values. Rest of the variables are either
initialized to 0 or -1 or 1. After that there are some declaration of variables which are
used in the main simulation loop.

Listing 24: Initializing Seeds for rand in openacc

1

2 /*The below section is only meant for openacc*/
3

4 /*int nii=0,l1=0,count=0;
5 unsigned long prev = 14568725,prev1 = 4589235,m = 2147483648,←↩

tmp;
6 double y0,y1,y2,y3,y4,y5,y6,y7,y2_0,y2_1,y2_2,y2_3,y2_4,y2_5,←↩

y2_6,y2_7;
7

8 double *r_u = (double *)malloc(N*sizeof(double));
9 double *r_phi = (double *)malloc(N*sizeof(double));

10 for(i=0;i<N;i++){
11 r_phi[i]=(1.0*rand()/RAND_MAX)*2*PI;
12 r_u[i] = (1.0*rand()/RAND_MAX);
13 }
14 start = clock();//Storing clock value
15 p_st = clock();
16

17 #pragma acc data copy(r_u[:N],r_phi[:N],y2_0,y2_1,y2_2,y2_3,←↩
Page 66

y2_4,y2_5,y2_6,y2_7,nii,prev,prev1,m,tmp,flx[0:3][0:N],←↩
intensity[0:N],status[:N],traj[:3][:ntraj][:nt],beam2[:N←↩
][:2],theta0[:N],tj[:N][:nj-1],pos[0:3][0:N],phi0[0:N],u[:N←↩
],ydep[:nj-1],sdep2[:nj-1]) copyin(sdepth[:nj-1],angle[0:ni←↩
],P[0:nj][0:ni],Pinv[0:nj-1][0:n],z0,i,ntraj,x_att[:n_att],←↩
y_att[:n_att],y2_att[:n_att])

18 {
19 */

This section finds initial seeds in CPU and then transfer all these seeds into the GPU
for parallel computation of random numbers. The above line copies all the mentioned
variables in GPU and it takes around 80s.

Listing 25: Main Simulation Loop

1 for (k=0;k<nt;k+=100){
2 if(k+100 <= nt) kk = k+100;
3 else kk = nt;
4 //kk=min(k+100,nt);
5 for (i=k;i<kk;i++){
6 p_st = clock();
7

8 int nii=0;
9 for(int i3=0;i3<N;i3++){

10 if(status[i3]==0){
11 ii[nii]=i3;
12 nii++;
13 }
14 }
15 printf("Len of nii->%d\n",nii);
16 //# generate the random move.
17 //# Bias the rays to scatter within p radians of orig ←↩

direction.
18

19 //The below line updates the value of i in GPU.
20 //The below line is meant only for openacc
21 //#pragma acc update device(i)
22

23 if (fscattering!=""){
24

25 for(iii=0;iii<nii;iii++){
Page 67

26 phi0[ii[iii]]=(1.0*rand()/RAND_MAX)*2*PI;
27 u[iii] = (1.0*rand()/RAND_MAX);
28

29 }

The main simulation loop starts here. If the value of any index in status array is non-zero
then it implies that ray has reached the submarine in that many steps. So we have to
update the rays which are yet to reach the submarine. Hence we have to find all the index
where status is zero. Therefore the first for loop traverses through status array and stores
the index wherever its 0 and increases the count and stores in nii. Next in the second for
loop for that many times i.e. nii times it calculates random variables and stores in u and
phi0 arrays.

Listing 26: Random number in GPU

1 //This is how the random number are generated in GPU and is ←↩
paralleled.

2 /*
3 #pragma acc parallel loop gang private(prev,prev1)
4 for(iii=0;iii<N;iii++){
5 prev = m*r_u[iii];
6 prev1 = m*r_phi[iii];
7

8 prev = rnd(prev);
9 u[iii] = (prev*1.0)/m;

10 r_u[iii] = u[iii];
11

12 prev1 = rnd(prev1);
13 phi0[iii] = (prev1*1.0)/m;
14 r_phi[iii] = phi0[iii];
15

16 }
17 */

The above section finds the random numbers. It does so by calling the pseudo random
generator function defined earlier. prev and prev1 are the variables which are local to
each threads. The function requires previous random value to generate the next random
value. Hence the previous random value is stored in r_u and r_phi. Also one difference
is in openacc I’m generating N random numbers instead of nii and its because I am saving

Page 68

time to forego a loop which will calculate the value of nii.

Listing 27: Calculation of tj and theta0

1 /*The below directive is meant when running in openacc*/
2 //#pragma acc parallel loop gang independent present(tj←↩

,P,Pinv,angle)
3 for(int j2 = 0;j2<nj-1;j2++){
4

5 /*The below directive is meant when running in openacc*/
6 //#pragma acc loop vector
7 for(int temp = 0;temp<nii;temp++){
8 //Results of python code matches when j2 ←↩

below is replaced by 7
9 if(u[temp]>=P[j2][1]){

10 tj[ii[temp]][j2] = splint((double *)P+←↩j2*Nc+1,(double *)angle+1,(double *)←↩Pinv+j2*n,Nc-1,u[temp]);
11 }
12 else tj[ii[temp]][j2] = 0;
13 }
14 }
15 /*The below directive is meant when running in openacc*/
16 //#pragma acc parallel loop gang independent private(←↩

yp1,ypn,y2_0,y2_1,y2_2,y2_3,y2_4,y2_5,y2_6,y2_7) ←↩
present(tj,sdepth)

17 for(int i2=0;i2<N;i2++){
18 if(status[i2] == 0){
19 yp1 = (tj[i2][1]-tj[i2][0])/(sdepth[1]-←↩

sdepth[0]);
20 ypn = (tj[i2][nj-2]-tj[i2][nj-3])/(sdepth[←↩

nj-2]-sdepth[nj-3]);
21

22 for(int j3 = 0;j3<nj-1;j3++){
23 ydep[j3] = tj[i2][j3];
24 }
25

26 spline(sdepth,ydep,nj-1,yp1,ypn,sdep2);
27 theta0[i2]=splint(sdepth,ydep,sdep2,nj-1,←↩

pos[2][i2]);
28

29

Page 69

30 /* The commented part below is meant while running in ←↩
openacc. It is a substitute for the above lines till ←↩
ypn.*/

31 /*spline1(sdepth,tj[i2][0],tj[i2][1],tj[i2←↩][2],tj[i2][3],tj[i2][4],tj[i2][5],tj[i2←↩
][6],tj[i2][7],nj-1,yp1,ypn,&y2_0,&y2_1←↩
,&y2_2,&y2_3,&y2_4,&y2_5,&y2_6,&y2_7);

32 theta0[i2]=splint1(sdepth,tj[i2][0],tj[i2←↩
][1],tj[i2][2],tj[i2][3],tj[i2][4],tj[i2←↩
][5],tj[i2][6],tj[i2][7],y2_0,y2_1,y2_2,←↩
y2_3,y2_4,y2_5,y2_6,y2_7,nj-1,pos[2][ii[←↩
i2]]);*/

33 }
34

35 }
36 }

In the first for loop, depending on the value of random variable "u", it calls the splint
function or else assigns 0 to tj. Now the discrepancy faced here is that it gives different
results in python and c. If I plot one non-zero row of tj in python, it is always constant
but in C, the value differs, its kind of hyperbola. But as the curve ends the values become
nearly equal in C and python. Therefore while making spline calls, if I always call the
last spline curve (index = 7) irrespective of the index(j2) the results of the simulation
matches with those in Python. If the index is fixed, the values of tj rows are constant
and hence there is no problem in extrapolation but if it isn’t then extrapolation gives
wrong results and hence when extrapolating, we assume a constant value. The plots are
attached below. Now, in the second for loop, as tj is 2-D array, for each row we will call
spline function and store the 2nd order derivative in sdep2. Then we will call the splint
function to find the corresponding value to pos[2] array and store the output in theta0.

Listing 28: Updating of theta0vals

1 if(i%10==0){
2 int l1;
3

4 int count=0;
5 for(int iii=0;iii<N;iii++){
6 if(theta0[iii]>0.08){
7 iit[count]=iii;
8 count++;

Page 70

Figure 7: Plot of a row of tj vs sdepth

9 }
10 }
11 printf("len(iit)=%d\n",count);
12 if(count>1000) l1=1000;
13 else l1=count;
14

15 for(count = l;count<l+l1;count++){
16 theta0vals[count][1]=theta0[iit[count-l]];
17 theta0vals[count][0]=pos[2][iit[count-l]];
18 }
19

20 l+=l1;
21 }

This block runs once in every 10 iterations. First we store the index wherever theta0>0.08
in iit variable and increment count whenever the condition is true. Based on the count
value whether it is more than 1000 or not, we update theta0vals. At every 10th iteration,
we store 1000 values of theta and pos[2] array. The variable l represents the index till

Page 71

where theta0vals has been filled. But this part is not used anywhere and hence its been
removed while porting it into openacc.

Listing 29: Updating pos flx and intensity

1 /*The below directive is meant when running in openacc*/
2 //#pragma acc parallel loop gang independent private(sx←↩

,sy,sz,phi,theta1,cosphi,costheta,sinphi,sintheta)
3 for(iii=0;iii<N;iii++){
4 if (status[iii] == 0){
5

6

7 sx= cos(phi0[iii])*sin(theta0[iii]);
8 sy= sin(phi0[iii])*sin(theta0[iii]);
9 sz= cos(theta0[iii]);

10 phi=atan2(flx[1][iii],flx[0][iii]);
11 theta1=atan2(sqrt(pow(flx[0][iii],2)+pow(←↩

flx[1][iii],2)),flx[2][iii]);
12 cosphi=cos(phi);sinphi=sin(phi);
13 costheta=cos(theta1);sintheta=sin(theta1);
14

15 flx[0][iii]= (cosphi*costheta*sx) + (-←↩
sinphi*sy) + cosphi*sintheta*sz;

16 flx[1][iii]= (sinphi*costheta*sx) + (cosphi←↩
*sy) + sinphi*sintheta*sz;

17 flx[2][iii]= (-sintheta*sx) + costheta*sz;
18 intensity[iii]=intensity[iii]*exp(-splint(←↩x_att,y_att,y2_att,n_att,pos[2][iii]));
19

20 pos[0][iii] = pos[0][iii]+flx[0][iii];
21 pos[1][iii] = pos[1][iii]+flx[1][iii];
22 pos[2][iii] = pos[2][iii]+flx[2][iii];
23 if(pos[2][iii] < 0) pos[2][iii] = pos[2][←↩

iii]*(-1);
24 }
25

26 }

This is the loop where the position and intensity of the rays are updated based on some
calculations. Intensity decreases in an exponential way. Based on the attenuation csv file,
we had drawn a spline fit and using splint function, we update the intensity of the rays.

Page 72

In python code, sx, sy, sz, phi, etc are all arrays but are not used anywhere except for
updating. Hence to save memory, its defined as a double variable.

Listing 30: Updating Status and traj

1 /*The below directive is meant when running in openacc*/
2 //#pragma acc parallel loop gang private(t2)
3 for(int i2=0;i2<N;i2++){
4 if(status[i2] == 0){
5 t2 = sqrt(pos[0][i2]*pos[0][i2]+pos[1][i2]*←↩pos[1][i2]+(pos[2][i2]-z0)*(pos[2][i2]-←↩z0));
6 if(t2<=s){
7 status[i2] = i;
8 }
9 }

10 }
11 //# save trajectories
12

13 /*The below directive is meant when running in openacc*/
14 //#pragma acc parallel loop gang independent collapse←↩

(2) present(pos,traj)
15 for(int tt = 0;tt<3;tt++){
16 for(int tp = 0;tp<ntraj;tp++){
17 traj[tt][tp][i]=pos[tt][tp];
18 }
19 }

In the first loop, we find the norm and store it in the variable t2. Now if t2 <= s, we
update status array i.e. that ray has reached the submarine in i steps. Therefore the
value of status of that ray is set to i, which allows to find the average steps taken to reach
submarine.
In the second for loop we store the entire pos array into traj array which allows in plotting
ray trajectories.

Listing 31: Updating beam1 and beam2

1 /*# not a good algorithm: assumes rays with (0,0) have ←↩
not yet reached corresponding depth.

2 # save rays crossing z1*/
3 /*The below directive is meant when running in openacc*/

Page 73

4 //#pragma acc parallel loop gang independent present(←↩
pos,beam1)

5 for(int tt = 0;tt<N;tt++){
6 if((pos[2][tt] > z1) && (beam1[tt][0]<0)){
7 beam1[tt][0]=sqrt(pos[0][tt]*pos[0][tt]+pos←↩[1][tt]*pos[1][tt]);
8 beam1[tt][1]=atan2(pos[0][tt],pos[1][tt]);
9 }

10 }
11

12

13 /*# save rays crossing z2
14 */
15

16 /*The below directive is meant when running in openacc*/
17 //#pragma acc parallel loop gang independent present(←↩

pos,beam2)
18 for(int tt = 0;tt<N;tt++){
19 if((pos[2][tt] > z2) && (beam2[tt][0]<0)){
20 beam2[tt][0]=sqrt(pos[0][tt]*pos[0][tt]+pos←↩[1][tt]*pos[1][tt]);
21 beam2[tt][1]=atan2(pos[0][tt],pos[1][tt]);
22 }
23 }

In python xy2polar function was defined and both beam1 and beam2 called the same
function. In C, we have eliminated the function and updated the value of beam1 and
beam2 then and there based on the value of pos[2] array whether is more than z1 or z2
respectively. But again I couldn’t find any use of beam1. It is only updated inside the
loop and not used for any plots or calculations.

Listing 32: End of main Simulation Loop

1 end = clock();
2 cpu_time_used = ((double) (end - start)) / ←↩

CLOCKS_PER_SEC;
3 double cpu_time_used1 = ((double) (end - p_st)) / ←↩

CLOCKS_PER_SEC;
4 printf("Loop - %d (%lf sec) loop time (%lf sec)\n\n\n",←↩

i,cpu_time_used,cpu_time_used1);
5

Page 74

6 }
7 //# write out iter number every 100 iterations
8 //time2=time.time()
9 end = clock();

10 cpu_time_used = ((double) (end - start)) / CLOCKS_PER_SEC;
11 printf("Loop - %d (%lf sec)\n",k,cpu_time_used);
12

13

14 //@@What is this doing.
15 //sys.stdout.flush();// # force immediate write
16

17 }
18 free(iit);free(ii);

This marks the end of the main simulation loop. After every iteration it prints the time
taken to complete that loop. Also it deallocates the memory of ii and iit.

Listing 33: Calculation of Pvals

1 double pvals[nj-1][Nc-1];
2 for(i=0;i<nj-1;i++){
3 for(j=0;j<ni-1;j++){
4 pvals[i][j] = splint(sangle,(double *)Sca_T+ni*(i+1)←↩+1,(double *)sc+(i)*(ni-1),n,sangle[j]) * 180.0/PI;
5 }
6 }

This loop fills the pvals matrix, which is used in plotting scattering profile vs depth. In
python there is a function named p but in C, we have replicated it using two loops and
splint calls.

Listing 34: Storing Results

1 printf("Storing Variables -> status,theta0vals,flx,intensity,←↩
tsrc,channel,traj,beam2,pvals");

2 printf("Constant Variables -> rmax2,ntraj,nbins2,nt,sdepth,←↩
sangle");

3

4 FILE *fptr;
5 fptr = fopen("st.csv", "w");
6 if(fptr == NULL){

Page 75

7 printf("Error!");
8 exit(1);
9 }

10 fprintf(fptr,"#Status\n");
11 for(i=0;i<N;i++){
12 fprintf(fptr, "%d",status[i]);
13 if(i!=(N-1)) fprintf(fptr, ",");
14 }
15

16 fclose(fptr);
17 fptr = fopen("pvals.csv", "w");
18 for(i=0;i<nj-1;i++){
19 for(j=0;j<Nc-1;j++){
20 fprintf(fptr, "%lf",pvals[i][j]);
21 if(j!=Nc-2) fprintf(fptr, ",");
22 }
23 fprintf(fptr, "\n");
24 }
25

26

27 fclose(fptr);
28 fptr = fopen("th.csv", "w");
29 fprintf(fptr, "#theta0vals - Transpose\n");
30

31 for(i=0;i<2;i++){
32 for(j=0;j<a2;j++){
33 fprintf(fptr, "%lf",theta0vals[j][i]);
34 if(j!=a2-1) fprintf(fptr, ",");
35 }
36 fprintf(fptr, "\n");
37 }
38

39 fclose(fptr);
40 fptr = fopen("flx.csv", "w");
41 fprintf(fptr, "#flx\n");
42 for(i=0;i<3;i++){
43 for(j=0;j<N;j++){
44 fprintf(fptr, "%lf",flx[i][j]);
45 if(j!=N-1) fprintf(fptr, ",");
46 }
47 fprintf(fptr, "\n");

Page 76

48 }
49

50 fclose(fptr);
51 fptr = fopen("in.csv", "w");
52 fprintf(fptr, "#intensity\n");
53 for(i=0;i<N;i++){
54 fprintf(fptr, "%lf",intensity[i]);
55 if(i!=N-1) fprintf(fptr, ",");
56 }
57

58 fclose(fptr);
59 fptr = fopen("tsrc.csv", "w");
60 fprintf(fptr, "#tsrc\n");
61 for(i=0;i<N;i++){
62 fprintf(fptr, "%d",tsrc[i]);
63 if(i!=N-1) fprintf(fptr, ",");
64 }
65

66 fclose(fptr);
67

68 fptr = fopen("beam.csv", "w");
69 fprintf(fptr, "#beam2 - Transpose\n");
70

71 for(i=0;i<2;i++){
72 for(j=0;j<N;j++){
73 fprintf(fptr, "%lf",beam2[j][i]);
74 if(j!=N-1) fprintf(fptr, ",");
75 }
76 fprintf(fptr, "\n");
77 }
78

79 fclose(fptr);
80 fptr = fopen("traj.csv", "w");
81 fprintf(fptr, "#traj\n");
82

83 for(i=0;i<3;i++){
84 for(j=0;j<10;j++){
85 for(k=0;k<nt;k++){
86 fprintf(fptr, "%lf",traj[i][j][k]);
87 if(k!=nt-1) fprintf(fptr, ",");
88 }

Page 77

89 fprintf(fptr, "\n");
90 }
91 fprintf(fptr, "\n\n");
92 }
93 fclose(fptr);
94

95 for(int i=0;i<3;i++){
96 free(flx[i]);
97 free(direction[i]);
98 free(pos[i]);
99 }

100 //printf("Coming here 3\n");
101 free(direction);
102 free(flx);
103 free(pos);
104 free(status);
105 free(intensity);
106 free(tsrc);
107 //printf("Coming here 1\n");
108

109 for(int i=0;i<3;i++){
110 //traj[i] = (double**)malloc(sizeof(double*)*ntraj);
111 for(int j=0;j<ntraj;j++){
112 free(traj[i][j]);
113 }
114 }
115 for(int i=0;i<3;i++){
116 free(traj[i]);
117 }
118 free(traj);
119

120

121 for(int i=0;i<N;i++){
122 free(beam2[i]);
123 free(beam1[i]);
124 free(tj[i]);
125 }
126 free(beam2);
127 free(beam1);
128 free(tj);
129

Page 78

130

131 //printf("Coming here2\n");
132 for(int i=0;i<a2;i++){
133 free(theta0vals[i]);
134 }
135 free(theta0vals);
136

137 free(phi0);
138 free(theta0);
139 free(u);
140

141

142 printf("Done\n");
143 return 0;
144 }

This section marks the end of the code. All the necessary variables which are needed
for plotting are stored in excel files. A python code then reads all the files and do
the necessary plotting. The python code is listed below. Also all the memory of the
dynamically allocated variables are freed.

Page 79

B Python Code for plotting

AS said above, python is good for plotting and therefore all the plotting are done using
python. So to do the same, all the variables are stored in the csv file and plotted using
python code.

Listing 35: Code for plotting: Pre-Processing

1 from pylab import *
2 import mpl_toolkits.mplot3d.axes3d as p3
3 import sys
4 #from scipy import weave # not used now
5 from scipy.integrate import quad
6 import time
7 from scipy.interpolate import UnivariateSpline
8

9 N = 100000
10 nt=250 # number of time steps to simulate. By this time, active
11 z0=100 # centre of submarine
12 s=10 # size of submarine (cube)
13 ntraj=10 # number of trajectories to track for plotting
14 seed() # randomize the random number generator
15 r0=5 # size of the input beam region
16 wavelength=513 # nanometers
17 # file containing attenuation information
18 fattenuation="data/absorption_coefficient_april2017_T3D3.csv"
19 # fattenuation=""
20 attnConst=0.001
21 # if file is an empty string, attenuation is a fixed number, given ←↩

by attnConst
22

23 fscatname="VSF-sept2017-T2D3"
24 # fscatname="VSF-sept2017-T2D1"
25 fscattering="data/"+fscatname+".csv"
26

27 Nc=99
28 fsflag="scatdata"
29 Scb=loadtxt(fscattering,delimiter=",")
30 ni,nj=Scb.shape
31

32 nj=9

Page 80

33 ###
34 Sca=Scb[:Nc,:nj] # truncate to nj columns
35 ni=Nc
36 del Scb
37 # Sca has scattering data. Column 0 contains the angles and
38 # row zero contains the depth values. The rest are the
39 # scattering data for that depth, angle combination.
40 sdepth=Sca[0,1:]
41 sangle=Sca[1:,0] # in degrees
42 stheta=sangle*pi/180.0 # in radians
43 dtheta=zeros(stheta.shape)
44 dtheta[1:-1]=(stheta[2:]-stheta[:-2])*0.5
45 r2deg=180.0/pi
46 angle=zeros(ni)
47 angle[1:]=sangle # data does not have theta=0. angle has this.
48 theta=angle*pi/180.0
49

50 z1=0
51 z2=z0-2*s
52 rmax2=10000
53 nbins2=100
54

55 P = loadtxt("P.csv",delimiter=",")
56 status = loadtxt("st.csv",delimiter=",")
57 flx = loadtxt("flx.csv",delimiter=",")
58 theta0vals = loadtxt("th.csv",delimiter=",")
59 beam2 = loadtxt("beam.csv",delimiter=",")
60 temp = loadtxt("traj.csv",delimiter=",")
61 #channel = loadtxt("ch.csv",delimiter=",")
62 pvals = loadtxt("pvals.csv",delimiter=",")
63 channel=zeros(nt)
64 tsrc = loadtxt("tsrc.csv",delimiter=",")
65 intensity = loadtxt("in.csv",delimiter=",")
66 beam2 = beam2.T
67 theta0vals = theta0vals.T
68

69 traj=zeros((3,ntraj,nt))
70 traj[0,:,:] = temp[:10,:]
71 traj[1,:,:] = temp[10:20,:]
72 traj[2,:,:] = temp[20:,:]

Page 81

Here it reads the excel file, declare and initialize some variables. Then it reads all the
output files created by the C code and do some necessary computations before plotting.

Listing 36: Code for plotting: Post-Processing

1

2 fname = "test"
3

4 # post processing
5 print ("\n\n%d rays (out of %d) reached the submarine" % (len(where←↩

(status>0)[0]),N))
6 z0max=int(theta0vals[0,:].max())
7 for zz in range(z0max):
8 iii=where(abs(theta0vals[0,:]-zz)<=0.5)[0]
9 print (len(iii))

10 theta0vals[1,iii[1000:]]=-1
11

12

13 z=zeros((ni-1,nj-1))
14

15 figure(7)
16 for j in range(1,nj):
17 loglog(sangle,Sca[1:,j])
18 z[:,j-1]=Sca[1:,j]
19

20 title("Scattering profile data")
21 xlabel(r"θ",size=16)
22 name = fname+"scat-profile.png"
23 savefig(name)
24

25

26 figure(8)
27 w=log10(abs(z.T))
28 w[w<-5]=-5
29 contourf(sangle,sdepth,w[-1::-1],[-5,-2,-1,0,0.5,1,1.5,2])
30 colorbar()
31 xlabel(r’θ’,size=16)
32 ylabel(r’d’,size=16)
33 title(r"measured scattering data")
34 name = fname+"-scat-contour.png"
35 savefig(name)
36

Page 82

37

38

39 figure(10)
40 for j in range(nj-1):
41 plot(angle,P[j,:])
42

43 title("CDF of scattering data")
44 xlabel(r"θ (degrees)",size=16)
45 print ("Done quad block")
46 name = fname+"-CDF.png"
47 savefig(name)
48

49

50 figure(6)
51 plot(sdepth,pvals,’b’,lw=3)
52 xlabel(r"z",size=20)
53 ylabel(r"σ_p",size=20)
54 xlim([0,z0]);xticks(size=20)
55 ylim([0,45]),yticks(size=20)
56 title("Scattering profile vs. depth")
57 grid(True)
58 name = fname+"-pvsz.png"
59 savefig(name)
60

61

62 figure(2)
63 ll=where(status>0)[0] # find rays that hit submarine
64 sphi=arctan2(flx[1,ll],flx[0,ll])
65 r2=flx[0,ll]**2+flx[1,ll]**2
66 subtheta=arccos(flx[2,ll]/sqrt(r2+flx[2,ll]**2))
67 nbins1=sqrt(len(ll))
68 factor=180/pi
69 hist(subtheta*factor,arccos(linspace(1,-1,nbins1))*factor)
70 title(r"histogram of ray directions in θ")
71 xlabel(r"θ (degrees)")
72 name = fname+"-raydir.png"
73 savefig(name)
74

75 # figure(6)
76 nbins=sqrt(len(ll))/10
77 x=linspace(-pi,pi,nbins)

Page 83

78 y=arccos(linspace(1,-1,nbins))
79 # hist2d(sphi,subtheta,[x,y])
80 # title(r"histogram of ray directions. Note $\theta=0$ is bottom ←↩

surface")
81 # xlabel(r"ϕ")
82 # ylabel(r"θ (non-uniform bins)")
83 ll=where(status>0)[0]
84 tof=(status[ll]-tsrc[ll])
85 #figure(3)
86 #hist(tof*5e-3,100,log=True)
87 #title("Histogram of ray time of flight")
88 #xlabel(r"time (μsec)")
89 #savefig(fname+"-tof.png")
90 print ("Average time to reach submarine=%.2f time steps" % (mean(←↩

tof)))
91 print ("Stdeviation of time to reach submarine=%.2f time steps" % (←↩

std(tof)))
92 for i in range(nt):
93 mm=where(tof==i)[0]
94 channel[i]=sum(intensity[mm])
95

96 figure(4)
97 plot(arange(nt)*5e-3,channel,lw=3)
98 xlim([0,12])
99 title("Intensity Channel as predicted by simulation")

100 xlabel(r"time (μsec)",size=20)
101 grid(True)
102 name = fname+"-channel.png"
103 savefig(name)
104

105 # We finally plot a few actual ray trajectories.
106 fig5=figure(5)
107 bx=p3.Axes3D(fig5)
108 for i in range(ntraj):
109 bx.plot3D(traj[0,i,:],traj[1,i,:],traj[2,i,:])
110 title("ray trajectories")
111 grid(True)
112 name = fname+"-traj.png"
113 savefig(name)
114

115 # Histogram at z2. Bins are equal area bins.

Page 84

116 fig7=figure(14)
117 ii=find(beam2[:,0]>=0) # find all rays that crossed z2
118 locs=sqrt(linspace(0,rmax2,nbins2))
119 hist(beam2[ii,0],locs)
120 grid(True)
121 title("Histogram of rays at $z=%d$ metres" % z2)
122 xlabel(r"r",size=16)
123 name = fname+"-beam.png"
124 savefig(name)
125 show()

This is the main block which plots all the files.

Page 85

