
Dynamic Community Detection using GPU

A Project Report

submitted by

SRIVATSAN R

in partial fulfilment of requirements

for the award of the degree of

BACHELOR OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS

May 2018

THESIS CERTIFICATE

This is to certify that the project titled Dynamic Community Detection using GPU,

submitted by Srivatsan R (EE14B058), to the Indian Institute of Technology, Madras,

for the award of the degree of Bachelor of Technology, is a bona fide record of the

research work done by him under our supervision. The contents of this project, in full

or in parts, have not been submitted to any other Institute or University for the award of

any degree or diploma.

Dr. Rupesh Nasre
Research Guide
Assistant Professor
Dept. of Computer Science & Engi-
neering
IIT-Madras, 600 036

Dr. Krishna Jagannathan
Research Co-Guide
Assistant Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Place: Chennai

Date: 9th May 2018

ACKNOWLEDGEMENTS

I would like to take this opportunity to thank all the people who have helped and sup-

ported me both in this work and on my path to this point.

I am extremely grateful to Dr. Rupesh Nasre who has provided me with expert

guidance and continuous encouragement throughout to ensure that this project pro-

gresses smoothly since its commencement till its completion. His broad view and ex-

ceptional insight led me to explore deep into the wonderful field of community detection

and helped me avoid so many detours during the progress of my research. I would also

like to express deepest appreciation towards the professor for granting me access to

computing resources that were of immense help to me for progressing over my project.

i

ABSTRACT

KEYWORDS: Community Detection; Louvain Method; GPU; Parallel Algo-

rithm; Dynamic GPU Algorithm

Detecting communities in a network is a classification problem, where nodes in a net-

work are classified into multiple sets such that the connection of nodes within a set is

denser than the connection between nodes from different sets. Most of the real world

networks are dynamic. Real world systems like social networks (Facebook, LinkedIn

and Twitter) are evolving continuously and expanding dramatically in terms of size.

So, there is a need for incremental/dynamic community detection. In this paper, we

present a highly scalable community detection algorithm on GPU based on the Louvain

method. We also present a way to process dynamic graphs to find their community

structure. Using four real world networks with millions of edges we illustrate that our

dynamic community detection method is both fast and accurate.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

1 INTRODUCTION 1

2 THE LOUVAIN METHOD 3

3 RELATED WORK 6

4 THE GPU ALGORITHM 8

4.1 Static Community Detection . 8

4.2 Dynamic Community Detection 12

4.2.1 Single Edge Updates . 13

4.2.2 Multi-Edge Updates . 15

5 THREAD AND MEMORY ALLOCATION 19

5.1 Graph Representation . 19

5.2 Kernel Configuration . 19

5.3 Hash Table . 20

6 EXPERIMENTS 21

6.1 Static Community Detection . 21

6.1.1 Performance . 21

6.1.2 Statistics . 22

6.2 Dynamic Community Detection 23

6.2.1 Single Edge Updates . 23

6.2.2 Multi Edge Updates . 25

7 CONCLUSION 27

CHAPTER 1

INTRODUCTION

Community detection for a network is a classification problem. Nodes in a network

are classified into multiple sets such that the connection of nodes within a set is denser

than the connection between nodes from different sets. If the nodes of a network can be

easily classified into different sets satisfying the above criteria, we say that it has com-

munity structure. Almost all of the real world networks exhibit community structure.

Social networks show community structures in terms of location, interests, occupation,

etc.

Detecting the community structure of a network can be very useful. Each commu-

nity acts as a single meta-node which can be used to create a reduced version of the

network and thus makes the processing of the network easier. If we concentrate only

on the average properties of a network we will miss out some interesting features of

the network, since communities usually have very different properties than the average

properties. Community detection thus enables us to more accurately study a network.

There is no standard mathematical instrument to quantify the community structure

of a network. There has been many proposed algorithms and metrics for community

detection in the literature. For an overview on them see Fortunato (2010). The mod-

ularity metric proposed by Newman and Girvan (2004) is often used to measure the

community structure of a network. Modularity measure compares the density of links

within communities of a network with the average density of links in a random network

defined suitably. It is based on the idea that a suitably defined random network will

have no community structure.

The Louvain Method is a greedy algorithm for community detection and it is one of

the most popular algorithms. It moves nodes from one community to another in such

a way that it increases the modularity of the network. It is a two phase algorithm that

computes a hierarchy of clusters. The method has various applications in areas such

as analyzing social networks (Liu et al., 2011; Traud et al., 2012), mapping of human

brain networks (Meunier et al., 2009; Zuo et al., 2011), and classification of scientific

journals (Wallace et al., 2009).

Networks that change with time are called dynamic networks. Most of the real world

networks are dynamic. Real world networks like social networks (Facebook, LinkedIn

and Twitter) are evolving continuously and expanding dramatically in terms of size. So,

there is a need for incremental community detection. Performing Static Louvain method

frequently will consume a lot of time. There are also some parallel implementations of

the Louvain method (Lu et al., 2015; Naim et al., 2017) which provide high speedups,

but still are not fast enough to cater to the need of our social network graphs that change

very frequently. So, running the static Louvain method whenever the graph changes is

not a feasible solution in terms of the execution time, and there is a need for a faster

dynamic community detection algorithm.

In this paper, we present a highly scalable community detection algorithm on GPU

based on the Louvain method. The main difference between the previous implementa-

tions (Lu et al., 2015; Naim et al., 2017) is that we don’t have an explicit aggregation

phase in our algorithm. The elimination of an explicit aggregation phase reduces the

execution overhead involved in it. We also present a way to process dynamic graphs to

find their community structure. We present a dynamic community detection algorithm

which is both fast and accurate.

2

CHAPTER 2

THE LOUVAIN METHOD

A network can be modeled with a we graph G = (V,E,W), where V is the vertex

set, E is the edge set and W = {w(i,j) | (i, j) ∈ E}, be the weights associated with

the edges in E. Let c1, c2, c3, . . . , ck be k disjoint sets into which V is partitioned. Let

C(i) denote the community of vertex i, where C(i) ∈ {cj | 1 ≤ j ≤ k}. We use ki to

denote the in-degree of vertex i. Let acj be the sum of ki of all vertices in community

cj . We define another term ei→ck which is the sum of edge weights from vertex i to all

the vertices of ck.

ki =
∑
j∈N [i]

w(i,j), where N [i]is the neighbor set of i (2.1)

acj =
∑
i∈cj

ki (2.2)

m =
∑
w∈W

w (2.3)

ei→ck =
∑
j∈ck

w(i,j) (2.4)

Now, with all these notations defined, we can introduce and define modularity. Mod-

ularity is a measure that quantifies a community partition of a graph. It is based on the

idea that random graph has no community structure and by comparing any graph with

such a random graph will give us some quantification of its community structure. It

compares the density of links within communities of a network with the average den-

sity of links in a random network defined suitably. It takes a real value between −1 and

1 (Newman, 2004) and is defined as-

Q =
1

2m

∑
i∈V

ei→C(i) −
∑
c∈C

(ac)
2

4m2
(2.5)

=
∑
c∈C

(
ecc
2m
− (ac)

2

4m2
), (2.6)

where ecicj =
∑

v∈ci ev→cj . Using modularity to find a community partition is a

NP-hard problem (Brandes et al., 2008). Louvain method is a greedy algorithm that

optimizes modularity (Equation 2.5) by moving a node from its community to another

community which leads to an increase in the modularity. The change in modularity

when a node i from community C(i) is moved to a neighboring community C(j) is

given by

∆Q =
ei→C(j) − ei→C(i)\{i}

m
+ ki

aC(i)\{i} − aC(j)

2m2
(2.7)

Louvain method has two phases - Optimization phase and Aggregation phase. In the

beginning, we assign every node as a separate community by themselves. In the opti-

mization phase the algorithm iterates over all the vertices and computes the change in

modularity for the cases when it moves to each of its neighboring communities. The

change in modularity is calculated using Equation 2.7. The algorithm for each node

picks the destination community that yields the highest positive modularity change and

moves the node to that community.

In the aggregation phase, a new graph is constructed that contains all the commu-

nities as nodes and the sum of inter community edge weights as its new edge weight.

The intra community edges become an equivalent self-loop on the corresponding node.

The two phases are executed repeatedly till there is an increase in the modularity of the

graph.

The main challenge in the optimization phase is the computation of the change in

modularity value (∆Q) for all possible movements of a node. For every node, we

have to compute ∆Q when it moves to each of its neighboring community. The main

challenge in doing this is that we have to calculate ei→cj for all cj that are neighbors to i.

This is done by iterating over all the neighbors j ∈ N [i] of a vertex i and accumulating

the value of wi,j in a hash table using cj as key. Calculating ac is straightforward.

Initially the value of aC(i) = ki and it can be updated as and when nodes move from

one community to another. The aggregation phase follows a similar routine to construct

the compressed graph.

Our algorithm doesn’t involve moving nodes between communities. We move the

whole community and merge it with other communities. This makes the algorithm

faster without needing an explicit aggregation phase. More detailed explanations are

provided in Chapter 4. The change in modularity when a community ci merges with cj

4

and becomes cj is given by -

Q1 = (
ecici
2m
− (aci)

2

4m2
) + (

ecjcj
2m
−

(acj)
2

4m2
) +

∑
c∈C\{ci,cj}

(
ecc
2m
− (ac)

2

4m2
) (2.8)

Q2 = (
ecici + ecjcj + 2ecicj

2m
−

(aci + acj)
2

4m2
) +

∑
c∈C\{ci,cj}

(
ecc
2m
− (ac)

2

4m2
) (2.9)

∆Q = (
2ecicj
2m

−
2(aciacj)

4m2
) (2.10)

Again, the main challenge here is to calculate eC(i)C(j) which can be calculated in

a similar way as described above. Instead of maintaining a hash table for each ver-

tex, we maintain a hash table for every community and accumulate wi,j using C(j) as

key. Using Equation 2.10 we can calculate the change in modularity for every possible

movement of the community.

5

CHAPTER 3

RELATED WORK

Many algorithms have been proposed in the literature to detect communities in a net-

work (Fortunato, 2010; Blondel et al., 2008; Newman and Girvan, 2004; Newman,

2006). In Newman and Girvan (2004), they have used a concept of edge betweenness

to find communities in a network. In Newman (2006), Newman puts forth a concept of

modularity to quantify the strength of a community partition of a network. The Louvain

method(Blondel et al., 2008), is a state of the art method that uses greedy modularity

optimization to detect communities.

There have been many successful efforts to parallelize Louvain method (Lu et al.,

2015; Naim et al., 2017). In Lu et al. (2015), they have parallelized the Louvain method

for CPU. Their implementation is written using OpenMP and a comparison of this im-

plementation with our algorithm is provided in the Chapter 6. In Naim et al. (2017),

they have provided a scalable GPU community detection algorithm for static graphs

based on Louvain method.

Community detection on dynamic networks has been explored by a few works. In

Shang et al. (2014), they classify dynamic network changes into four cases that consider

on edge addition/increase. For each case, they provided heuristics and have to deal with

dynamic networks. For instance, they decide with the help of their heuristics whether

to not disturb the community structure or to merge the two communities. They select

the action which yields a higher modularity increase. However, they don’t consider

edge deletion as a network change and have only provided heuristics to handle the edge

addition case.

In Nguyen et al. (2014), they provide heuristics to handle both addition and deletion

of edges in a dynamic network. They treat network changes as a collection of simple

events, and update or discover the new community structure based on the network’s

community structure history. However, they have provided all the solutions for a net-

work which is unweighted. They have also claimed that adding an intra-community

edge will not break a community into smaller communities to maintain the optimal

community structure, we provide an example in the Chapter 4 to show that an intra-

community edge addition can indeed break the community into smaller communities.

In dSLM (Aktunc et al., 2015), for each dynamic network changes, they keep the

old community structure of the graph unchanged, and using that as a starting point they

run SLM (Waltman and Van Eck, 2013), a variant of Louvain method. Although it

could reduce the dynamic community detection running time dramatically on network

changes but its accuracy decreases a lot. The method seems to work for edge additions

but not for edge deletions.

7

CHAPTER 4

THE GPU ALGORITHM

In this chapter, we describe our static and dynamic community detection algorithm.

There has been some implementations of parallel Louvain method for static graphs.

Those implementations were mainly based on parallelizing access to nodes (Lu et al.,

2015) or edge (Naim et al., 2017). Our algorithm is a fine grained implementation of

the parallel Louvain Method that parallelizes access to every node and their edges.

We store the graph in the global memory using the Compressed Sparse Row (CSR)

format. Thus the graph G = (V,E,W) is stored in contiguous memory location using

three arrays vtxPtr, edges and weights of size 1 + |V |, 2|E| and 2|E|. The edge

weights of all the edges coming from vertex i are stored in positions vtxPtr[i] up to

position vtxPtr[i + 1] in weights array and the corresponding neighbors in edges

array. Storing the graph in CSR format and parallelizing the edges access for each node

enables the GPU to access the memory in a coalesced manner. For some standard tasks

like calculating cumulative sum and copying data to device, we use routines from thrust

library which are optimized for these tasks. We use CUDA atomics in places where

access to individual memory elements has to be sequentialized. It is required in the

implementation of the concurrent hast table. Our implementation of Louvain method is

lock free.

4.1 Static Community Detection

Our implementation of the Static Community Detection Algorithm is simply a modifi-

cation of the Louvain Method. The main difference between our algorithm and the other

parallel implementations is that we don’t have an explicit aggregation phase. Eliminat-

ing the aggregation phase removes the overhead involved in reconstructing the graph

which involves a lot of data movement and sequentiality since we are dealing with

graphs represented in CSR format.

We start by assigning all the nodes as a community by themselves (which is done

before calling Algorithm 1). We also calculate m and ki values in parallel (lines 2 and

3). Initially aci = ki (line 4). After each iteration, the value of ac is updated depending

on the merged communities (line 23). In the optimization phase, the algorithm calcu-

lates the change in modularity when each of the communities merges with each of its

neighbors. So, for each community we have an array of modularity change values cor-

responding to the community’s merger with each of its neighboring communities. Now,

we calculate the maximum positive modularity change that can be obtained for each of

the communities. The maximum value is calculated using reduction method in paral-

lel. The neighboring community which yields the maximum modularity change is the

potential destination community for a community. The algorithm iterates over the opti-

mization phase until the gain in the modularity of the network falls below a predefined

threshold value.

Algorithm 1 Modularity Optimization
1: procedure COMMDET(mask, propagate = False)
2: Calculate m in parallel
3: Calculate ki for each i ∈ V in parallel
4: Assign ai = ki in parallel
5: Initialize hashTable[V], an array of V Hash tables.
6: do
7: for each i ∈ V in parallel do
8: if mask[C[i]] == 1 then
9: for each v ∈ N [i] in parallel do

10: addV al(hashTable[C[i]], C[v], wti,v)

11: for each i ∈ V in parallel do
12: for each e ∈ hashTable[i].values in parallel do
13: Calculate ∆Q using equation 2.10 inplace
14: for each i ∈ V in parallel do
15: newComm[i] = argMinkey(hashTable[i].values)

16: resolveConflicts()
17: for each i ∈ V in parallel do
18: j = newComm[i]
19: mask[i] = (propagate)?(mask[i] ∨mask[j]) : (mask[i] ∧mask[j])

20: for each i ∈ V in parallel do
21: C[i]← newComm[C[i]]

22: for each c ∈ C in parallel do
23: Update commSizec and ac

24: while modGain < threshold

As mentioned earlier, the main difficulty in the optimization phase is to calculate

the value of ecicj . To calculate this, we access every edge with weight wi,j in parallel

9

Algorithm 2 Control community movements
1: procedure RESOLVECONFLICTS

2: Declare and Initialize array tempComm with 0
3: for each c ∈ C in parallel do
4: fComm = c
5: tComm = tempComm[c]
6: if newComm[tComm] == fComm and fComm < tComm then
7: tempComm[c] = c

8: newComm← tempComm

and add this value to its corresponding entry in the hash table. For an edge (i, j) we

add it to the hash table of the community C(i) and at the position corresponding to the

key C(j) (see lines 7 - 10 of Algorithm 1). Algorithm 3 deals with updating a value in

the hash table. If an entry is absent it creates a new entry with the given value. We use

open addressing and double hashing (Cormen, 2009) in the hash table. So, in lines 2

and 3 we calculate two hashes of the key. We then iterate by generating values of pos as

given in the line 6. If at some point we find an entry with the same key which we have,

we just atomically add our current value in its corresponding variable (line 9). If the

key value at a position is −1 it denotes that the position is empty. In that case we try to

atomically swap the key variable with the key value in hand. If it is successful, we have

now blocked that position for this key and hence we can update the value corresponding

to that atomically. If it failed then we try again at the next position given by line 6.

Algorithm 3 Update an entry in table
1: procedure ADDVAL(hashTable, key, value)
2: h1 = hash1(key)
3: h2 = hash2(key)
4: i = 0
5: do
6: pos = (h1 + i ∗ h2)%hashTable.size
7: i = i + 1
8: if hashTable[pos].key == key then
9: atomicAdd(hashTable[pos].value, value)

10: else if atomicCAS(hashTable[pos].key,−1, key) == −1 then
11: atomicAdd(hashTable[pos].value, value)

12: while hashTable[pos].key! = key

The algorithm maintains a hash table for each community ci that stores the sum ecicj

for each cj ∈ N [ci], where N [ci] is the set of community neighbors of ci. These values

are stored in a concurrent hash table with the key as their corresponding community id,

cj . With these values we can find the corresponding change in modularity value when

10

the community is merged with one of its neighbors. We use reduction (see line 15 of

Algorithm 1) to find the maximum of the modularity change and populate a newComm

array with the index of that community at a position corresponding to the current com-

munity. The elements of newComm array will now contain the ids of the potential

destination community of each community.

We use some ideas from Lu et al. (2015) to control the movements of communities.

In particular, we allow a single neighbor community ci to move to cj only if ci > cj and

if there are more than one cj on merging with whom gives the same maximum modu-

larity, we pick the community with minimum index as the potential destination commu-

nity. In addition to that if newComm[newComm[c]] = c, i.e., when two communities

tend to swap their positions, we move c to newComm[c] only if newComm[c] < c(see

Algorithm 2). This prevents communities from swapping each other’s place instead of

merging and considerably reduces the number of iterations required for convergence.

Figure 4.1: The state of the graph initially and after running an iteration of our algo-
rithm.

Community Modularity change newComm
newComm after
resolveConflict()

C1 C2: 5
49

, C3: 4
49

C2 C1
C2 C1: 5

49
, C3: 4

49
C1 C1

C3 C1: 4
49

, C2: 4
49

, C4:2.5
49

C1 C1
C4 C3:2.5

49
, C5: 4

49
, C6: 4

49
C5 C5

C5 C4: 4
49

, C6: 5
49

C6 C5
C6 C4: 4

49
, C5: 5

49
C5 C5

Table 4.1: Table showing the change in modularity values when each community
merges with one of its neighboring community and the final destination com-
munity of each community.

We now provide an example to explain the steps involved in our Static Commu-

nity Detection algorithm. Consider a graph as shown in Figure 4.1 with 6 nodes and 7

11

edges. Initially we assign each of the nodes to an unique community. Now, for each

community in parallel we calculate the change in modularity value if it were to merge

with one of its neighboring community. See Table 4.1 for all the change in modularity

values that will be calculated by our algorithm. After calculating the values we store the

community id corresponding to the maximum modularity change for each community

in newComm array. For C3 and C4, we can see that there are two neighboring commu-

nities on merging with whom we get the same maximum modularity change of 4
49

. In

such a case we populate the newComm array with the community id of the community

with the smallest id value. So, for C3 it will be C1 and for C4 it will be C5. As we

can see from Table 4.1, there are some community pairs like (C1, C2) and (C5, C6)

which will swap to each other’s position if newComm array values were the destina-

tion community. At this point we call the procedure resolveConflicts() which will

use the logic from section 4.1 to control such community swapping. In the rightmost

column of Table 4.1, we have the destination community for each of the communities.

C1 and C5 which were previously assigned to move to C2 and C6 respectively are now

staying in their old community itself.

Figure 4.2: A pictorial representation of edge updates - 1. Inter-community edge addi-
tion, 2. Intra-community edge addition, 3. Inter community edge deletion,
4. Intra-community edge deletion.

4.2 Dynamic Community Detection

In this section, we describe the various cases that arise when the network is dynamic

and how to efficiently perform operations on the network so as to update its community

structure without any significant compromise on the modularity value. See Table 4.2

12

for a summary of the different cases involved in dynamic community detection. We

divide the discussion here into single edge and multi edge updates.

Type of Update
Intra-Comm.

Addition
Inter-Comm.

Addition
Intra-Comm.

Deletion
Inter-Comm.

Deletion

Single Edge
(No Propogation) No change Merge/No Merge

Dissociate the
community and
Set mask[c] = 1
for the involved
communities.

Run SCD.

No change

Multi Edge
(Propogation)

Dissociate the
community and
Set mask[c] = 1
for the involved
communities.

Run SCD.

Set mask[c] = 1
for the involved
communities.

Run SCD.

Dissociate the
community and
Set mask[c] = 1
for the involved
communities.

Run SCD.

Set mask[c] = 1
for the involved
communities.

Run SCD.

Table 4.2: A summary of various cases involved in Dynamic community detection and
the proposed solution. In the table SCD is Static Community Detection al-
gorithm.

4.2.1 Single Edge Updates

This subsection deals with the cases that arises when a single edge is added or deleted

from the graph.

Intra Community Edge Addition

When an edge is added connecting two nodes of the same community, since we are only

strengthening a community, the modularity value always increases. So, we can simply

leave the community assignment of the network unchanged. An important point to be

noted here is that even though there is an increase in modularity value, this value may

not be the optimal value but still can be tolerated for the sake of execution time.

Inter Community Edge Addition

When an edge is added connecting two nodes of different communities, two possibilities

arise - the two communities can either be merged or left as they are. The decision

13

to merge or to not merge is made based on the modularity change in both the cases.

Whichever leads to a higher increase in modularity is preferred over the other.

Q1 =
1

2m + 2wij

[(eC(i)C(i) −
(aC(i) + wij)

2

2m + 2wij

) + (eC(j)C(j) −
(aC(j) + wij)

2

2m + 2wij

)] + K

(4.1)

Q2 =
1

2m + 2wij

[eC(i)C(i) + 2eC(i)C(j) + eC(j)C(j) + 2wij −
(aC(i) + aC(j) + 2wij)

2

2m + 2wij

] + K

(4.2)

∆Q =
1

2m + 2wij

[2eC(i)C(j) + 2wij −
2(aC(i) + wij) ∗ (aC(j) + wij)

2m + 2wij

] (4.3)

∆Q =
1

2m′ [2e
′
C(i)C(j) −

2a′C(i)a
′
C(j)

2m′] (4.4)

where m′, e′cicj , a
′
c are all the corresponding values of m, e, ac after adding the inter

community edge. So, whenever e′C(i)C(j) >
a′
C(i)

a′
C(j)

2m′ , we merge the two communities,

otherwise we leave them as they are.

Inter Community Edge Deletion

This case is similar to the intra community edge addition. There will be an increase

in the modularity value when we leave its community structure unaltered. Again, this

value may not be the optimal value but still can be tolerated for the sake of execution

time.

Intra Community Edge Deletion

When we delete an intra community edge, the community gets weak and tends to split

into smaller communities. The natural tendency of Louvain method is to reduce the

number of communities at the end of every iteration. So, if we blindly run Louvain

method on this network with their previous community assignment as the starting point,

nothing happens.

Our approach to this case is to break the community into many single node commu-

nities (i.e., a community of size c gets converted into c communities of size 1) and then

run our Static Community Detection Algorithm only for these node communities (see

Algorithm 4). This is done by having a mask array which will hold the value 1 (active)

14

Algorithm 4 Intra-Community Edge Deletion
1: procedure INTRADEL

2: Delete the edge from graph.
3: Initialize delComm as the community of deleted edge.
4: Initialize mask array with 0
5: for each i ∈ V in parallel do
6: if C[i] == delComm then
7: C[i] = i
8: mask[i] = 1

9: commDet(mask)

for the communities which need further merging with other communities and the value

0 (inactive) for the communities that don’t have to be merged with other communities.

When a community ci merges with cj and becomes the community ci, the new mask

value is given by (see line 19 of Algorithm 1) -

mask[ci] := mask[ci] ∧mask[cj] (4.5)

This means that when an active community merges with an inactive community it be-

comes inactive, whereas when an active community merges with an active community

it stays active. This method allows us to contain the merging of communities within a

particular part of the network (i.e., we don’t propagate it beyond the community). Typ-

ically the inactive communities to which a new active community gets merged might

also want to merge with other communities. We will discuss more about this in a later

sub section.

4.2.2 Multi-Edge Updates

This subsection deals with batch updates, i.e., the cases that arise when multiple edges

are added or deleted from the graph at a time. This subsection deals with batch updates

on the graph.

Intra Community Edge Updates

The earlier proposed solution for the intra community edge updates favored the execu-

tion time in the trade-off between accuracy and execution time. However in this case,

since the updates are batched, we give more importance to accuracy of the solution and

15

Figure 4.3: Adding more intra-community edges can sometime require the community
to break into smaller communities for a better modularity. The graph on the
left has Q = 0 and the graph on the right has modularity, Q = 0.125.

we are liberal on the execution time.

For both intra community edge addition and deletion, there is a tendency for the

community to break into smaller communities (see Figure 4.3 and 4.4). To facilitate

this process, we break the community into single node communities and then perform

Louvain method on these single node communities. Again, we use mask array to spec-

ify which communities are active and which are not. As specified in the subsection

4.2.1, the merging of communities need not be confined to a small part of the network.

We need to propagate the community merging process beyond the current community

(see Figure 4.5). We update the mask array in a different manner to allow for the prop-

agation. When a community ci merges with cj and becomes community ci, the new

mask value is given by (see line 19 of Algorithm 1) -

mask[ci] := mask[ci] ∨mask[cj] (4.6)

Figure 4.4: Deleting intra-community edges can break the community into smaller
communities.

16

This means that an active community stays active after merging with any other com-

munity. This method allows us to propagate the effects of updating an intra community

edge.

Inter Community Edge Updates

When an inter community edge is deleted or added, the two communities involved

may merge with themselves or merge with their neighboring communities. So, in this

case we mark the mask array elements corresponding to these communities with 1 and

run Static Community Detection algorithm for these community. Since it is a batched

processing, we would again want the effects of update to propagate to the other parts of

the network (see Figure 4.5). So, we use Equation 4.6 to update the mask array.

Figure 4.5: The picture shows why merging communities locally is not sufficient. We
need to propagate the update effect to get a more accurate modularity value.

Algorithm 5 Multi-Edge Updates
1: procedure BATCHUPDATES

2: Add/Delete the edges from the graph.
3: intraC ← Communities with intra edge update
4: interC ← Communities with inter edge update
5: for each i ∈ V in parallel do
6: if C[i] ∈ intraC then
7: C[i] = i
8: mask[i] = 1
9: else if C[i] ∈ interC then

10: mask[C[i]] = 1

11: commDet(mask, propagate = True)

17

General Batch Update

When we have a batch of edge additions or deletions where some are intra edge updates

and some inter, we first separate them into two sets as given in lines 3 and 4 of Algo-

rithm 5. With the intra community edge updates set we first dissociate the community

into single node communities and mark their corresponding mask values as 1. With the

inter community edge updates set we mark the corresponding mask value of the com-

munities involved as 1. Now, we simply call the static community detection procedure

with propogate = True which enables Equation 4.6 for updating mask.

18

CHAPTER 5

THREAD AND MEMORY ALLOCATION

In this chapter, we describe how we allocate memory and assign thread to different data

structures and algorithms.

5.1 Graph Representation

We represent the graph in Compressed Sparse Row(CSR) format. We use global mem-

ory to store the graph. In the CSR format all neighbors of a node are stored in contigu-

ous memory location which makes accessing the neighbors of a node very efficient as

they will be accessed in a coalesced manner on the GPU. This representation is suitable

for static networks. When the network is dynamic, we need to reallocate a new mem-

ory and make changes to the CSR representation which will have a lot of sequentiality

involved. So, using CSR for a dynamic network will introduce a lot of overhead.

We take ideas from Malhotra et al. (2017) for representing dynamic network. They

represent a dynamic network with a CSR graph G and a diff-CSR graph G′. G is the

base graph which is usually big, whereas G′ is a small graph which has the dynamic

network changes. Now, whenever some new edges are added we can simply edit the

diff-CSR G′. Since G′ is small, modifying it will be very fast. When edges are being

deleted we simply find the edge’s corresponding location in its CSR representation and

mark it as −1.

5.2 Kernel Configuration

For each node a dedicated block is assigned while launching a kernel in the GPU. All

the blocks are launched with 128 threads. A node with degree less than or equal to 128

gets a dedicated thread for each of its edges. For a node with out degree greater than

128, each thread of the block processes the edges in strides of size 128 (Naim et al.,

2017). All computations take place in the kernel. When a global synchronization is

required the control is brought back to the host.

5.3 Hash Table

We have implemented a concurrent hash table which is required for the calculation of

ecicj for every community ci ∈ C where cj is one of its neighbors. So, we need one hash

table for every community. We assign an array of size b1.5|E|c where |E| is the size

of edges array in the CSR representation of the network. Now, each community ci will

get an array of size 1.5aci for using as a hash table. This kind of a segmented hash table

is very useful to us. We don’t have to redeclare the hash table for every iteration. After

each iteration the value of aci will change and hence the size of the hash table. Since

aci represents the sum of degrees of all the nodes in the community ci, the community

can have at most only aci neighboring communities. So, having the size of hash table

1.5 times of that value is enough to store all the data. Our hash table implementation is

an extension of Naim et al. (2017).

20

CHAPTER 6

EXPERIMENTS

In this chapter we evaluate the effectiveness of our proposed algorithm and its imple-

mentation. We implemented our algorithm using CUDA C++. We performed all the

experiments involving our algorithm in a Tesla P100-PCIE-12GB GPU. For the experi-

ments which involved running the parallel Louvain method OpenMP code, we ran it on

Intel Xeon E5-2640 v4 @ 2.40GHz CPU which has 40 cores. The GPU is attached to

the same machine. We use four large datasets as shown in Table 6.2 for the experiments.

6.1 Static Community Detection

6.1.1 Performance

We first analyze the performance of our algorithm in terms of both time and modularity

and compare it with Lu et al. (2015).

Dataset Modularity(GPU) Modularity(CPU) Time(GPU) Time(CPU)

com-Amazon 0.89815 0.924185 0.12s 1.47s
com-Youtube 0.608386 0.71082 0.46s 9.30s

com-LiveJournal 0.686947 0.738955 1.59s 69.26s
com-Orkut 0.511545 0.65159 3.55s 64.09s

Table 6.1: Performance of our Static Community Detection algorithm for GPU com-
pared to the Parallel Louvain Method of Lu et al. (2015) for CPU

Dataset V E

com-Amazon 334,863 1,851,744
com-Youtube 1,134,890 5,975,248

com-LiveJournal 3,997,962 69,362,378
com-Orkut 3,072,441 234,370,166

Table 6.2: Number of nodes and edges in the dataset.

The implementation of Lu et al. (2015) parallelizes the access to every vertex as

apposed to our algorithm which parallelizes the access to every edge. In their imple-

mentation, they use graph coloring (Lu et al., 2017) to pre-process the network which

leads to their high modularity value compared to our algorithm. From the experimental

data provided above (Table 6.1), we can see that our algorithm gives better results in

terms of execution time and comparable results in terms of modularity.

6.1.2 Statistics

Figure 6.1: Iteration wise community changes.

We have plotted some statistics obtained by executing the static community detec-

tion algorithm on four graph datasets - com-Amazon, com-Youtube, com-LiveJournal,

com-Orkut (Yang and Leskovec, 2015) as shown in Figures 6.1 and 6.2. In Figure 6.1,

we can see a general increasing trend for all the graph datasets, which can be attributed

to the increasing size of the communities with iteration. Since, the community size in-

creases with iteration even if a small number of communities merge, the total number

of nodes with a change in their community assignment is large.

In Figure 6.2, we have plotted the number of unique communities at the end of each

iteration. The semi-log plots are almost linear for all the datasets, which implies that

the number of unique communities falls exponentially with iteration. Also, for all the

22

datasets, the algorithm converges fast in about 10 iterations.

Figure 6.2: Semi-log Plots describing the number of unique communities at the end of
each iteration.

6.2 Dynamic Community Detection

In this section, we perform experiments to demonstrate the speed and accuracy of our

dynamic community detection algorithm.

6.2.1 Single Edge Updates

Figure 6.3: Average time per update for a varying number of edge additions and dele-
tions

23

In Figure 6.3, we have plotted the average time per update by varying the fraction of

edge additions and deletions in the update set. We plot for three different update sizes

- 10, 100 and 1000. We can see that all the plots are almost linear. Edge deletions are

more compute intensive than the edge additions. The updates at the 0% mark are all

made up of edge deletions, and the average time for them is the highest. The updates at

the 100% mark are all made up of edge additions which take the least amount of time

per update. All the plots appear to be a linear interpolation of the 0% and the 100%

marks. We also observe that the average time per update reduces with the number of

updates which has edge deletions. This is due to the fact that when we delete edges the

community size tends to get smaller and processing a smaller community is faster than

bigger ones. So, when we increase the number of edge deletions we make the average

time per update decreases.

Figure 6.4: Percent loss in modularity for a varying number of edge additions and dele-
tions. Modularity values are better when the number of updates is small.

In Figure 6.4, we have plotted the percentage loss in modularity by varying the

fraction of edge additions and deletions. The percentage loss in modularity is given

by Loss% = (Mstatic − Mdynamic)/Mstatic ∗ 100 where Mdynamic is the modularity

obtained after the dynamic updates and Mstatic is the modularity value after running the

static community detection algorithm. We can see that for a small number of updates

the dynamic modularity values are almost similar to modularity values obtained from

static community detection. When we increase the number of updates, the modularity

values start to deviate by a large amount. This behavior is expected as our algorithm

detects communities that are approximately correct and when we increase the number

of updates the error values get accumulated and deviate by a large amount. Since the

number of updates for which the data is plotted varies exponentially, the error value also

increases exponentially. We can also notice that the change is modularity value is very

24

less for updates with more edge additions. Even on doing a large number of updates the

error in modularity value for updates with only edge additions is very low.

6.2.2 Multi Edge Updates

(a) Average Time per update vs Batch size (b) Percentage loss in modularity vs Batch size

Figure 6.5: For all the four graphs (Paranjape et al., 2017) 4096 edges were added in
batches of size specified in the x-axis

We took four temporal graph datasets - sx-mathoverflow, sx-askubuntu, wiki-talk-

temporal, sx-stackoverflow from SNAP (Paranjape et al., 2017). We excluded the last

4096 edges from the datasets and built a graph using the remaining edges. This graph

was used as a base graph for the experiment. We added the remaining 4096 edges

in batches of 2n where 0 ≤ n < 8, to the base graph and used dynamic community

detection algorithm to find the community structure of the graph after every batch up-

date. The result is shown in Figure 6.5. It is evident from Figure 6.5a that the average

time per update considerably reduces with increasing the batch size. In figure 6.5b, we

can see that the error in modularity values are negative when batch size is 1, which

means that the algorithm performs better than the static community detection algorithm

in terms of modularity. The error percentage here for batch size of 1 is lower than the

error percentage we obtained for single edge updates experiments in Section 6.2.1. This

improvement in accuracy is due to the propagation we do in batched updates. There is

a general trend of increase in accuracy with a decrease in batch size. This situation can

be seen as a trade-off between accuracy and execution time.

We took the 4 temporal networks and created a base graph with all the edges from

the dataset. We removed 4096 edges from the base graph in batches of size 2n where

25

0 ≤ n < 8 and used dynamic community detection algorithm to find the community

structure of the graph after every batch update. The result is shown in Figure 6.6. The

data we observe here follows the same trend we observed in Figure 6.5. Again, the

improvement in accuracy is due to the propagation we do in batched updates.

(a) Average Time per update vs Batch size (b) Percentage loss in modularity vs Batch size

Figure 6.6: For all the four graphs (Paranjape et al., 2017) 4096 edges were deleted in
batches of size specified in the x-axis

26

CHAPTER 7

CONCLUSION

We have proposed a new Static Community Detection algorithm which is fast and accu-

rate. Our algorithm performs better than the existing OpenMP code in terms of execu-

tion time. The main reason for our algorithm to perform faster is that we don’t have an

explicit aggregation phase. The limits to our algorithm are simply the storage capacity

rather than the execution time. A graph with 3 million nodes and 234 million edges just

takes about 3.55 seconds for execution.

We have also described the various cases that arise when we deal with a dynamic

network and have provided algorithms to incrementally find the community structure

of such networks. For single edge updates, our algorithm performs better when the

number of updates is less. As single edge updates are approximate solutions, when

we accumulate many single edge updates the error percentage increases. Updates with

more edge additions deviate less from the static community detection algorithm’s mod-

ularity values. In the case of multi-edge updates, when the updates are made in small

batches it leads to a more accurate solution. The average running time per update is

considerably reduced when we run with large batches of updates.

REFERENCES

1. Aktunc, R., I. H. Toroslu, M. Ozer, and H. Davulcu, A dynamic modularity based
community detection algorithm for large-scale networks: Dslm. In Advances in Social
Networks Analysis and Mining (ASONAM), 2015 IEEE/ACM International Conference
on. IEEE, 2015.

2. Blondel, V. D., J.-L. Guillaume, R. Lambiotte, and E. Lefebvre (2008). Fast un-
folding of communities in large networks. Journal of statistical mechanics: theory and
experiment, 2008(10), P10008.

3. Brandes, U., D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikoloski, and
D. Wagner (2008). On modularity clustering. IEEE transactions on knowledge and
data engineering, 20(2), 172–188.

4. Cormen, T. H., Introduction to algorithms. MIT press, 2009.

5. Fortunato, S. (2010). Community detection in graphs. Physics reports, 486(3-5), 75–
174.

6. Liu, Y., K. P. Gummadi, B. Krishnamurthy, and A. Mislove, Analyzing facebook
privacy settings: user expectations vs. reality. In Proceedings of the 2011 ACM SIG-
COMM conference on Internet measurement conference. ACM, 2011.

7. Lu, H., M. Halappanavar, D. Chavarria-Miranda, A. Gebremedhin, A. Panyala,
and A. Kalyanaraman (2017). Algorithms for balanced colorings with applications
in parallel computing. IEEE Transactions on Parallel and Distributed Systems, 28(5),
1240–1256.

8. Lu, H., M. Halappanavar, and A. Kalyanaraman (2015). Parallel heuristics for scal-
able community detection. Parallel Computing, 47, 19–37.

9. Malhotra, G., H. Chappidi, and R. Nasre, Fast Dynamic Graph Algorithms. In Pro-
ceedings of the 30th International Workshop on Languages and Compilers for Parallel
Computing. Springer-Verlag, London, UK, UK, 2017.

10. Meunier, D., R. Lambiotte, A. Fornito, K. Ersche, and E. T. Bullmore (2009). Hier-
archical modularity in human brain functional networks. Frontiers in neuroinformatics,
3, 37.

11. Naim, M., F. Manne, M. Halappanavar, and A. Tumeo, Community detection on the
gpu. In Parallel and Distributed Processing Symposium (IPDPS), 2017 IEEE Interna-
tional. IEEE, 2017.

12. Newman, M. E. (2004). Analysis of weighted networks. Physical review E, 70(5),
056131.

13. Newman, M. E. (2006). Modularity and community structure in networks. Proceedings
of the national academy of sciences, 103(23), 8577–8582.

28

14. Newman, M. E. and M. Girvan (2004). Finding and evaluating community structure
in networks. Physical review E, 69(2), 026113.

15. Nguyen, N. P., T. N. Dinh, Y. Shen, and M. T. Thai (2014). Dynamic social commu-
nity detection and its applications. PloS one, 9(4), e91431.

16. Paranjape, A., A. R. Benson, and J. Leskovec, Motifs in temporal networks. In Pro-
ceedings of the Tenth ACM International Conference on Web Search and Data Mining.
ACM, 2017.

17. Shang, J., L. Liu, F. Xie, Z. Chen, J. Miao, X. Fang, and C. Wu (2014). A real-
time detecting algorithm for tracking community structure of dynamic networks. arXiv
preprint arXiv:1407.2683.

18. Traud, A. L., P. J. Mucha, and M. A. Porter (2012). Social structure of facebook
networks. Physica A: Statistical Mechanics and its Applications, 391(16), 4165–4180.

19. Wallace, M. L., Y. Gingras, and R. Duhon (2009). A new approach for detecting
scientific specialties from raw cocitation networks. Journal of the Association for In-
formation Science and Technology, 60(2), 240–246.

20. Waltman, L. and N. J. Van Eck (2013). A smart local moving algorithm for large-scale
modularity-based community detection. The European Physical Journal B, 86(11), 471.

21. Yang, J. and J. Leskovec (2015). Defining and evaluating network communities based
on ground-truth. Knowledge and Information Systems, 42(1), 181–213.

22. Zuo, X.-N., R. Ehmke, M. Mennes, D. Imperati, F. X. Castellanos, O. Sporns, and
M. P. Milham (2011). Network centrality in the human functional connectome. Cere-
bral cortex, 22(8), 1862–1875.

29

	ACKNOWLEDGEMENTS
	ABSTRACT
	INTRODUCTION
	THE LOUVAIN METHOD
	RELATED WORK
	THE GPU ALGORITHM
	Static Community Detection
	Dynamic Community Detection
	Single Edge Updates
	Multi-Edge Updates

	THREAD AND MEMORY ALLOCATION
	Graph Representation
	Kernel Configuration
	Hash Table

	EXPERIMENTS
	Static Community Detection
	Performance
	Statistics

	Dynamic Community Detection
	Single Edge Updates
	Multi Edge Updates

	CONCLUSION

