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ABSTRACT

KEYWORDS: Full Adder, Sum, Carryout, Probability of error, Boolean Differ-

ence Calculus

The project is an analysis of gate level modelling of Full Adder circuit with errors in the

gates, and with and without errors in the input signals. The results/formulae obtained

can be used to study the probability of errors in the outputs of larger circuits, like Ripple

Carry Adder, which uses Full Adder circuit. Also, Optimal energy/power required for

the reliable working of the circuit can be determined.
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CHAPTER 1

Introduction

Understanding of errors in the circuits, analyzing them and coming up with strategies

to minimize the errors is very important specially for the advancing new technologies.

The goal is to come up with reliable components with unreliable/faulty/erroneous logic

gates.

The aim of our project is to consider a particular (and important) component used in ad-

vance technologies and analyze the errors associated with that component and to under-

stand the optimal energy allocation in the component. We studied the FULL ADDER

circuit. We also worked towards understanding the Ripple Carry Adder.

Applications of Full Addder in larger circuits:

1. It can be used to build Ripple Carry Adder and to design Multiplication Unit.

2. Full Adder is one of the major components of Arithmetic Logic Unit (ALU).

3. To generate memory addresses inside a computer and to make the Program Counter

point to next instruction, the ALU makes use of full adder.

4. For graphic related application, where there is a very much need of complex compu-

tations, the Graphic Processing Unit (GPU) uses optimized ALU which is made of full

adders and other circuits.

As, Full Adder is one of the major components in many larger circuits, it is neces-

sary to understand the errors associated with it. And, also it is necessary to study the

energy distribution with in the circuit so as to minimize the overall power consumption

of the device (or larger circuit).



CHAPTER 2

Model

In our project, we considered the gate level modelling of the Full Adder circuit and

made our analysis.

Model in detail :

Circuit is made of ’n’ gates say gate1, gate2, gate3, gate5, ..., gaten, each gate has error

say ε1, ε2, ε3, ε4, ...εn. The errors are considered to be functions of energies associated

with gates, that is, ε ∝ f(E). The relation between gate error and the energy distributed

to the gate is :

ε ∝ exp(−cE)

2

If the circuit/component has ’m’ outputs, then the total probability of error of the cir-

cuit/component depends on probability of error in each of the outputs by the following

relation. In turn, as the probability of error in the output depends on the energies asso-

ciated with gates, total probability of error is a function of energies associated with all

the gates of the circuit/component.

f(E1, E2, ..., En) = λ1Pe(output1)+λ2Pe(output2)+λ3Pe(output3)+.....+λmPe(outputm)

Then, optimal energy distribution in the circuit is obtained by optimizing the above

function depending on the weights of the outputs and the energy budget given.

ε1
ε2

ε3

ε4

ε5

A
B

A
B

C

C

Cout

Sum

Figure 2.1: Full Adder Circuit with errors in the gates



Considering a FA circuit with errors in gates(only), ε1 and ε2 are the gate errors of

XOR gates, ε3 and ε4 are the gate errors of the AND gates, ε5 is the gate error of the OR

gate.

The XOR gates are symmetric gates, whereas AND and OR gates are asymmetric gates.

The behavior of these symmetric gates and asymmetric gates on the output error has to

be analyzed separately. So in the following chapters a detailed analysis of FA has been

done with each of the XOR gates having gate error ε1 and each of the AND, OR gates

having gate error ε3.

Also, symmetric and asymmetric gates should be optimized separately for better energy-

reliability trade-off, so two different energy E and E1.

Gate error and energy relation of symmetric gates : ε1 ∝ exp(−cE)
2

Gate error and energy relation of asymmetric gates : ε3 ∝ exp(−cE1)
2

The probability of error in calculating Sum ( Pe(Sum) ) and Carryout ( Pe(Cout) ) are

calculated using basic probability. Energy distribution in the FA circuit and Optimal

Energy are measured using the following equations.

f(E,E1) = Pe(Total) = λ ∗ Pe(Sum) + Pe(Cout)

f(E,E1) = Pe(Total) = Pe(Sum) + λ ∗ Pe(Cout)

Further, Full Adder with errors in the input signals is also analyzed using Boolean Dif-

ference Gate Error Model. Detailed analysis has been mentioned in the next chapters.

3



CHAPTER 3

FULL ADDER Analysis

3.1 Calculating Pe in the outputs of FA

ε1
ε2

ε3

ε4

ε5

A
B

A
B

C

C

Cout

Sum

Figure 3.1: Full Adder Circuit with errors in the gates

Considering a Full Adder with five 2-input gates with ε1, ε2, ε3, ε4 and ε5 being the

errors in each of the gates. The XOR gates contribute for the error in calculating Sum.

While XOR, AND and OR gates contribute for the error in calculating Carryout.

Probability of error in calculating Sum : Pe(S) = ε1(1-ε2)+ε2(1-ε1)

Probability of error in calculating Cout :

case 1 : When inputs are 000/010/100/110

Pe(Cout) = (1-ε3)(1-ε4)ε5 + (ε3+ε4-ε3ε4)(1-ε5)

case 2 : When inputs are 011/101

Pe(Cout) =[(1-ε1)(1-ε3)+ε1ε3]ε5 + [(1-ε1)ε3+(1-ε3)ε1][ε4ε5+(1-ε4)(1-ε5)]



case 3 : When inputs are 111/001

Pe(Cout) = [ε1(1-ε3)+(1-ε1)ε3](1-ε5) + [ε1ε3+(1-ε1)(1-ε3)][ε4(1-ε5)+(1-ε4)ε5]

In total,

Pe(Cout) =
1

8
∗ [4 ∗ Pe(Cout)|case1 + 2 ∗ Pe(Cout)|case2 + 2 ∗ Pe(Cout)|case3]

Pe(Cout) =
ε1
2

+ε3+
3ε4
4

+ε5−ε1ε5−2ε3ε5−ε1ε3−ε3ε4−
ε1ε4

2
+

3ε4ε5
2

+ε1ε3ε4+2ε1ε3ε5

+ε1ε4ε5 + 2ε3ε4ε5 − 2ε1ε3ε4ε5

Case I (ε1, ε2 = ε1; ε3, ε4 = ε3; ε5 = ε5)

Pe(Cout) =
ε1
2

+
7ε3
4

+ ε5− ε23−
7ε3ε5

2
− 3ε1ε3

2
− ε1ε5 + ε1ε

2
3 +2ε23ε5 +3ε1ε3ε5−2ε1ε

2
3ε5

Case II (ε1, ε2, ε3, ε4, ε5 = ε)

Pe(Cout) =
13ε

4
− 7ε2 + 6ε3 − 2ε4, and Pe(Sum) = 2ε(1− ε)

Case III (ε1, ε2 = ε1; ε3, ε4, ε5 = ε3)

Pe(Cout) =
ε1
2

+
11ε3

4
− 9ε23

2
− 5ε1ε3

2
+ 4ε1ε

2
3 + 2ε33 − 2ε1ε

3
3

Pe(S) increases with increase in gate error of the XOR gates. For a gate to be

reliable the error, ε < 0.5 so the maximum Pe(S) is 0.5 . Similar increasing trend can

be seen in the Pe(Cout), maximum Pe(Cout) is more than 0.5 so the gate energy has

to be optimized to optimize the gate errors and thus optimizing the Pe(Cout). Refer to

Figure 3.2 and Figure 3.3 for better understanding.

5



3.2 Plots of Probability of Error

Figure 3.2: 2D plot of Pe Vs ε for caseII

The probability of error in calculating Cout is higher than the probability of error in

calculating Sum.

(a) Pe(Sum) Vs ε1, ε2 (b) Pe(Cout) Vs ε1, ε2

Figure 3.3: 3D plots of Probability of Error in calculating Sum and carryout Vs error in
each of the gates. Pe(Sum) depends only on the error in XOR gates, while
Pe(Cout) depends on errors in XOR, OR and AND gates.

6



CHAPTER 4

Energy analysis of Full Adder and Results

4.1 Probability of error as a function of Energy:

In Case III (ε1, ε2 = ε1; ε3, ε4, ε5 = ε3)

ε1 = ε2→ E, ε3 = ε4 = ε5→ E1

E → energy distribution on each of the XOR gates

E1→ energy distribution on each of the AND/OR gates

Total Energy = E0, and 2E + 3E1 = E0

Considering error, ε ∝ exp(−cE)
2

Pe(Sum) = exp(−cE)− exp(−2cE)

2

Pe(Cout) =
exp(−cE)

4
+

11exp(−cE1)

8
−5exp(−c(E + E1))

8
−exp(−2cE1)+

exp(−c(E + 2E1))

2

+
exp(−3cE1)

4
− exp(−c(E + 3E1))

8

4.2 3D plots of Pe as function of E, E1

The probability of error in calculating Sum depends only on the energy distributed on

the XOR gates, and it decreases as the energy on XOR gates increases. The probability

of error in calculating Carryout depends on the energy distributed on XOR, AND and

OR gates, it exponentially decreases as the energy on the gates increases. Finally, the

total probability of error of the Full adder decreases as the energy on the gates increases.

Thus, minimum total energy and the energy distribution on gates for that minimum

energy can be obtained. This analysis helps in optimizing the energy of the circuit with

higher reliability. Refer Figure 4.1 and Figure 4.2 .



(a) 3D plot of Pe while calculating sum (b) 3D plot of Pe while calculating Cout

Figure 4.1: 3D plots for Probability of Error as function of Energy to calculate Sum and
Cout Vs Energy vested on each of the gates (E0 = 6 units)

Figure 4.2: 3D plot for Total Probability of Error as function of Energy

4.3 Analyzing f (E,E1) = λ ∗ Pe(Sum) + Pe(Cout)

For different values of E0, the variation of minimum energy (or) optimal energy con-

sumed by the full adder and lambda is plotted below. The idea behind doing this is to

find out the energy distribution on each of the XOR/OR/AND gates for given Energy

budget.

8



4.3.1 Error, ε ∝ exp(−E)
2

(a) Minimum f(E,E’) Vs lambda (b) Minimum f(E,E’) Vs lambda

(c) Minimum f(E,E’) Vs lambda (d) Minimum f(E,E’) Vs lambda

Figure 4.3: Minimum f(E,E’) Vs lambda for varying values of E0

Inferences from the above plots(Figure 4.3):

The optimal/minimum value of f(E,E1) is calculated for varyingE0 (total energy/given

energy budget) and λ values, the obtained minimum f(E, E1) are plotted against λ.

At small budget (low E0 values), the plot is almost linear.

At moderate budget, the curve is concave for lower λ values and then it becomes linear.

At high budget, the curve is concave (smoothly increasing) with increasing λ values.

Similar inferences can be made when the error , ε ∝ exp(−
√
E)

2
and ε ∝ exp(−E2)

2

From Table.4.1, we can understand the optimal energy distribution for a given bud-

get of energy. In our case, depending on the weights of Pe(S) and Pe(Cout) the optimal

energy distribution for the reliable working of the circuit is determined.

9



Table 4.1: Minimum E and E’ for varying λ and E0 values

E0 values
λ values 1 2 4 6 8 10 15 20
0.00 0.5 0.0 0.1562 0.5075 0.8809 1.2613 2.2372 3.2232

0.0 0.6667 1.2292 1.6617 2.0794 2.4925 3.5085 4.5178
0.25 0.5 1.0 0.4625 0.8709 1.2613 1.6567 2.6426 3.6436

0.0 0.0 1.0250 1.4194 1.8258 2.2289 3.2382 4.2375
0.50 0.5 1.0 2.0 1.2282 1.5576 1.9269 2.8979 3.8839

0.0 0.0 0.0 1.1812 1.6283 2.0487 3.0681 4.0744
0.75 0.5 1.0 2.0 1.5405 1.7858 2.1321 3.0781 4.0641

0.0 0.0 0.0 0.9729 1.4761 1.9119 2.9479 3.9573
1.0 0.5 1.0 2.0 3.0 1.9739 2.2923 3.2207 4.1942

0.0 0.0 0.0 0.0 1.3507 1.8051 2.8529 3.8705
1.25 0.5 1.0 2.0 3.0 2.1341 2.4274 3.334 4.3043

0.0 0.0 0.0 0.0 1.2439 1.7150 2.7773 3.7971
1.50 0.5 1.0 2.0 3.0 2.2783 2.5425 3.4309 4.4044

0.0 0.0 0.0 0.0 1.1478 1.6383 2.7127 3.7304
1.75 0.5 1.0 2.0 3.0 2.4064 2.6426 3.5210 4.4845

0.0 0.0 0.0 0.0 1.0624 1.5716 2.6026 3.6770
2.00 0.5 1.0 2.0 3.0 2.5305 2.7327 3.5961 4.5546

0.0 0.0 0.0 0.0 0.9796 1.5115 2.6026 3.6303
2.25 0.5 1.0 2.0 3.0 4.0 2.8128 3.6637 4.6246

0.0 0.0 0.0 0.0 0.0 1.4581 2.5576 3.5836
2.50 0.5 1.0 2.0 3.0 4.0 2.8879 3.7237 4.6847

0.0 0.0 0.0 0.0 0.0 1.4081 2.5175 3.5435
2.75 0.5 1.0 2.0 3.0 4.0 2.9579 3.7838 4.3747

0.0 0.0 0.0 0.0 0.0 1.3614 2.4775 3.5102
3.00 0.5 1.0 2.0 3.0 4.0 3.0230 3.8363 4.7848

0.0 0.0 0.0 0.0 0.0 1.3179 2.4424 3.4768
3.25 0.5 1.0 2.0 3.0 4.0 3.0881 3.8814 4.8348

0.0 0.0 0.0 0.0 0.0 1.2746 2.4142 3.4434
3.50 0.5 1.0 2.0 3.0 4.0 3.1431 3.9264 4.8748

0.0 0.0 0.0 0.0 0.0 1.2379 2.3824 3.4167
3.75 0.5 1.0 2.0 3.0 4.0 3.1982 3.9715 4.9149

0.0 0.0 0.0 0.0 0.0 1.2012 2.3523 3.3900
4.00 0.5 1.0 2.0 3.0 4.0 3.2532 4.0090 4.9449

0.0 0.0 0.0 0.0 0.0 1.1645 2.3273 3.3700
4.25 0.5 1.0 2.0 3.0 4.0 3.3033 4.0465 4.9849

0.0 0.0 0.0 0.0 0.0 1.1311 2.3023 3.3433
4.50 0.5 1.0 2.0 3.0 4.0 3.3534 4.0766 5.0150

0.0 0.0 0.0 0.0 0.0 1.0978 2.2823 3.3233
4.75 0.5 1.0 2.0 3.0 4.0 3.4034 4.1141 5.0550

0.0 0.0 0.0 0.0 0.0 1.0644 2.2573 3.2966
5.00 0.5 1.0 2.0 3.0 4.0 3.4485 4.1441 5.0850

0.0 0.0 0.0 0.0 0.0 1.0344 2.2372 3.2766

10



And, for a given energy budget, the minimum energy to be vested in XOR gates(E) and

the minimum energy to be vested in AND, OR gates (E’) is determined.

Also, it can be observed that for lower energy budget, the energy is distributed over

XOR gates and as the energy budget increases the energy is distributed over AND and

OR gates as well. Depending on the λ value, the energy distribution changes. As the

weight(λ) on Pe(S) is increased, for a given energy budget, the energy distribution on

the XOR gates increases and that on the AND and OR gates decreases.

4.3.2 Error, ε ∝ exp(−
√
E)

2

(a) Minimum f(E,E’) Vs lambda (b) Minimum f(E,E’) Vs lambda

(c) Minimum f(E,E’) Vs lambda (d) Minimum f(E,E’) Vs lambda

Figure 4.4: Minimum f(E,E’) Vs lambda for varying values of E0

Inferences from the above plots(Figure 4.4):

The optimal/minimum value of f(E,E1) is calculated for varyingE0 (total energy/given

11



energy budget) and λ values, the obtained minimum f(E, E1) are plotted against λ.

At very small budget (low E0 values), the plot is almost linear.

As the energy budget increases, the curve becomes more concave(smoothly increasing).

4.3.3 Error, ε ∝ exp(−E2)
2

(a) Minimum f(E,E’) Vs lambda (b) Minimum f(E,E’) Vs lambda

(c) Minimum f(E,E’) Vs lambda (d) Minimum f(E,E’) Vs lambda

Figure 4.5: Minimum f(E,E’) Vs lambda for varying values of E0

Inferences from the above plots(Figure 4.5):

The optimal/minimum value of f(E,E1) is calculated for varyingE0 (total energy/given

energy budget) and λ values, the obtained minimum f(E, E1) are plotted against λ.

At very small budget ( E0 < 4 units), the plot is almost linear. At small budget (E0 ≈ 4

units), the curve is linearly increasing for λ < 0.5 then curve is linearly decreasing.

As the energy budget increases, the curve becomes more concave(smoothly increasing).

12



4.4 Analyzing f (E,E1) = Pe(Sum) + λ ∗ Pe(Cout) with

ε ∝ exp(−E)
2

(a) Minimum f(E,E’) Vs lambda (b) Minimum f(E,E’) Vs lambda

(c) Minimum f(E,E’) Vs lambda

Figure 4.6: Minimum f(E,E’) Vs lambda for varying values of E0

Inferences from the above plots(Figure 4.6):

The optimal/minimum value of f(E,E1) is calculated for varyingE0 (total energy/given

energy budget) and λ values, the obtained minimum f(E, E1) are plotted against λ.

At small budget (low E0 values), the plot is almost linear.

As the energy budget increases, the curve becomes more concave(smoothly increasing).

From Table.4.1, we can understand the optimal energy distribution for a given bud-

get of energy. In our case, for a given energy budget (E0), the minimum energy on XOR

gates(E) and the minimum energy on AND, OR gates (E’) is determined.

13



Also, it can be observed that for lower energy budget, the energy is distributed over

XOR gates and as the energy budget increases the energy is distributed over AND and

OR gates as well. As the weight(λ) on Pe(Cout) is increased, for a given energy budget,

the energy distribution on the AND and OR gates increases and that on the XOR gates

decreases.

Table 4.2: For varying λ and E0 values, minimum E and E’ values

E0 values
λ values 1 2 4 6 8 10 15
0.00 0.5 1.0 2.0 3.0 4.0 5.0 7.5

0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.50 0.5 1.0 2.0 3.0 2.5305 2.7327 3.5961

0.0 0.0 0.0 0.0 0.9796 1.5115 2.6026
1.0 0.5 1.0 2.0 3.0 1.9739 2.2923 3.2207

0.0 0.0 0.0 0.0 1.3507 1.8051 2.8529
1.50 0.5 1.0 2.0 1.4414 1.7177 2.0670 3.0180

0.0 0.0 0.0 1.0390 1.5215 1.9550 2.9879
2.00 0.5 1.0 2.0 1.2282 1.5576 1.9269 2.8979

0.0 0.0 0.0 1.1812 1.6283 2.0487 3.0680
2.50 0.5 1.0 2.0 1.0900 1.4494 1.8268 2.8078

0.0 0.0 0.0 1.2733 1.7004 2.1154 3.1281
3.00 0.5 1.0 2.0 0.9969 1.3694 1.7568 2.7402

0.0 0.0 0.0 1.3353 1.7538 2.1622 3.1732
3.50 0.5 1.0 2.0 0.9249 1.3093 1.7017 2.6877

0.0 0.0 0.0 1.3834 1.7938 2.1989 3.2082
4.00 0.5 1.0 0.4625 0.8709 1.2613 1.6567 2.6426

0.0 0.0 1.0250 1.4194 1.8258 2.2289 3.2382
4.50 0.5 1.0 0.4044 0.8288 1.2252 1.6106 2.6051

0.0 0.0 1.0637 1.4474 1.8498 2.2556 3.2633
5.00 0.5 1.0 0.3644 0.7958 1.1932 1.5866 2.5826

0.0 0.0 1.0904 1.4695 1.8712 2.2756 3.2783
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CHAPTER 5

Analysing Circuits with Input Errors

5.1 Boolean Difference Gate Error Model

In studying larger circuits (say Ripple Carry Adder), the error is propagated from one

full adder to the other full adder, especially the error in carryout is propagated. So, it is

necessary to study a model for circuits with errors in the input signals.

In our project, we used the Boolean Difference Gate Error Model to study the circuits

with errors in Inputs.

Boolean Function,f

Gate Error,εg

p1, ε1

p2, ε2

...

pn, εn

εz

Probabilities for input signal being ’1’ are p1,p2,p3,.....,pn while the input error proba-

bilities are ε1,ε2,ε3,.....,εn. The output error probability is εz.

1 A Faulty Buffer With Erroneous Input

Pin,εin εzεg

εz = εin(1-εg)+(1-εin)εg =⇒ εz = εg+εin(1-2εg)

2 We can model each faulty gate with erroneous input as an ideal(no fault) gate with

same functionality and the same inputs in series with a faulty buffer



Boolean Function,f

Gate Error,εg

p1, ε1
p2, ε2

...

pn, εn

εzεg
pin, εin

εz = εg + (1− 2εg) ∗ [ε1(1− ε2)Pr(
δf

δx1
) + (1− ε1)ε2Pr(

δf

δx2
) + ε1ε2Pr(

∆f

∆(x1, x2)
)]

∆f

∆(xi, xj)
=
δf

δxi
⊕ δf

δxj
⊕ δ2f

δxiδxj
,where

δf

δxi
= f(xi)⊕ f(xi)

5.2 2-Input AND gate

f,εg
p1, ε1
p2, ε2

εz
where, f = x1.x2

Pr(
δf

δx1
) = x2 = P2

Pr(
δf

δx2
) = x1 = P1

Pr(
∆f

∆(x1, x2)
) = Pr(x1x2+x1x2) = (1−P1)(1−P2)+P1P2 = 1−(P1+P2)+2P1P2

εand2 = εg + (1− 2εg) ∗ [ε1P2 + ε2P1 + ε1ε2(1− 2(P1 + P2) + 2P1P2)]

5.3 2-Input OR gate

f,εg
p1, ε1
p2, ε2

εz
where, f = x1 + x2

Pr(
δf

δx1
) = x2 = 1− P2

Pr(
δf

δx2
) = x1 = 1− P1

Pr(
∆f

∆(x1, x2)
) = Pr(x1x2+x1x2) = (1−P1)(1−P2)+P1P2 = 1−(P1+P2)+2P1P2

εor2 = εg + (1− 2εg) ∗ [ε1(1− P2) + ε2(1− P1) + ε1ε2(2P1P2 − 1)]
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5.4 2-Input XOR gate

f,εg
p1, ε1
p2, ε2

εz
where, f = x1 ⊕ x2

Pr(
δf

δx1
) = x2 ⊕ x2 = 1

Pr(
δf

δx2
) = x1 ⊕ x1 = 1

Pr(
∆f

∆(x1, x2)
) = 1⊕ 1⊕ δ2f

δ(x1, x2)
= 1⊕ 1⊕ 0 = 0

εxor2 = εg + (1− 2εg) ∗ [ε1 + ε2 − 2ε1ε2]

The error probability at the output of the XOR gate is independent of the input signal

probabilities.

Also, XOR gate exhibits large output error compared to OR and AND gates, since

XOR gates show maximum sensitivity to input errors.

5.5 FULL ADDER with errors in Input Signals

εg

gate1
εg

gate2

εg
1

gate3

εg
1

gate4 εg
1

gate5

p1, ε1, A
p2, ε2, B

p1, ε1, A
p2, ε2, B

p3, ε3, C

p3, ε3, C

Y

Z

X

εcout

εsum

Figure 5.1: Full Adder Circuit with errors in gates and input signals

Assumptions : Both XOR gates (symmetric) have an error probability of εg. AND

and OR gates (asymmetric) have the error probability of ε1g. Probabilities for input

signals being ’1’, are P1,P2,P3 while the input error probabilities are ε1,ε2,ε3. The

probability of errors in the outputs of the FA circuit are εcout and εsum.
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Finding errors in the output signals of FA with errors in input signals and gates

Gate 1 :

εg
p1, ε1, A
p2, ε2, B

px, εx, X

εx = εg + (1-2εg)(ε1+ε2-2ε1ε2)

Gate 2 :

εg
px,εx, X
p3, ε3, C

psum, εsum, Sum

εsum = εg + (1-2εg)(εx+ε3-2ε3 εx)

= εg + (1-2εg)[ εg + (1-2εg)(ε1+ε2-2ε1ε2)+ε3-2ε3(εg + (1-2εg)(ε1+ε2-2ε1ε2))]

εsum = εg + (1-2εg)[εg+ε3-2εgε3+(1-2εg)(ε1+ε2-2ε1ε2)-2ε3(1-2εg)(ε1+ε2-2ε1ε2)]

= εg + (1-2εg)[ε3+(εg+(1-2εg)(ε1+ε2-2ε1ε2))(1-2ε3)]

εsum = εg + (1− 2εg)(ε3 + εg − 2ε3εg) + (1− 2εg)
2(1− 2ε3)(ε1 + ε2 − 2ε1ε2)

In the above equation, if there are no errors in the input signal then the we get back the

old equation for error in sum ie., εsum = 2εg(1− εg).

Gate 4 :

ε1g
p1, ε1, A
p2, ε2, B

pz, εz, Z

εz = ε1g + (1-2ε1g)(ε1p2 + ε2p1 + 2ε1ε2[1 - 2(p1 + p2) + 2 p1p2])

Gate 3 :

ε1g
px, εx, X
p3, ε3, C

py, εy, Y

px = p1 ⊕ p2 = p1 + p2 − 2p1p2

εy = ε1g + (1-2ε1g)(εxp3 + ε3px + 2εxε3[1 - 2(p3 + px) + 2 pxp3])
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Gate 5 :

ε1g
py, εy, Y
pz, εz, Z

εcout, Cout

εcout = ε1g + (1− 2ε1g)[εy(1− pz) + εz(1− py) + εyεz(2pypz − 1)]

py = (p1 ⊕ p2)p3 = (p1 + p2 − 2p1p2)p3

pz = p1p2

εz = ε1g + (1− 2ε1g)[ε1p2 + ε2p1 + ε1ε2(1− 2p1 − 2p2 + 2p1p2)]

εy = ε1g + (1− 2ε1g)[εxp3 + ε3px + εxε3(1− 2px − 2p3 + 2pxp3)]

εx = εg + (1− 2εg)(ε1 + ε2 − 2ε1ε2)

px = p1 ⊕ p2 = p1 + p2 − 2p1p2
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CHAPTER 6

Conclusion and References

CONCLUSION:

Using the FA circuit as the basic unit, and using the boolean difference gate error model,

the error propagation in the larger circuits (like Ripple Carry Adder) can be determined.

Depending on the errors in the output, the reliability of the circuit can be determined.

Also, depending on the relation between the error and energy, the optimal energy dis-

tribution in the circuit can be determined with minimum probability of error in outputs.
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