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ABSTRACT

Bicyclic codes are a generalization of the one dimensional (1D) cyclic codes to two dimen-

sions (2D). Similar to the 1D case, in some cases, 2D cyclic codes can also be constructed

to guarantee a specified minimum distance. Many aspects of these codes are yet unex-

plored. Motivated by the problem of constructing quantum codes, in this thesis we study

some structural properties of certain bicyclic codes. We show that a primitive bicyclic

hyperbolic code of length n2 contains its dual if and only if its design distance is lower

than n − ∆, where ∆ = O(
√
n). We also show that over quadratic extension fields, a

primitive bicyclic hyperbolic code of length n2 contains its Hermitian dual if and only if

its design distance is lower than n−∆h, where ∆h = O(
√
n). Our results are analogous to

some structural results known for BCH and Reed-Solomon codes. They further our un-

derstanding of bicyclic codes. We also give an application of these results by constructing

two classes of quantum bicyclic codes.
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CHAPTER 1

Introduction

Cyclic codes are an important class of error correcting codes. Many popular codes such

as BCH codes and Reed-Solomon codes are cyclic codes. Some cyclic codes can be

constructed with a large minimum distance. Many subclasses of cyclic codes also have

efficient decoders. It is known that a classical code can be used to construct quantum

code, Steane (1996); Calderbank and Shor (1996); Calderbank et al. (1998); Ashikhmin

and Knill (2001), if the code contains its (Euclidean or Hermitian) dual. Using these

constructions many (cyclic) quantum codes have been proposed: Grassl et al. (1997,

2004); Ketkar et al. (2006). Grassl et al. (1997) gave a simple test for identifying cyclic

codes that contain their duals. Important structural results have been shown for some

classes of cyclic codes such as BCH codes. For instance, Steane (1999) gave a condition

based on the designed distance to check whether a primitive binary BCH contains its

Euclidean dual. Subsequently, Aly et al. (2007) extended this to result in the higher

alphabet as well as non-primitive codes. They proved that one dimensional primitive BCH

code of length n contain their dual when their design distance is less than δ = O(
√
n).

However, most of the previous work has been limited to one dimension even though

classically, cyclic codes have been generalized to higher dimensions.

Two dimensional (2D) cyclic codes, also called bicyclic codes, are a generalization of

one-dimensional cyclic codes to two dimensions. In the case of one-dimensional cyclic

codes, codewords can be viewed as vectors. The codewords of bicyclic codes can be

viewed as matrices. A general theory of 2D cyclic codes was introduced by Imai (1977).

Since then, there has been extensive work on bicyclic codes, see Blahut (2008) for a good

overview of related work and references. However, there does not appear to be much

work on quantum bicyclic codes.

There are many important differences between cyclic and bicyclic codes which makes

the analysis of these codes much more challenging than cyclic codes. For instance, bicyclic

codes do not have a unique generator polynomial, unlike the cyclic codes. Furthermore,



the division of polynomials by bivariate polynomials does not lead to unique remainders.

All these reasons motivate our study of quantum bicyclic codes.

Our main contributions are as follows:

i) We give necessary and sufficient condition for a bicyclic hyperbolic code to contain

its Euclidean dual.

ii) For a bicyclic hyperbolic code, defined over a quadratic extension field, we also give

a necessary and sufficient condition for it to contain its Hermitian dual.

iii) We construct new quantum bicyclic codes.

iv) Our analysis of the cyclotomic cosets of cyclic codes could be of independent interest

and use in the study of cyclic codes over higher dimensions.

This thesis is organized as follows. After a brief review of the necessary background

in Chapter 2, we prove structural results on bicyclic codes in Chapter 3. We also study

the application of these results to quantum codes in Chapter 3. We will finally conclude

this thesis with some directions for future research in Chapter 4.
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CHAPTER 2

Bicyclic Codes

In this chapter, we will first briefly review the topic of bicyclic code and their characteri-

zation using common zeros of the code in polynomial representation. We will rely on this

characterization of bicyclic codes heavily in this thesis to prove all our results. We will

also review the topic of biyclic hyperbolic code.

2.1 Bicyclic Codes

Let C be a linear code of length n1n2 over a field F, whose codewords are written as

two dimensional array of length n1 × n2. If C is closed under both circular right shift of

columns and circular down shift of rows then C is called a bicyclic code of length n1 × n2

over F. we will denote codewords with c and ith row, jth column element with ci,j.

c =

















c0,0 c0,1 c0,2 . . . c0,n2−1

c1,0 c1,1 c1,2 . . . c1,n2−1

...
...

...
. . .

...

cn1−1,0 cn1−1,1 cn1−1,2 . . . cn1−1,n2−1

















we will denote the codeword obtained by circular right shift of columns with c(0,1) and

codeword obtained by circular down shift of rows with c(1,0).

c(0,1) =

















c0,n2−1 c0,0 c0,1 . . . c0,n2−2

c1,n2−1 c1,0 c1,1 . . . c1,n2−2

...
...

...
. . .

...

cn1−1,n2−1 cn1−1,0 cn1−1,1 . . . cn1−1,n2−2



















c(1,0) =

















cn1−1,0 cn1−1,1 cn1−1,2 . . . cn1−1,n2−1

c0,0 c0,1 c0,2 . . . c0,n2−1

...
...

...
. . .

...

cn1−2,0 cn1−2,1 cn1−2,2 . . . cn1−2,n2−1

















2.2 Polynomial Representation

Codewords of a bicyclic codes can be also represented as polynomials of two variables,

say u, v over a field F where ci,j will be the coefficient of the polynomial term uivj.

c(u, v) =

n1−1
∑

i=0

n2−1
∑

j=0

ci,j u
ivj

Then the polynomial representation of codeword obtained by taking right circular shift

of columns in the matrix representation is obtained by multiplying c(u, v) with u and

taking modulo un1 − 1.

c(1,0)(u, v) = uc(u, v) mod (un1 − 1)

Similarly for the polynomial representation of codeword obtained by taking the down

circular shift of rows in the matrix representation is obtained by multiplying c(u, v) with

v and taking modulo vn2 − 1.

c(0,1)(u, v) = vc(u, v) mod (vn2 − 1)

Let F[u, v] denote the ring of polynomials over field F. Since bicyclic codes are also linear

the following condition holds true for bicyclic codes.

c(u, v) ∈ C =⇒
[

(a(u, v)c(u, v)) mod (un1 − 1, vn2 − 1)
]

∈ C

for all a(u, v) in polynomial ring F[u, v]. Therefore bicyclic codes can be considered as

ideals of quotient polynomial ring R := F[u, v]/〈un1 − 1, vn2 − 1〉.

4



2.3 Characterization

One dimensional cyclic code of length n over a finite field Fq with q elements, is completely

characterized by a unique monic generator polynomial when n and q are co-prime. In

the case of bicyclic codes, direct division is not possible among polynomials with two

variables. Therefore there need not always exist a unique generator polynomial for a

bicyclic code.

Another way of looking at it is that one dimensional cyclic are characterized by com-

mon zeros of all the codeword polynomials and un − 1. This can be extended to bicyclic

code as well. Common zeros of all the codeword polynomials, un1 − 1 and vn2 − 1 com-

pletely characterizes a bicyclic code of length n1 ×n2 over Fq when q is co-prime to both

n1 and n2. Common zeros will be of the form (αi, βj) where α and β are the nth
1 and nth

2

primitive roots of unity. Therefore set of all such possible zeros is

Ω =
{

(αi, βj)
∣

∣ 0 ≤ i < n1, 0 ≤ j < n2

}

. (2.1)

It is easy to keep track of zeros just by the exponents of α and β. Therefore we will define

the defining set of a code C as the following

Z = {(x, y) | (αx, βy) is a common zero of code C} (2.2)

Observe that since the codewords are over the field Fq and α and β may lie in an extended

field of Fq, if (x, y) is in the defining set of code C then all the points of the form (xql, yql)

for l ∈ Z, l ≥ 0, should also be in the defining set code C. Set of all such points are called

q-ary cyclotomic coset of (x, y), represented with Coset(x, y).

Coset(x, y) =
{

(xql mod n1, yq
l mod n2)

∣

∣ l ∈ Z, l ≥ 0
}

(2.3)

Any polynomial which vanishes at the common zeros of a bicyclic code is a codeword

of that bicyclic code. This is an implication of discrete nullstellensatz theorem from

algebraic geometry. For the sake of completeness we will prove the following theorem.

Theorem 1. Suppose n1, n2 are positive integers and q is a power prime such that

5



gcd(n1, q) = gcd(n2, q) = 1. Let I be an ideal of quotient polynomial ring R :=

F[u, v]/〈un1 − 1, vn2 − 1〉. Let Z be the defining set of ideal I. Then a polynomial p(u, v)

belong to I if and only if p(αx, βy) = 0 ∀ (x, y) ∈ Z where α and β are the nth
1 and nth

2

roots of unity.

Proof: The necessary condition that p(αx, βy) = 0 ∀ (x, y) ∈ Z if p(u, v) ∈ I is obvious

from the definition of defining set Z. The proof of sufficiency conditions is as follows.

For every Coset(x, y) 6⊂ Z, there exists a s(u, v) ∈ I such that s(αx′

, βy′) 6= 0 ∀ (x′, y′) ∈
Coset(x, y). Furthermore there exists an element a(u, v) ∈ R such that the following

condition holds true.

a(αx′

, βy′)s(αx′

, βy′) =











1 if (x′, y′) ∈ Coset(x, y)

0 if (x′, y′) 6∈ Coset(x, y)

For every Coset(x, y) 6⊂ Z, it is possible to find γx,y(u, v) = a(u, v)s(u, v) which satisfies

the above condition. But the polynomials {γx,y(u, v)} constructed in this manner forms

a vector space basis for an ideal I ′ which has all polynomials that vanish at (αx, βy) when

(x, y) ∈ Z. This implies I ′ = I. �

2.4 Bicyclic Hyperbolic codes

One dimensional BCH codes are well-known codes in classical coding theory as they

provide a convenient way to construct codes with the minimum distance of the code a

design parameter. The construction of one-dimensional BCH codes can be generalized to

two dimensions as well.

A bicyclic code C of length n1 × n2 over Fq, where q is co-prime to both n1 and n2,

is called a bicyclic hyperbolic code with designed distance δ if the defining set of C is of

the following form

Z =
⋃

(x,y)∈Zdes

Coset(x, y) (2.4)

Zdes = {(a+ x mod n1, b+ y mod n2) | xy < δ} (2.5)

6



where 1 ≤ x ≤ n1, 1 ≤ y ≤ n2. The codes constructed using the above definition are

guaranteed have a minimum distance greater than or equal to δ. Note that we have

freedom in choosing a and b in the above definition of bicyclic hyperbolic codes. Let us

call Zdes the designed set of bicyclic hyperbolic code C. Note that Zdes is only a subset

of Z but it enough to completely characterize a bicyclic hyperbolic code. Analogous to

one dimensional case we will define the following.

• Primitive: when n1 = n2 = n = qm − 1.

• Narrow-sense: when a = b = 0

In this thesis we will look at narrow-sense bicyclic hyperbolic codes with n1 = n2 = n.

We denote such a bicyclic code of design distance d by H(n× n, q; d).

Zdes

0 1 2 3 4 5 6

0

1

2

3

4

5

6

Figure 2.1: Hyperbolic shape: Zdes of a primitive narrow-sense bicyclic hyperbolic code
of length 7× 7 code with δ = 6.

The characterization of bicyclic hyperbolic codes in terms of common zeros or de-

signed/defining set gives us a useful handle to further analyze several other properties of

bicyclic hyperbolic codes which is a central topic of this thesis.

7



CHAPTER 3

Quantum Bicyclic Codes

In the previous chapter, we reviewed the topic of bicyclic codes and their characterization

in terms of common zeros or defining set. Using this characterization, We reviewed the

topic of bicyclic hyperbolic codes. To further our understanding of bicyclic hyperbolic

codes, we will prove some results on the structure of cyclotomic cosets which will be

used to prove the existence of Euclidean dual containing and Hermitian dual containing

bicyclic hyperbolic codes.

3.1 Structural Results on Cyclotomic Cosets

In this section, we will prove some results on the structure of cyclotomic cosets. These

proofs for these results involve some simple numerical arguments and are very easy follow.

Lemma 2. Suppose n = qm−1, m > 3 and the sets Zdes and Zdes,k are defined as follows

where 0 ≤ k ≤ (m− 1)/2.

Zdes =
{

(x, y)
∣

∣ xy < qm − 1− q⌊m/2⌋, 1 ≤ x, y ≤ n
}

(3.1)

Zdes,k =
{

(x, y)
∣

∣ qk − 1 < x ≤ qk+1 − 1, (x, y) ∈ Z
}

(3.2)

Then the following equations hold true for l ∈ {0, 1, 2 . . . m− 1}.

1.

min
(x,y)∈Zdes,k

l 6=m−k−1

(−xql mod n)(−yql mod n) = qm − 1− q⌈m/2⌉−1 (3.3)

2.

min
(x,y)∈Zdes,k

l=m−k−1

(−xql mod n)(−yql mod n)











= (q⌊m/2⌋ − 1)2 when k = m/2− 1

≥ qm − 1 otherwise

(3.4)



Proof: Let (x, y) ∈ Zdes,k. Since xy < qm − 1, (x, y) should have the following q-ary

form.

x =
k
∑

i=0

xiq
i, xk 6= 0 y =

m−k−1
∑

j=0

yjq
j (3.5)

where 0 ≤ xi, yj ≤ q − 1. Note that ym−k−1 need not be non-zero here. Consequesntly

(n− x, n− y) will have the following q-ary form.

(n− x) =
k
∑

i=0

(q − 1− xi)q
i +

m−1
∑

i=k+1

(q − 1)qi, xk 6= 0 (3.6a)

(n− y) =
m−k−1
∑

j=0

(q − 1− yj)q
i +

m−1
∑

j=m−k

(q − 1)qj (3.6b)

q-ary form of (−xql mod n) and (−yql mod n) are obtained by taking the lth right circular

shift of q-ary coefficients of (n− x) and (n− y) respectively.

1. When 0 ≤ l < m− k− 1 :

(−xql mod n) =

(

l−1
∑

i=0

(q − 1)qi

)

+ ql

(

k
∑

i=0

(q − 1− xi)q
i

)

+

(

m−1
∑

i=k+l+1

(q − 1)qi

)

(3.7)

When l < m − k − 1, (m − 1)th q-ary coefficient of
(

−xql mod n
)

is equal to

(q − 1). Let us assume that the minimum value of
(

−xql mod n
) (

−yql mod n
)

is less than qm − 1. This is possible only if
(

−yql mod n
)

= 1, or equivalently if

y = qm − 1 − qm−l. Given that xy < qm − 1 − q⌊m/2⌋, y = qm − 1 − qm−l implies

l ≤ ⌈m/2⌉− 1 and x = 1. Under these conditions minimum value of
(

−xql mod n
)

occurs when l = ⌈m/2⌉ − 1 which is equal to qm − 1− q⌈m/2⌉−1.

2. When l = m− k− 1 :

9



(−xql mod n) =

(

m−k−2
∑

i=0

(q − 1)qi

)

+ qm−k−1

(

k
∑

i=0

(q − 1− xi)q
i

)

(3.8a)

(−yql mod n) =

(

m−2k−2
∑

j=0

(q − 1− yj+k+1)q
j

)

+

(

m−k−2
∑

j=m−2k−1

(q − 1)qj

)

+ qm−k−1

(

k
∑

j=0

(q − 1− yj)q
j

)

(3.8b)

Let us assume that the minimum value of
(

−xql mod n
) (

−yql mod n
)

is less than

qm − 1. If k = 0 then
(

−xql mod n
)

is greater than or equal to qm−1 − 1 and,

since y < qm − 1 − q⌊m/2⌋, (−yql mod n) is greater than or equal to q⌊m/2⌋+1.

Therefore the product
(

−xql mod n
) (

−yql mod n
)

is greater than qm − 1. When

k 6= 0, both
(

−xql mod n
)

and
(

−yql mod n
)

are greater than or equal to qm−k−2

which implies the product
(

−xql mod n
) (

−yql mod n
)

is greater than or equal

to q2m−2k−4. Combining this with
(

−xql mod n
) (

−yql mod n
)

< qm − 1, we get

k ≥ (m−3)/2. we also have the inequality k ≤ (m−1)/2. This implies the possible

values of k are (m− 3)/2, (m− 1)/2 when m is odd and m/2− 1 when m is even.

(a) When k = (m− 3)/2,

(−xql mod n) =





(m−1)/2
∑

i=0

(q − 1)qi



+ q(m+1)/2





(m−3)/2
∑

i=0

(q − 1− xi)q
i





(3.9a)

(−yql mod n) =

(

1
∑

j=0

(q − 1− yj+(m−1)/2)q
j

)

+





(m−1)/2
∑

j=2

(q − 1)qj





+ q(m+1)/2





(m−3)/2
∑

i=0

(q − 1− yj)q
j



 (3.9b)

If at all (−xql mod n)(−y mod n) is less than qm−1, then all the xi,yj must be

equal to q−1 for 0 ≤ i, j ≤ (m−3)/2. This implies both y(m−1)/2 and y(m+1)/2

cannot be equal to q−1 as xy is less than qm−1− q(m−1)/2. Then the product

(−xql mod n)(−yql mod n) ≥
(

q(m−1)/2 − 1
) (

q2(q(m−3)/2 − 1) + 1
)

cannot be

less than qm − 1.

10



(b) When k = (m− 1)/2,

(−xql mod n) =





(m−3)/2
∑

i=0

(q − 1)qi



+ q(m−1)/2





(m−1)/2
∑

i=0

(q − 1− xi)q
i





(3.10a)

(−yql mod n) =





(m−3)/2
∑

j=0

(q − 1)qj



+ q(m−1)/2





(m−1)/2
∑

j=0

(q − 1− yj)q
j





(3.10b)

Since xy is less than (qm − 1 − q⌊m/2⌋), at least on of the
{

x(m−3)/2, y(m−3)/2, x(m−1)/2, y(m−1)/2

}

must be equal to zero. This implies

at least one of the
{

(−xql mod n), (−yql mod n)
}

must be greater than or

equal to q(m−1)/2−1+ qm−2 and the product
{

(−xql mod n)(−yql mod n)
}

≥
(q(m−1)/2 − 1)(q(m−1)/2 − 1 + qm−2) cannot be less than qm − 1.

(c) When k = m/2− 1,

(−xql mod n) =





m/2−1
∑

i=0

(q − 1)qi



+ qm/2





m/2−1
∑

i=0

(q − 1− xi)q
i



 (3.11a)

(−yql mod n) =
(

q − 1− ym/2

)

+





m/2−1
∑

j=1

(q − 1)qj





+ qm/2





m/2−1
∑

j=0

(q − 1− yj)q
j



 (3.11b)

Since xy is less than (qm − 1 − q⌊m/2⌋), at least on of the
{

xm/2−2, xm/2−1, ym/2, ym/2−1

}

must be equal to zero. Therefore, from the

above equations, minimum value of
(

−xql mod n
) (

−yql mod n
)

occurs when

(ym/2) = 0, and the minimum value is equal to (qm/2 − 1)2

11



3. When m− k− 1 < l ≤ m− 1 :

(−xql mod n) =





l−(m−k)
∑

i=0

(q − 1− xi+m−l)q
i



+





l−1
∑

i=l−(m−k−1)

(q − 1)qi





+ ql

(

m−l−1
∑

i=0

(q − 1− xi)q
i

)

(3.12a)

(−yql mod n) =

(

l−k−1
∑

j=0

(q − 1− yj+m−l)q
j

)

+

(

l−1
∑

j=l−k

(q − 1)qj

)

+ ql

(

m−l−1
∑

j=0

(q − 1− yj)q
j

)

(3.12b)

(−xql mod n) ≥ ql−m+k+1(qm−k−1 − 1) and (−yql mod n) ≥ ql−k(qk − 1). Assume

that the minimum value of
(

−xql mod n
) (

−yql mod n
)

is less than qm − 1. Then

2l − 2 must be less than m. Additionally the inequalities m − k − 1 < l and

k ≤ (m− 1)/2 imply l = (m+1)/2 and k = (m− 1)/2. Subsequently the following

inequality holds true.

(−xql mod n)(−yql mod n) ≥ q2
(

q(m−1)/2 − 1
)2

> qm − 1 (3.13)

�

The above lemma will be useful in proving results on existence of Euclidean dual

containing bicyclic hyperbolic code which are given in the next section.

Corollary 3. Suppose n = q2m − 1, m > 3 and Zdes and Zdes,k are defined as follows,

where k ≤ (2m− 1)/2

Zdes =
{

(x, y)
∣

∣ xy < q2m − 1− qm, 1 ≤ x, y ≤ n
}

(3.14)

Zdes,k =
{

(x, y)
∣

∣ qk − 1 < x ≤ qk+1 − 1, (x, y) ∈ Z
}

(3.15)

Then the following equations hold true for l ∈ {1, 3, 5 . . . 2m− 1}.

1.

min
(x,y∈Zdes,k

l 6=2m−k−1

(−xql mod n)(−yql mod n) = q2m − 1− qm−1 (3.16)
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2.

min
(x,y)∈Zdes,k

l=2m−k−1

(−xql mod n)(−yql mod n)











= (qm − 1)2 when m is odd
and k=m−1

≥ q2m − 1 otherwise

(3.17)

Proof: The proof follows from lemma 2. By replacing m with 2m in lemma 2, we will

get Eq. (3.16) directly. For Eq. (3.17), we need to use the additional constraint that we

are limiting l to {1, 3, 5....2m − 1} and not the whole set of {1, 2, 3....2m}. Replacing m

with 2m in Lemma 2 and restating Eq. (3.4), we will get the following result.

min
(x,y)∈Zdes,k

l=2m−k−1

(−xql mod n)(−yql mod n)











= (qm − 1)2 when k = m− 1

≥ q2m − 1 otherwise

(3.18)

But in this case when m is even, k = m − 1 implies l = m /∈ {1, 3, 5...2m − 1}.
Therefore we get the following condition

min
(x,y)∈Zdes,k

l=2m−k−1

(−xql mod n)(−yql mod n)











= (qm − 1)2 when m is odd
and k=m−1

≥ q2m − 1 otherwise

(3.19)

�

The above corollary will be useful in proving results on existence of Hermitian dual

containing bicyclic hyperbolic which are given in a later section.

3.2 Euclidean Dual Containing Codes

The Euclidean dual code C⊥ of a linear code C is defined as {c′ | c′.c = 0 ∀ c ∈ C}. In

the case of cyclic linear code, this condition can be simplified and can be given in terms

of the zeros of the cyclic code. Suppose Z is the defining set of cyclic code C of length

n × n over the field Fq and gcd(n, q) = 1 then the defining set of C⊥ is Ztot − Z−1

13



where Ztot = {(x, y) |0 ≤ x, y ≤ n− 1} and Z−1 = {(−x,−y) mod n | (x, y) ∈ Z}. In

this context, the following lemma gives a condition to verify if a cyclic code contains its

Euclidean dual code in terms of defining set Z.

Lemma 4. Let C be the bicyclic code of length n×n over Fq such that gcd(n, q) = 1 and

Z be the defining set of C. Then the code contains its Euclidean dual if and only if

Z ∩ Z−1 = φ (3.20)

where Z−1 = {(−x,−y) mod n | (x, y) ∈ Z}.

Proof: Let C1 and C2 be two bicyclic cyclic codes with defining sets Z1 and Z2. If C1
is contained in C2 then all codewords that are in C1 are also in C2. This implies defining

set (or common zero set) of C2 is contained in that of C1. Since Ztot −Z−1 is the defining

set of dual code C⊥, C⊥ is contained in C if and only if Z ⊂ Ztot −Z−1.

Z ⊂ Ztot −Z−1 =⇒ Z ∩Z−1 = φ

�

The above condition for Euclidean dual containing can be further simplified in the

case of bicyclic hyperbolic codes as the defining set Z is completely characterized by the

designed set Zdes.

Lemma 5. Let C be a bicyclic hyperbolic code of length n×n over Fq such that gcd(n, q) =

1. Let Zdes and Z be the designed set and defining set of C respectively. The code C
contains its Euclidean dual if and only if

Zdes ∩ Z−1 = φ (3.21)

where Z−1 = {(−x,−y) mod n | (x, y) ∈ Z}.

Proof: Based on lemma 4, Z ∩ Z−1 = φ must be true for a bicyclic cyclic code to

contain its Euclidean dual. If at all there is a common element, say (x, y), between

Z and Z−1, then q-ary cyclotomic coset of (x, y) must be there in both Z and Z−1.
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Therefore Z ∩ Z−1 = φ is true if and only if there is no common coset between Z and

Z−1. Since every coset in Z contains at least one element from Zdes, Z ∩Z−1 = φ is true

if and only if Zdes ∩ Z−1 = φ. �

For a bicyclic hyperbolic code, designed set and defining set depend on the designed

distance of the code. As the designed distance increases, the sizes of Zdes and Z in-

creases. Therefore, after a certain designed distance, it is not possible for the bicyclic

hyperbolic code to contain its Euclidean dual code as the intersection between Zdes and

Z−1 will no longer be empty. The following theorem gives an easy condition based on the

designed distance to verify if a primitive narrow-sense bicyclic hyperbolic code contains

its Euclidean dual.

Theorem 6. Primitive narrow-sense bicyclic hyperbolic code of length n×n over GF (q),

where n = qm−1, contains its Euclidean dual if and only if the design distance d satisfies

2 ≤ d ≤ δ, where

δ =











(qm − 1)− 2(qm/2 − 1) m is even

(qm − 1)− (q
m−1

2 ) m is odd

(3.22)

Proof: For proving H(n × n, q; d)⊥ ⊆ H(n × n, q; d) when d ≤ δ, it is enough to show

that H(n × n, q; δ)⊥ ⊆ H(n × n, q; δ) since H(n × n, q; d) contains H(n × n, q; δ). From

lemma 5, our goal is to prove that Zdes ∩ Z−1 = φ for H(n × n, q; δ). Following is the

designed set for a primitive narrow-sense bicyclic hyperbolic code of designed distance δ.

Zdes = {(x, y) | xy < δ, 1 ≤ x, y ≤ n− 1} (3.23)

From equation (3.21) and equation (3.23), since Z is a union of q-ary cyclotomic cosets

of elements in Zdes, we can restate our goal as to prove the following inequality.

(−xql mod n)(−yql mod n) ≥ δ ∀ (x, y) ∈ Zdes, l ∈ {0, 1, 2...m− 1} (3.24)

Let (x, y) ∈ Zdes. If q-ary coefficients xi of x are equal to zero for i > k and xk 6= 0 then

q-ary coefficients yj of y must be equal to zero for j > m− 1− k. This follows from the

condition that all the points in Zdes satisfy xy < qm − 1. Therefore all the points in Zdes
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must be of the following form, for some k ∈ {0, 1, 2, ...,m− 1}.

x =
k
∑

i=0

xiq
i, xk 6= 0 and y =

m−1−k
∑

j=0

yjq
j (3.25)

Based on this, let us partition the points in Zdes into disjoints sets Zdes,0 ∪ Zdes,1... ∪
Zdes,m−1 as follows.

Zdes,k =
{

(x, y)
∣

∣ qk − 1 < x ≤ qk+1 − 1, (x, y) ∈ Z
}

(3.26)

For every point (x, y) in Zdes, (y, x) is also in Zdes. Therefore, in trying to prove inequality

(3.24) it is enough to restrict to points in Zdes where x ≤ y. This implies, from equation

(3.25) and (3.26), instead of considering all points in Zdes, it is enough to consider just

the following points

(x, y) ∈ Zdes,k, where k ≤ (m− 1)/2 (3.27)

• When m is even: Let us try to find a bound on the value of

(−xql mod n)(−yql mod n) for (x, y) ∈ Zdes,k, k ≤ (m− 1)/2 and l ∈ {0, 1, ...,m−
1}. Since δ < qm − 1− q⌊m/2⌋, based on lemma 2, when can say that

min
(x,y)∈Zdes

0≤l≤m−1

(−xql mod n)(−yql mod n) = min
{

qm − 1− q⌈m/2⌉−1, (qm/2 − 1)2
}

= (qm/2 − 1)2 = δ (when m is even) (3.28)

• When m is odd: δ = qm − 1− q⌊m/2⌋. Based on lemma 2, we can say that

min
(x,y)∈Zdes

0≤l≤m−1

(−xql mod n)(−yql mod n) = qm − 1− q⌊m/2⌋

= δ (when m is odd) (3.29)

Seeking a contradiction let us assume that H(n×n, q; d)⊥ ⊂ H(n×n, q; d) for some d > δ.

• When m is even, consider the point (x, y) = (
√
δ,
√
δ). Since δ < d, (

√
δ,
√
δ) ∈ Zdes.
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Now let us consider
(

(−xql mod n), (−yql mod n)
)

∈ Z−1 when l = m/2.

(−xql mod n)(−yql mod n) = (n−
√
δqm/2)(n−

√
δqm/2)

=
( n

qm/2 + 1

)( n

qm/2 + 1

)

= (qm/2 − 1)2 = δ < d (3.30)

• When m is odd, consider the point (x, y) = (δ, 1). Since δ < d, (δ, 1). Now let us

consider
(

(−xql mod n), (−yql mod n)
)

∈ Z−1 when l = m+1
2

.

−xql mod n = −(qm − 1− q
m−1

2 )q
m+1

2 mod (qm − 1)

= 1 (3.31a)

−yql mod n = −q
m+1

2 mod (qm − 1)

= (qm − 1− q
m+1

2 ) < δ < d (3.31b)

(−xql mod n)(−yql mod n) < d implies
(

(−xql mod n), (−yql mod n)
)

∈ Zdes. There-

fore Zdes ∩ Z−1 6= φ. This implies H(n × n, q; d) cannot contain its Euclidean dual for

d > δ. �

The sufficiency result in the above theorem can be further generalized to the case of

non-primitive bicyclic hyperbolic codes.

Theorem 7. Suppose m = ordn(q). Narrow-sense bicyclic hyperbolic code of length n×n

over Fq2 contains its Euclidean dual if the design distance d satisfies 2 ≤ d ≤ ∆, where

∆ =















(

n2

(qm−1)2

)[

(qm − 1)− 2(qm/2 − 1)
]

m is even

(

n2

(qm−1)2

)[

(qm − 1)− (q
m−1

2 )
]

m is odd

(3.32)

Proof: Similar to above theorem, it is enough to show that H(n × n, q; ∆)⊥ ⊆ H(n ×
n, q; ∆). Let Z be the defining set for narrow-sense bicyclic hyperbolic code. From lemma

5, our goal is to prove that

(−xql mod n)(−yql mod n) ≥ ∆ ∀ (x, y) ∈ Zdes, l ∈ {0, 1, ...,m− 1} (3.33)
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Let (x, y) ∈ Zdes. Since 0 ≤ x < n and 0 ≤ y < n, they can be written in the following

form

x =
n

qm − 1

(qm − 1

n
(x)
)

=
n

qm − 1
(x) (3.34a)

y =
n

qm − 1

(qm − 1

n
(y)
)

=
n

qm − 1
(y) (3.34b)

where 0 ≤ x < qm − 1, 0 ≤ y < qm − 1. Correspondingly

(−xql mod n) =

(

n

qm − 1

)

(−xql mod (qm − 1)) (3.35a)

(−yql mod n) =

(

n

qm − 1

)

(−yql mod (qm − 1)) (3.35b)

From above equations, we can say that xy < ∆ implies xy < δ, where δ is from theorem 6

and (−xql mod (qm−1))(yql mod (qm−1)) ≥ δ implies (−xql mod n)(−yql mod n) ≥ ∆.

Therefore from theorem 6, we can say that equation (3.33) is true. �

Now that we have conditions for Euclidean dual containing bicyclic codes, the CSS

constructions allow us to construct quantum stabilizer codes.

Proposition 8 (Calderbank-Shor-Steane (CSS) construction, Calderbank et al. (1998)).

If there exists an [n, k, d] dual containing classical linear code C over Fq, then there exists

an [[n, 2k − n, d]] stabilizer code over Fq.

Corollary 9 (Quantum bicylic codes I). Let n be a postiove integer and q be a power of

prime such that gcd(n, q) = 1 and d < δ as in Theorem 7. Then there exists a quantum

bicyclic code of length n2 and distance ≥ d.

3.3 Hermitian Dual Containing Code

Suppose C is a linear code of size n × n over Fq2 . The Hermitian dual code C⊥h of

the linear code C is defined as
{

c′ ∈ F
n×n
q2

∣

∣

∣
c′q.c = 0 ∀ c ∈ C

}

. For a cyclic code this

condition can be given in terms of defining set of the cyclic code. Suppose Z is the

defining set of bicyclic code C of length n×n over the field Fq and gcd(n, q) = 1 then the

defining set of C⊥h is Ztot − Z−q, where Z−q = {(−xq,−yq) mod n | (x, y) ∈ Z}. In this
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context, the following theorem gives a easy condition to verify if a bicyclic code contains

its Hermitian dual code.

Lemma 10. Suppose C be the bicyclic code of length n × n over Fq and gcd(n, q) = 1.

Let Z be the defining set of C. Then the code C contains its Hermitian dual if and only

if

Zdes ∩ Z−q = φ (3.36)

where Z−q = {(−qx,−qy) mod n | (x, y) ∈ Z}.

Proof: Let C⊥h be the Hermitian dual code of C. If Z is the defining set of C then the

defining set of C⊥h is Ztotal − Z−q. C⊥h is contained in C if and only if the defining set

of C is contained in defining set of C⊥h .

Z ⊂ Ztot − Z−q =⇒ Z ∩ Z−1 = φ (3.37)

Z ∩ Z−q = φ is true if and only if there is no common coset between Z and Z−q. Since

every coset in Z contains at least one element from Zdes, Z ∩Z−q = φ is true if and only

if Zdes ∩ Z−q = φ. �

Similar to the Euclidean case, following theorem gives a easy condition based on the

designed distance to verify if a primitive narrow-sense bicyclic hyperbolic code contains

its Hermitian dual.

Theorem 11. Primitive narrow-sense bicyclic hyperbolic code of length n× n over Fq2,

where n = q2m−1, contains its Hermitian dual if the design distance d satisfies 2 ≤ d ≤ δh,

where

δh =











(qm − 1)2 m is odd

q2m − 1− qm−1 m is even

Proof: The outline of the proof is very much similar to that of Euclidean dual case.

Few differences include

• Range of x and y will be from 0 to q2m − 1 and therefore there will be 2m q-ary
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coefficients for x and y compared to m q-ary coefficients in Euclidean case.

• Since the code is over field Fq2 , we need to consider q2-ary cyclotomic coset instead

of q-ary cyclotomic coset. q2-ary cyclotomic coset of (x, y) is

{

(xql, yql)
∣

∣ l ∈ {2, 4...2m}
}

For proving H(n × n, q; d)⊥h ⊆ H(n × n, q; d) when d ≤ δh, it enough to show that

H(n×n, q; δh)
⊥h ⊆ H(n×n, q; δh) since H(n×n, q; d) contains H(n×n, q; δh). Therefore

our goal is to show that

(−xql mod n)(−yql mod n) ≥ δh ∀ (x, y) ∈ Zdes, l ∈ {1, 3, 5...2m− 1} (3.38)

The domain of l is {1, 3, 5...2m − 1} instead of {0, 2, 4...2m − 2} because there is an

additional q multiplied in Hermitian dual case. Similar to the Euclidean case, we will

divide the points in Zdes into disjoint sets Zdes,0 ∪ Zdes,1 ∪ ... ∪ Zdes,2m−1. Since for every

(x, y) in Zdes, (y, x) is also in Zdes. This implies it is enough to just consider the following

points instead of Zdes.

(x, y) ∈ Zdes,k, where k ≤ (2m− 1)/2 (3.39)

1. When m is even: From lemma 2, When l < 2m − k − 1, minimum value of

(−xql mod n)(−yql mod n) occurs when l = m− 1 and is equal to q2m − 1− qm−1.

When 2m − k − 1 ≤ l, (−xql mod n)(−yql mod n) is less than q2m − 1 only

for l = m. But l is restricted only odd numbers. Therefore minimum value

of (−xql mod n)(−yql mod n) is equal to q2m − 1 − qm−1 for (x, y) ∈ Zdes and

l ∈ {1, 3, 5...2m− 1}.

min
(x,y)∈Zdes

l∈{1,3..2m−1}

(−xql mod n)(−yql mod n) = q2m − 1− qm−1

= δh (3.40)
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2. When m is odd: From lemma 2, as 2m is even, we can say that

min
(x,y)∈Zdes

l∈{1,3..2m−1}

(−xql mod n)(−yql mod n) = min
{

q2m − 1− qm−1, (qm − 1)2
}

= (qm − 1)2 = δh (3.41)

Since we already proved that H(n× n, q; δh)
⊥h ⊂ H(n× n, q; δh), seeking a contradiction

lets assume that H(n× n, q; d)⊥h ⊂ H(n× n, q; d) for some d > δh.

1. When m is odd, consider the point (x, y) = (
√
δh,

√
δh). Since δh < d, (

√
δh,

√
δh) ∈

Zdes. When l = m− 1

(n− qx(l))(n− qy(l)) = (n−
√

δhq
m)(n−

√

δhq
m)

= (qm − 1)2

= δh < d

2. When m is odd, consider the point (x, y) = (δh, 1). when l = m

−qx(l) mod n = −(q2m − 1− qm−1)qm+1 mod (q2m − 1)

= 1

−y(l) mod n = −qm+1 mod (qm − 1)

= (q2m − 1− qm+1) < δh < d

Based on equations and , we can say that Zdes∩Z−1 6= φ when d > δh. This implies

H(n× n, q; d) cannot contain its Hermitian dual when d > δh.

�

The sufficiency result in the above theorem can be further generalized to the case of

non-primitive bicyclic hyperbolic codes.

Theorem 12. Suppose m = ordn(q). Narrow-sense bicyclic hyperbolic code of length

n× n over Fq2 contains its Hermitian dual if the design distance d satisfies 2 ≤ d ≤ ∆h,
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where

∆h =















(

n2

(qm−1)2

)

(qm − 1)2 m is even

(

n2

(qm−1)2

)

(q2m − 1− qm−1) m is odd

(3.43)

The proof for this theorem involves exactly the same arguments as the proof of theorem

7 in the euclidean dual containing case.

Equipped with conditions on Hermitian dual containing bicyclic codes, Hermitian

constructions allows us to construct quantum stabilizer codes.

Proposition 13 (Hermitian construction Calderbank et al. (1998); Ashikhmin and Knill

(2001)). Let C be an [n, k, d] over Fq2 such that C⊥h ⊆ C, then there exists an [[n, 2k −
n, d]] stabilizer code over Fq.

Corollary 14 (Quantum bicyclic codes II). Let q be a prime power, n = q2m − 1 for

m > 3 and d < δ as in Theorem 6. Then there exist bicyclic quantum codes of length n2

and distance ≥ d.
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CHAPTER 4

Conclusion

In this thesis, we gave brief review of bicyclic codes, bicyclic hyperbolic codes and their

corresponding characterization using common zeros or defining sets. We proved some

results on the structure of cyclotomic cosets which the constitute the defining set. Using

these results we were able to give a easy condition for when a primitive bicyclic hyperbolic

code contains its Euclidean dual code. We also gave an easy condition for when a primitive

bicyclic hyperbolic code contains its Hermitian dual code. Using these results we were

able to construct quantum bicyclic codes.

There are other interesting structural properties of bicyclic codes worth further in-

vestigation. The number theoretic techniques that are used in this thesis to analyze

the structure of cosets in two dimensions can be generalized to higher dimensions and

therefore can be used to study the structure of cyclotomic cosets in higher dimensions.

One natural direction would be to compute the dimension and distance of these codes.

Another possibility would be to study non-narrow sense variants of bicyclic hyperbolic

codes. Quasi-cyclic codes are a generalization of cyclic codes which has been of lot in-

terest recently in quantum error correction. It would interesting see if the results in this

thesis can be extended to quasi cyclic codes as well. The theory of bicyclic codes is very

rich and we hope this work will motivate further research in quantum bicyclic codes.
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