
Hardware Implementation of Sequential Feature
Extraction and Efficient Search-Store methods in

Automatic Speech Recognition

A Project Report

submitted by

AKHIL REDDY PAKALA

in partial fulfilment of the requirements
for the award of the degree of

BACHELOR OF TECHNOLOGY &

MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY, MADRAS.

May 2019

THESIS CERTIFICATE

This is to certify that the thesis entitled Hardware Implementation of Sequen-

tial Feature Extraction and Efficient Search-Store methods in Automatic Speech

Recognition, submitted by Akhil Reddy Pakala (EE14B041), to the Indian Institute

of Technology, Madras, for the award of the degree of Bachelors of Technology

and Master of Technology, is a bonafide record of the research work carried out

by him under my supervision. The contents of this thesis, in full or in parts, have

not been submitted to any other Institute or University for the award of any degree

or diploma.

Dr. Nitin Chandrachoodan
Research Guide
Associate Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Dr. Nagendra Krishnapura
Research Co-Guide
Associate Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Place: Chennai

Date: 10th May 2019

ACKNOWLEDGEMENTS

Foremost, I am very grateful to Prof.Nitin Chandrachoodan for guiding me through-

out the project. His expertise in the area and discussions with him has motivated

me to learn more. It has been a great learning curve for me under his guidance.

Also, I would like to express my gratitude to Dr. Nagendra Krishnapura for his

motivation and guidance during the project. I would also like to thank Dr. Janaki-

raman who has taught me Digital IC Design, a course which fueled my interest

towards digital VLSI.

I would also like to thank Prithvi, Arjun, Radhika, Dheepika and all other

labmates for stimulating discussions in various concepts and their inputs to this

project. I would like to thank my parents and my brother for the belief they had

and support they have given throughout my life. I am very thankful to my friends

who have supported me through thick and thin of my life.

i

ABSTRACT

KEYWORDS: SDSoC, Vivado hls, Frame, Features, Token.

Automatic speech recognition has numerous applications in areas where hu-

man interaction with devices is needed. Major problems in implementation in-

clude real time decoding of text, reduce power consumption, implementing with

minimum resources. In this thesis we will first discuss about the implementation

of extracting features from speech signal and architectures proposed for each mod-

ule. Implementation of feature extraction sequentially is done using SDSoC tool.

Optimisation techniques which reduce the resource usage are discussed along with

the results.

Viterbi decoding takes most of time the in speech recognition. Binary

search tree and binary heap techniques are used to reduce the timings taken for

search and storing best techniques. These functions are implemented in viavdo hls.

In this thesis, we discuss the successful implementation of binary heap and binary

tree techniques. Results showing the reduction of significant amount of on chip

memory usage with less percentage of increase in word error rate(WER) using

binary heap.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES vi

LIST OF FIGURES vii

ABBREVIATIONS viii

1 INTRODUCTION 1

1.1 Introduction to ASR . 1

1.2 Motivation . 2

1.3 Organization of Thesis . 2

2 FEATURE EXTRACTION 3

2.1 MFCCs . 3

2.2 Mel-Filter Bank Processing . 4

2.2.1 Calculating mel filterbank 4

2.2.2 Architecture Explained . 6

2.3 Logarithm . 8

2.3.1 Logarithm Architecture . 9

2.4 Discrete Cosine Transform (DCT) 10

2.5 Cepstral Mean and Variance Normalization(CMVN) 11

2.6 Splicing . 12

2.7 Linear Discriminant Analysis (LDA) 12

3 VERILOG IMPLEMENTATION OF FEATURE EXTRACTION 14

3.1 Communication between modules 14

iii

3.2 Mel-Filter Bank Processing . 15

3.2.1 Implementation . 15

3.3 Logarithm . 17

3.3.1 Implementation . 17

3.4 DCT . 19

3.4.1 Implementation . 19

3.5 Results . 21

3.5.1 Timing results . 21

3.5.2 Resources . 22

4 SEQUENTIAL IMPLEMENTATION OF FEATURE EXTRACTION IN
SDSoC 23

4.1 Overview of SDSoC and Zedboard 23

4.2 Optimisation Techniques . 24

4.2.1 Optimisation 1: Read all constants from external memory 24

4.2.2 Optimisation 2 : Array Mapping 24

4.2.3 Optimisation 3: Combine Coefficients in external memory
into single array . 25

4.2.4 Optimisation 4: Limit the multipliers 25

4.3 Results . 26

5 VITERBI DECODING 27

5.1 Viterbi search . 27

5.1.1 HMM-GMM scoring . 27

5.1.2 Problems in Implementation 29

5.2 Binary Search Tree . 29

5.2.1 Hash Maps vs Binary Search Tree 29

5.2.2 Memory Mapping . 30

5.2.3 Search and Insert in Binary tree 30

5.2.4 Delete in Binary tree . 31

5.2.5 Odd Even Binary tree . 32

5.3 Max Heap . 33

iv

5.4 Results . 35

6 CONCLUSION 37

LIST OF TABLES

3.1 Table showing time taken for each module 21

3.2 Table shows utilization summary of resources 22

4.1 Table shows specifications of zedboard 23

4.2 Table shows changes in resources after applying each optimisation 26

5.1 Table shows timings for 45 sec waveform for various approaches for
8k tokens . 35

5.2 Table shows search timings for 45 sec waveform 35

5.3 Table shows word error rate for best and first N tokens 36

vi

LIST OF FIGURES

2.1 Block level architecture of feature extraction 3

2.2 Mel-filterbanks . 5

2.3 Architecture of MFP with 23 multipliers 6

2.4 New Architecture of MFP with 2 multipliers 7

2.5 Flow graph of log2m calculation . 9

2.6 Proposed ln architecture . 9

2.7 Proposed architecture for calculating fractional part of logarithm 10

2.8 DCT architecture with 1 Multiplier 11

2.9 proposed CMVN and splicing Architecture 12

2.10 LDA architecture with 1 Multiplier 13

3.1 Handshake interface between two modules 14

3.2 I/O interface for MFP Block . 15

3.3 Finite state machine implementation of MFP 16

3.4 I/O interface for logarithm Block 17

3.5 Finite state machine implementation of logarithm 18

3.6 I/O interface for DCT Block . 19

3.7 Finite state machine implementation of DCT 20

4.1 Performance estimate of feature extraction 26

5.1 HMM model . 27

5.2 Binary search tree . 31

5.3 Binary tree showing node to be deleted and it’s inorder successor 32

5.4 Max heap . 33

5.5 Figure shows overall flow of code in Viterbi decoding 34

vii

ABBREVIATIONS

ASR Automatic Speech Recognition

MFCC Mel Frequency Cepstral Coefficient

MFP Mel Filter Processing

CMVN Cepstral Mean And Variance Normalization

LDA Linear Discriminant Analysis

WER Word Error Rate

BST Binary Search Tree

viii

CHAPTER 1

INTRODUCTION

1.1 Introduction to ASR

Automatic speech recognition(ASR) or simply speech recognition is a piece of

technology that allows us to convert voice into text. Speech is an easy and faster

form to interact with devices. It offers numerous applications in areas where

man-machine interaction is needed . Ideally speech recognition should be able

to cover like large-vocabulary, continuous, speaker-independent, real-time speech

recognition.

In a speech device, a microphone coverts speech signals to electrical

signals, which are then sampled and digitized for further processing.These samples

go through MFCC which is key for extracting features i.e., the components that

represents the speech. These are then compared then with trained data sets through

different models. Hidden Markov model which is existent from long time has been

widely used in decoding features. State of art technologies used some of neural

network methods.

Research started way back in 1970’s but the applications have been

relatively simple due to the limitations in power. One more factor that is stopping

us from using speech recognition in wider arena is it’s computational requirements.

They are trading off performance with accuracy .

1.2 Motivation

Key to solve the low power issues in speech recognition system is to move it from

software to completely hardware or coexistent with hardware. Hardware can

process different parts parallely which improves performance. Hardware (circuit

based) speech decoders instead of cloud based decoders will be highly efficient

in applications that doesn’t require internet capabilities. While the current speech

recognition chips can run in real time, there are different issues like on chip memory

usage and low memory bandwidth associated with it.Our project mainly focuses

on implementing real time speech recognition system addressing these issues.

1.3 Organization of Thesis

Outline of the thesis is as follows. In chapter 2, we introduce different parts

of speech recognition mainly front-end which is extracting features from speech.

Each block and it’s proposed architecture is explained. In chapter 3, we discuss

the implementation of Mel filter processing , logarithm and DCT blocks in verilog.

In chapter 4, we discuss about implementing the same on zedboard using SDSoC

tool and various issues faced. In chapter 5 , we introduce decoding the features

part and how implementing different data structures is necessary for improving

performance. Binary search tree and maxheap implementation will be discussed.

Results for different active states and timings for different data structures have

been put down.

2

CHAPTER 2

FEATURE EXTRACTION

2.1 MFCCs

Feature extraction is method of identifying the components of audio that are good

for identifying the linguistic content excluding noise, background, noise etc. The

phoneme of sound that is produced is equivalent to the shape of the sound that is

filtered by vocal tract. The shape of the vocal tract manifests itself in the envelope

of the short time power spectrum, and MFCC’s are accurate way of representing

this envelope. For example if an audio sample is passed into MFCCs, equivalent

of this audio in text is represented in features.

Figure 2.1: Block level architecture of feature extraction

Input audio signal is sampled at 16KHz and first part framing divides

the audio signal into 25ms frames. Each frame has 400 samples and frame step

is 10ms, i.e., next frame starts at 160th sample. In next step these 400 samples are

passed through Hamming Window to reduce spectral effects. 112 zeroes are then

padded to these samples to be sent to 512 point FFT module. This FFT module

computes the power spectral density for each frame.

Our discussion in this thesis will mainly focus on extracting feature

vector from power spectral density.

2.2 Mel-Filter Bank Processing

2.2.1 Calculating mel filterbank

The Mel scale relates perceived frequency, or pitch, of a pure tone to its actual

measured frequency. Incorporating this scale makes our features match more

closely what humans hear.

M(f) = 1125 ln(1 + f/700) (2.1)

and for converting back to frequency

M−1(m) = 700(exp(m/1125) − 1) (2.2)

where:

f = frequency in Hz

m = melscale

4

In general no of filter banks would be 20-40. In our case we are sticking

to 23 filter banks. Lower and upper frequencies are 20Hz and 8000KHz respec-

tively. These frequencies are converted to melscale by using (2.1) and values are

31.69 Mels for and 2834.91 Mels for 8000KHz. As there are N = 23 filterbanks,

we need N+2 points on frequency axis. Divide 23 points uniformly between 31.69

Mels and 2834.91 Mels.

m(i) = 31.69, 148.49, 264.49,, 2834.91.

Converting back to frequency

h(i) = 20, 98.76, 185.52,, 8000

f (i) = f loor((n f f t + 1) ∗ h(i)/samplerate) (2.3)

This results in the following sequence

f(i) = 0, 3, 5,..., 256.

First filterbank starts at 1st point and reaches peak at 2nd point and falls down to

zero at 3rd point. Second one starts at second point and reaches peak at 3rd point

and falls down to zero at 4th point etc.

Figure 2.2: Mel-filterbanks

5

2.2.2 Architecture Explained

Power spectral density (256 bins) are passed through 23 filters to get 23 mel-

coefficients. Each mel-coefficient represents the sum of spectral components when

passed through filter i.e., PSD of each bin is multiplied by corresponding bin in

filter and all these values are added up to get mel-coefficient. Calculating all

the mel-coefficients parallelly requires 23 multipliers with following architecture

which takes 256 clock cycles(256 multiplications). If these mel-coefficients are

calculated sequentially, it would take 5888 (256×23) clock cycles. This architecture

would not help us with resources or timing. Considering the fact that most of the

multiplications are zeros and property of filters that each filter reaches it’s peak at

next filter starting point, a new architecture was proposed.

Figure 2.3: Architecture of MFP with 23 multipliers

Mel-filter banks property can be exploited to remove multiplications

that gives zero. Each Filter bank can be separated as left filter bank i.e., bin

starting from zero and reaching peak, similarly right filter bank starts peak and

falls zero. Left filter banks of each filter bank can be integrated and resulting

6

in non-overlapping filter bank called Left Active filter bank and similarly Right

Active Filter Bank.

Figure 2.4: New Architecture of MFP with 2 multipliers

Input data contains psd of 256 bins each streaming at 1 input per clock

cycle. Values of frequency bins where filter banks goes to zero will be stored in

ROM and an additional circuitry using comparator and counter will be required

for setting flag to 1 or 0. Psd value of a bin gets multiplied by corresponding bins

in both left and right active filter bank. When flag is set to 1, sum of spectral of

left filter bank i.e., output of MAC1 is passed to MAC2. Next time whenever flag

is set to 1 output from MAC2 will be mel coefficient and simultaneously output of

MAC1 is passed to MAC2. Using this architecture, time taken is 256 clock cycles

and only 2 multipliers are used. This architecture can be modified to use 1 MAC

unit which would take 512 clock cycles.

7

2.3 Logarithm

Mel coefficients obtained from MFP have large dynamic range.Human ears are less

sensitive to slight differences in amplitude at high amplitudes than low amplitudes.

So, logarithm is used to compress this dynamic range. There are no default

logarithm function in verilog. So, there is a need to design synthesizable logarithm

function with high precision and less resources.

ln Z = log2 Z × log2 e

Z = m2K

log2 Z = K + log2 m

Let log2 m = x0x1x2 . . . xn

log2 m = x0 +
x1

2
+

x2

4
+ · · · +

xn

2n

m = 2x0+
x1
2 +

x2
4 +···+ xn

2n

where:

K = integer part

log2m = fractional part and m ∈ [1, 2)

x0,x1,. . . ,xn are bits in Q1.n format

From the above equations the values of xi can be calculated using itera-

tive algorithm which is seen in the flow graph (2.5). An architecture for calculating

ln is proposed which can be seen in (2.6) and (2.7)

8

Figure 2.5: Flow graph of log2m calculation

2.3.1 Logarithm Architecture

This architecture can be applied to any positive value in Qm.n format.In our case

input Z is represented in Q32.16 format. Input Z is also an input to Leading one

detector (LOD) whose output is an integer where leading one in Z (from MSB) is

detected. Subtracting the no of fractional bits from this integer gives us the integer

part of log2Z. Using barrel shifter, shift the left shift the value of Z by (31-K) bits.

This gives us m which lies in [1, 2) in Q1.15 format. Output of this barrel shifter is

sent to module 2.7 that calculates logarithm of m i.e, fractional part.

Figure 2.6: Proposed ln architecture

9

Whenever the count(i) is zero, input is being sent to this module where

m gets multiplied by itself and gives Y. If m is greater than 2 i.e., if Y[30] is 1 then

xi will be 1 else 0. Also m is right shifted by one bit if Y[31] is 1 and stored in reg.

This is iterated precision(16) no of times to get the fractional part.

Figure 2.7: Proposed architecture for calculating fractional part of logarithm

2.4 Discrete Cosine Transform (DCT)

The spectrum obtained after applying log of mel spectrum i.e, log mel spectrum

should be converted back to time domain. This helps removing the last few

coefficients which are not really necessary. These higher-order coefficients that you

discard are more noise-like and are not important to train on. DCT is performed

by matrix multiplication of log of mel coefficients with DCT coefficients there by

giving mel-cepstral coefficients.

DCT matrix coefficients (23 × 13) are streamed 1 per clock cycle. Mel

coefficients are stored in serial shift registers which are connected back. Whenever

the count reaches 23 flag is set to 1 and count resets back to zero using counter

circuit. As the data gets streaming in count increases 1 per clock cycle, DCT

coefficients gets multiplied by Mel coefficients and added up cumulatively in

10

Figure 2.8: DCT architecture with 1 Multiplier

MAC register. When count reaches 23 i.e., flag is set to 1, output will be Mel

cepstral coefficient. And input to MAC adder gets reset to 0, also shift registers

complete one cycle. No of clock cycles it would take with above architecture (2.8)

would be 299 clock cycles and uses only 1 multiplier.

2.5 Cepstral Mean and Variance Normalization(CMVN)

Automatic speech recognition (ASR) involves in many real-world contexts where

it encounters adverse acoustic environments. It’s performance is sensitive to noise

contamination of speech signal. The goal of robust feature extraction is features

that are minimally distorted by noise. CMVN is an efficient technique in terms

of computation that is used for noise cancellation. Mean and variances can be

calculated using formula 2.4 and features are normalized using formula 2.5

mean[i] = ((1 −w) ×mean[i]) + (w × feat in[i]) (2.4)

feat out[i] =
(feat in[i] - mean[i])

variance[i]
(2.5)

where:

w = 0.002

11

feat out = features after normalization

2.6 Splicing

Splicing is storing the data of 9 frames mel cepstral coefficients for each frame.

Spliced features of nth frame contains coefficients from (n − 4)th frame to (n + 4)th

frame. Each time there is a new frame, other frames data gets dumped out in

similar to FIFO module.

Figure 2.9: proposed CMVN and splicing Architecture

2.7 Linear Discriminant Analysis (LDA)

LDA matrix coefficients (117 × 40) are streamed 1 per clock cycle. Spliced features

(117) are stored in serial shift registers which are connected back. Whenever the

count reaches 117 flag is set to 1 and count resets back to zero using counter

circuit. As the data gets streaming in count increases 1 per clock cycle, LDA matrix

12

coefficients gets multiplied by Spliced features and added up cumulatively in MAC

register. When count reaches 117 i.e., flag is set to 1, output will be features. And

input to MAC adder gets reset to 0, also shift registers complete one cycle. No

of clock cycles it would take with above architecture (2.10) would be 4680 clock

cycles and uses only 1 multiplier.

Figure 2.10: LDA architecture with 1 Multiplier

13

CHAPTER 3

VERILOG IMPLEMENTATION OF FEATURE

EXTRACTION

3.1 Communication between modules

Important part of any large design is how well you connect output of one module as

input of another module. Handshake based interface will be used in our modules.

This will avoid designing around our own assumptions of timing when output of

one module is ready. Handshake based interface will let the modules communicate

between themselves when inputs/outputs are ready.

Figure 3.1: Handshake interface between two modules

Module A and module B are the two modules which are communicat-

ing through handshaking protocol. A is source module which sends it’s output

through data signal and B accepts its as an input. Valid and ready are handshaking

signals which helps in communicating between two modules. Valid signal will be

high when input from module A(source) is valid. Ready signal will be high when

module B (sink) is ready to accept inputs. When both valid and ready signals are

high, data is passed through data wire from source to sink. As we are concerned

about synchronous design, valid and ready will change it’s state only at positive

edge or negative edge of clock.

3.2 Mel-Filter Bank Processing

3.2.1 Implementation

All three modules are implemented in verilog using Xilinx Vivado 2018.2 tool. MFP

module has inputs clk, reset, start, fft energy, window valid and log ready. Out-

puts being mel coefficient, MFP valid, MFP ready. I/O interface to MFP module

can be seen in (3.2). Clock, reset and start are global signals to all the three modules.

Outputs from windowing module fft energy and window valid are being passed

as inputs which are simulated using testbench. window valid will be high when

there is valid input from windowing module. Similarly output MFP valid will be

high after output is computed from MFP module.

Figure 3.2: I/O interface for MFP Block

A mealy based finite state machine i.e., output depends on present input

and state is being implemented which can be seen in (3.3).

IDLE(S0) : Initial state S0 is IDLE where module does no computation and waits

for a start signal. If there is start signal we start en flag is set to high which stays

high till next reset occurs. If either of MFP ready or window valid is not high, it

enters next state S1. If both of them are high state machine enters S2 directly.

WAIT FOR VALID DATA AND READY(S1) : In state S1, it waits till both window valid

and MFP ready is high and enters S2. Else it stays in same state.

15

COMPUTE MEL(S2) : MFP module has three combinational blocks, comparator

and 2 MAC units.As designed in the architecture (2.4), input data fft energy is

streamed each clock cycle. Frequency values where mel filter banks reaches zero

along with left and right mel filter bank values are stored in ROM. In state S2

count is set to zero and incremented each clock cycle whenever window valid

and MFP ready are high. Each clock input data multiplied with left filter bank

is accumulated in MAC1 and input data multiplied with right filter bank is accu-

mulated in MAC2. Comparator sets compare flag to one whenever count is equal

to values of frequency where filter bank goes to zero. When flag is raised to one,

accumulated value in MAC1 is passed to MAC2 and MAC1 accumulator value is

set to zero. Synchronously at same clock edge, output from MAC2 i.e, value of

mel coefficient is taken and stored in registers. If all the 23 coefficients are stored,

state machine enters S3 state.

Figure 3.3: Finite state machine implementation of MFP

SENDDATA(S3) : If the ready signal of next module i.e., log ready is high, mel

coefficients are sent to logarithm module. Else it waits for the log ready signal to

be high. After sending all the coefficients it enters state S2 for next data to come in.

16

3.3 Logarithm

3.3.1 Implementation

LOG module has inputs clk, reset, start, mel coefficient, MFP valid. Outputs

being log mel coefficient, log valid, log ready. I/O interface to LOG module can

be seen in (3.6). Outputs from MFP module mel coefficient and MFP valid are

being passed as inputs to LOG module. MFP valid will be high when there

is valid input from MFP module. Similarly output log valid will be high after

log mel coefficients are being computed from LOG module.

Figure 3.4: I/O interface for logarithm Block

Finite state machine implementation to this LOG module based on ar-

chitecture(2.6) can be seen in (3.5).

IDLE(S0) : Initial state S0 is IDLE where module does no computation and waits

for a start signal. If there is start signal we start en flag is set to high which stays

high till next reset occurs. If either of log ready or MFP valid is not high, it enters

next state S1. If both of them are high state machine enters S2 directly.

WAIT FOR VALID DATA AND READY(S1) : In state S1, it waits till both MFP valid

and log ready is high and enters S2. Otherwise it stays in same state.

COMPUTE(S2) : In this state log ready is set to zero initially because LOG module

cannot accept next input while logarithm of one input is computed. Leading one

17

in input is found using Priority encoder block and stored as integer part which

takes one clock cycle. Using barrel shifter input is shifted and sent to combina-

tional FRAC module which computes fractional part. Now count(i) variable is

set to zero. Referring to (2.5) m value which is multiplied by itself and stored in

another register. If the value 2nd bit from MSB is one i.e, m*m is greater than 2,

one is being written into ith bit of fractional part. This combinational block can be

seen in architecture (2.7). When count equals to PRECISION, fractional value of

logarithm is known. Integer part and fractional part are added and being sent to

multiplier block. Logarithm to the base 2 of input value is multiplied by constant

(loge 2) to get loge of a number.

Figure 3.5: Finite state machine implementation of logarithm

LN COMPUTE DONE(S3) : In this state S3, now that the loge of input is

computed log ready is set to high so that the LOG module accepts the new input.

Another count variable for tracking no of inputs whose logarithm is done is

incremented. If this variable is less than total number of inputs i.e., total no of

mel coefficinets state machine enters S2 and LOG module accepts new input.

After computing logarithm of all coefficients, state machine enters state S4.

SENDDATA(S4) : If the ready signal of next module i.e., dct ready is high,

log mel coefficients are sent to DCT module. Otherwise it waits for the dct ready

signal to be high. After sending all the coefficients it enters state S2 for next data.

18

3.4 DCT

3.4.1 Implementation

DCT module has inputs clk, reset, start, log mel coefficient, log valid. Outputs

being dct coefficient, dct valid, dct ready. I/O interface to DCT module can be

seen in (3.2). Outputs from logarithm module log mel coefficient and log valid

are being passed as inputs to DCT module. log valid will be high when there is

valid input from logarithm module. Similarly output dct valid will be high after

dct coefficients are being computed from DCT module. DCT module has two

combinational blocks comparator and a MAC unit.

Figure 3.6: I/O interface for DCT Block

Finite state machine implementation to this DCT module based on ar-

chitecture(2.8) can be seen in (3.7).

IDLE(S0) : Initial state S0 is IDLE where module does no computation and waits

for a start signal. If there is start signal we start en flag is set to high which stays

high till next reset occurs. If either of dct ready or log valid is not high, it enters

next state S1. If both of them are high state machine enters S2 directly raising save

en flag to high.

19

WAIT FOR VALID DATA AND READY(S1) : In state S1, it waits till both

log valid and dct ready are high and enters S2 raising save en flag to high or

stays in same state otherwise.

SAVE AND COMPUTE(S2) : All the log mel coefficients need to be saved in

registers because they are used repetitively in multiplication. Count is set to zero

and increased each clock cycle. In this state when both log valid and dct ready

are high, dct matrix coefficients are being multiplied with log mel coefficients

and accumulated in MAC unit. Comparator sets the compare flag to high when

count is equal to 23. Whenever compare flag is one, output is stored and value in

accumulator is set to zero. Once all the log mel coefficients are stored, save en

flag is set to zero and state machine enters S3.

Figure 3.7: Finite state machine implementation of DCT

COMPUTE(S3) : In this state S3, all the saved log mel coefficients are passed as

inputs to MAC unit one per clock cycle. These values are multiplied with

dct matrix coefficients and accumulated in MAC unit similar to state S2. When

all the 13 dct coefficients are computed, state machine enters state S4.

SENDDATA(S4) : If the ready signal of next module is high, dct coefficients are

sent to next module. Otherwise it waits for the next module ready signal to be

high. After sending all the 13 coefficients it enters state S2.

20

3.5 Results

Implementation of feature extraction was targeted on Artix 7-FPGA platform.

Targeted device chosen was xc7z010clg400-1 which has 28K programmable logic

cells, 17,600 Look-Up Tables (LUTs), 35,200 Flip-Flops, 60 Block RAM each capable

of storing 36Kb. 60 DSP slices each of which capable of performing 18 × 25 bit

signed multiplication.

3.5.1 Timing results

MFP : Input psd data 256 values are multiplied by left and right mel filter bank

values. At the end of 256 clock cycles, all 23 mel coefficinets are computed. Refer

to (2.4) architecture.

Module No of clock cycles
MFP 256
LOG 460
DCT 299

Total time 1015

Table 3.1: Table showing time taken for each module

LOG : After getting mel coefficient as input, it takes 1 cycle for getting leading

one using priority encoder, Precision no of cycles (17) for calculating fractional

part, 1 clock cycle for multiplying (loge 2) with logarithm to get (loge) of input. 1

extra cycle for ready signal to be high and MFP module to recognize and send

input. It takes 20 cycles for computing logarithm for each input and overall 460

(20 × 23) clock cycles.

21

DCT : Input dct matrix coefficients (23 × 13) are multiplied by

log mel coefficients each clock cycle. All the mel cepstral coefficients are

computed at end of 299th clock cycle.

3.5.2 Resources

DSPs : In MFP block, 2 MAC units each of which does 24 × 46 bit multiplication.

Each DSP unit can perform 25 × 18 bit multiplication, so MFP block uses 6 DSP

units. In LOG block, there are two mutliplications 17 × 17 bit and 24 × 18 bit

which uses 2 DSP blocks. In DCT module only one 24 × 18 bit multiplication is

done which requires 1 DSP block.In total it would require 9 DSPs.

BRAM: In MFP block left mel and right mel filter bank values needed to be

stored. Both of them has 256 values of 24 bits each which requires 2 BRAM

(18Kb) equivalent to 1 BRAM(36Kb). In DCT block dct matrix coefficients

needed to be stored. 299 values of 19 bits each requires 1 BRAM (18Kb)

equivalent to 0.5 BRAM (36Kb).

Resource Used Available
DSPs 9 80

BRAM 1.5 60
LUT 1303 17200
FF 1047 35200

Table 3.2: Table shows utilization summary of resources

All the registers which are stored in distributed RAM, logic variables,

logic operations performed adds up to 1303 LUTs which can be seen table(3.2).

22

CHAPTER 4

SEQUENTIAL IMPLEMENTATION OF FEATURE

EXTRACTION IN SDSoC

4.1 Overview of SDSoC and Zedboard

System on Chip (SoC) is an integrated circuit device which has processor, memory ,

FPGA and other components on a single chip. SDSoC is a Xilinx Vivado tool allows

us to program on SoC. It automates function acceleration in programmable logic

generating both ARM and FPGA bitstreams. It allows us to separate a function,

estimate the performance and resources.

Processor ARM A9 cortex max frequency 667MHz
Main memory DDR3 512MB

On chip memory BRAM 1.2MB

Table 4.1: Table shows specifications of zedboard

Device that was targeted for the implementation was zedboard which

belongs to Zynq-7000 family of SoCs.Zedboard has ARM A9 cortex processor with

Artix 7 FPGA included with it. It has external DDR3 memory of 512MB and on

chip BRAM size of 1.2MB. It uses AXI3 bus interface for transferring memory from

PS to PL.

4.2 Optimisation Techniques

In speech recognition, feature extraction and GMM are computationally intense

functions. These functions require more resources than other functions. Feature

extraction takes less than 5% of whole real time decoding. Instead of using re-

sources on feature extraction, sequential implementation will save us resources

which can be used by decoding part. Extra latency will be added at once and for

all if sequentially implemented. Time budget for feature extraction will be 10ms

as decoding should also be done in 10ms. Modules starting MFP until LDA have

been implemented in floating point and then changed to fixed point as fixed point

would take less time with same number of resources.

4.2.1 Optimisation 1: Read all constants from external memory

This implementation requires constants left mel, right mel, dct matrix coefficients

and lda coefficients to be stored. These constants are actually stored in BRAMs

available on FPGA. These coefficients require 7 BRAMs in total.We can save these

BRAMs by reading these from external memory. These four coefficients are given

as inputs to hardware function. This implementation takes more time, but it is

acceptable as we have enough relaxation on timing.

4.2.2 Optimisation 2 : Array Mapping

All the arrays (memory) in not completely occupied most of the times . If two

BRAMs are not completely occupied and if both of them can be mapped into

single array, a BRAM can be saved. In this case both of the arrays cannot be

accessed at same time. This would increase the timings. Splicing function has

24

three arrays which takes 3 BRAMs can be mapped into 1 array. This saves us 2

BRAMs

4.2.3 Optimisation 3: Combine Coefficients in external memory

into single array

When a function is moved into hardware in SDSoC, inputs to the hardware function

are moved from external memory. Data movers like ACP,AFP are used to move

data using AXI3 bus interface from external memory. These data movers write each

of the input into a BRAM near hardware function. Hardware function reads these

inputs from BRAM. Four coefficients are given as four inputs to hardware function

which now takes 4 BRAMs. We are trying to implement sequentially which does

not require accessing all coefficients simultaneously. Left and right mel coefficients

needed to be accessed simultaneously. So, they are stored alternatively in a single

array followed by dct coefficients and lda coefficients. This allows us to reduce the

BRAM count from 4 to 1 near hardware site.

4.2.4 Optimisation 4: Limit the multipliers

Number of multipliers can be limited to a function using directives. Three functions

MFP, LOG, DCT have been into one function and other three functions CMVN,

Splicing, LDA into another function. Each function is limited with one multiplier.

Limiting the both functions with only one multiplier gives timing error i.e., takes

more time than 10ns which is clock period. This is due to lot of routing around the

DSP block.

25

4.3 Results

Feature extraction is implemented in SDSoC and performance estimate is taken.

Performance estimate is calculated each time an optimisation is applied. Without

any optimisation it would take 12 BRAMs. After all the optimsations are applied

it is reduced down to 4 BRAMs. Feature extraction starting from MFP has 2 inputs

and an output which takes 3 BRAMs. 1BRAM is used for 3 arrays which are

mapped into 1 in splicing function. Each 32 × 32bit multiplication takes 4 DSPs.

As number of multipliers are limited to 2, it would take 8 DSPs.

Resource Without Opt Opt1 Opt2 Opt3 Opt4
BRAM 12 9 7 4 4
DSPs 25 25 25 25 8

Table 4.2: Table shows changes in resources after applying each optimisation

Figure 4.1: Performance estimate of feature extraction

Framing , windowing and FFT when combined with above described

hardware functions would take 150k clock cycles (¡ 10ms). It takes 12 DSPs in total

when complete feature extraction is done.

26

CHAPTER 5

VITERBI DECODING

5.1 Viterbi search

5.1.1 HMM-GMM scoring

Markov property states that at time t, if there are past and present states, future

states depends only on present states. Hidden Markov model states that states in

this case remains hidden and generate other possible outcomes.

Figure 5.1: HMM model

Every state is associated with input label, output label and weight. The

probability of one state going to another state independent of a feature i.e., weight

which is determined by WFST model. This transition model is composition of 4

WFSTs (aka H.C.L.G fst) namely

H : Contains HMM information

C : Represents context dependency

L : Lexical FST

G : Grammar FST

Each state has next set of states associated that it might go in next frame.

The probability of one going to next state if given a feature vector is calculated

using Gaussian Mixture Model (GMM). Let yt be the acoustic vector and xt be

the state, the The pdf of loglikelihood of this vector to be emitted by a state xt is

calculated using formula(5.1).

Log(p(yt|xt)) =

N∑
m=1

gm +

D∑
d=1

[
(yt,d × µm,d)

σ2
m,k

−

y2
t,d

2σ2
m,k

] (5.1)

Viterbi search begins with no hypothesis and develops new set of active

hypothesis from feature vectors represented by tokens in our decoder. The forward

pass of viterbi search propagates hypothesis from current frame to next frame.

Each hypothesis is fetch from current frame(t) active state list. These

tokens are stored in array in SRAM. Next set of tokens are stored in another SRAM

and will be swapped at the end of each frame. WFST model is stored in main

memory. All the outgoing arcs information for each token is read from WFST

model. Fetching the arcs from main memory takes most of the time. For each

frame , we traverse through current list of tokens and get all outgoing arcs for each

token. And for each arc, cost associated with going from one state to other state for

given feature vector is computed using GMM and added to arc weight which gives

total cost of arc. Information of next set tokens(t+1) are being stored for current

frame. If two tokens from the current set of tokens goes to same next state, the path

which gives the best cost is being retained. This state space grows exponentially

unless a beam is used. A beam is used and will only retain the tokens whose cost

is better than the beam cost. Next set of tokens (t+1) will become current tokens

for next frame and serach goes on till the end of audio.

28

5.1.2 Problems in Implementation

1. Due to limitation of on-chip memory, no of tokens has to be limited to N.
This will increase word error rate (WER). Best N tokens in terms of cost has
to be stored. Data structure that stores best N tokens need to be used.

2. For every frame array search has to be performed on active states list. This
will degrade performance of decoder. Better search algorithm has to be used.

5.2 Binary Search Tree

5.2.1 Hash Maps vs Binary Search Tree

Hash maps is an other way storing and searching the states in tokens list. It

is implemented in hash tables where it stores key value pair. State IDs are the

value and key function is used for computing key whose input will be state ID.

We have 2.3M state IDs from WFST model and we are storing the top N tokens

for each frame. Hash maps takes O(1) time for searching the states assuming

that key value for each state is different. If two states have same key value it’s a

collision. These collisions are resolved by linear probing. In short hash tables are

implemented as two dimensional arrays(N × 1, N
2 × 2, . . .). If an array is filled,it

goes to next array whose key is not equal to key of that array. Searching requires

more time and inefficient for above cases. Binary search tree on other hand offers

a smooth searching and inserting methods which doesn’t require any extra time

for rearranging. For a random data it is difficult to find a key function for state

IDs ranging up to 2.3M and minimize the collisions. If the no of states goes high,

binary search tree is preferred over hash maps because increase in one level of

binary search tree can accommodate 2n values. So, binary search is preferred as

search and inserting the state list.

29

5.2.2 Memory Mapping

Binary search trees have nodes which points to address of it’s left or right node.

The left and right nodes have pointers which points to it’s left and right nodes.

In hardware, a pointer should always point to scalar of known data type like int

or float. This is limitation of hardware. So, different memory mapping has to be

done. So, every node will store left and right address as offset from zeroth element

in token i.e., index of array as integer.

5.2.3 Search and Insert in Binary tree

In viterbi search, every frame has list of tokens which have list of states and

outgoing arcs to next state. Outgoing arcs state information are to be stored in

binary tree. Each token will now have a state id, left id, right id and parent id to be

inserted in binary tree. All the three values are of data type integer and store the

index of corresponding token. First token arrives will be root of the binary tree.

Token count is initialized to zero and incremented each time a new token comes.

This token count will be the index of the array. Every time a new token comes it’s

state id searched in binary tree using algorithm (refer algorithm here). The state

id is compared with root, if it equal to root index of root will be returned, else if it

is less than root we read left id of root and go to left element, else we go to right

element. We repeat this process until state id is found or we reach the end of the

tree. If there no state id in the list of tokens it is inserted until number of elements

reaches maximum count N.

30

Figure 5.2: Binary search tree

5.2.4 Delete in Binary tree

Best N tokens are to be stored in array for better WER. Whenever number of tokens

reaches N and if a new token is to be inserted in binary tree, a token from binary

tree should be deleted. Deleting a node in binary tree should also balance the

binary tree. Deleting and balancing a binary tree has three cases.

No child : If the node to be deleted has no child, remove the node and left/right

id of the parent to null.

Right or Left child : If the node to be deleted has only left/right child. Replace

the node with corresponding left/right child. Change the parent id of child to

parent id of node to be deleted.

Both children : If the node to be deleted has both children, find the inorder

successor of the node to be deleted. Inorder successor is the minimum value of

the state id of left tree of the node to be deleted. Replace the node with it’s in

order successor and change the left, right and parent ids of elements that gets

31

Figure 5.3: Binary tree showing node to be deleted and it’s inorder successor

affected by this rearrangement. See figure (5.3).

5.2.5 Odd Even Binary tree

Current binary tree implementation takes worst case time of O(n). This will

degrade the performance of decoder. Sequence of state ids are in increasing order

to an extent. Separating them to odd and even and storing them in separate binary

trees would reduce the time for searching. Each time a new state id comes, it

is checked if it is odd or even and correspondingly searched or inserted in their

respective trees. Total number of elements combined in both odd and even binary

tree is constant. So, no extra memory is used except storing separate odd and even

tree root node indexes.

32

5.3 Max Heap

Heap data structure can be used to store best N tokens in current frame. Max heap

property states that node value should be greater than both the children which can

be seen in (5.4). This way root node of the heap i.e., cost heap has maximum cost.

Each element in heap has state id and cost value.

Figure 5.4: Max heap

Insert in heap: Indexing of each element in heap follows a definite rule. Root

element will be first element in heap i.e, with index zero. Every element with k

index has it’s left child index as 2k+1 and right child index as 2k+2. Each time

token count will be increased if a new element is inserted. Every new element is

inserted in it’s token count position first. It’s value is compared with it’s parent

value. If the value of new element is greater than it’s parent, cost and state id

values are swapped with parent values. This iterates until new element is less

than it’s parent.

Update in heap : If a new element with same state id and better cost is

encountered, it should be replaced in heap. New element has less cost than

33

previous element with cost, therefore heap has to be re balanced. If the element is

positioned at k, it’s cost has to be compared to maximum cost among children. If

cost of element is less than it’s child, state ids and cost values have to be swapped

with child with maximum cost. This iterates till the heap is balanced. If the heap

is full and a new element with best cost than root is encountered, root is replaced

with new element in similar fashion.

Figure 5.5: Figure shows overall flow of code in Viterbi decoding

34

5.4 Results

Implementation of functions search and insert in binary search tree along with

insert and update heap have done in floating point c. Each of these functions have

been optimised and timings for each of these functions have been calculated using

vivado hls.

Array Binary search tree Odd even binary search tree
1128 sec 12.55 sec 10.33 sec

Table 5.1: Table shows timings for 45 sec waveform for various approaches for 8k
tokens

Array search takes 1128 sec where as naive binary search takes 12.55 sec.

Odd even binary search tree optimises even further down to 10.33 sec. Timings

for odd even binary search tree is tabulated 5.2 varying number of tokens.For

searching an element in binary search tree, tree has to be checked to a certain

depth. Average of these timings for all searches for a 45 sec waveform is calculated.

Timing decreases from 10.33 sec to 4.38 sec as we go from N = 8k to N = 1k

Number of tokens Search timings in odd even binary tree
(N) Avg depth No of calls Timings(in sec)
1k 12 11.55M 4.38
2k 13.33 15.33M 6.28
4k 14.94 18.59M 8.70
8k 16.45 20.21M 10.33

Table 5.2: Table shows search timings for 45 sec waveform

Word error rate (WER) is tested over 12 test wave files comprising of

2700 words. WER is measured using Levenshtein distance method. It is the

method that is used for measuring difference between two sequences. This word

error rate is calculated after removing trailing words. As the number of tokens

decrease from 8k to 1k, word error rate increases from 15.26 % to 15.76 % if the

35

best tokens are to be stored for each frame. Word error rate increases from 17.32%

to 78.92% abruptly if first N tokens are stored for each frame. For N = 512 word

error rate rises upto 18.46%.

Number of tokens Word Error Rate (WER)
(N) Best N tokens First N tokens
1k 15.76 78.92
2k 15.66 51.33
4k 15.48 32.06
8k 15.26 17.32

Table 5.3: Table shows word error rate for best and first N tokens

36

CHAPTER 6

CONCLUSION

Feature extraction part of speech recognition is implemented sequentially in zed-

board. This would reduce the power consumption when compared to normal fea-

ture extraction. In Viterbi decoding, part of viterbi forward pass is implemented

by coordinating odd even binary search tree and binary heap which would allow

us to complete speech recognition in real time and with less memory.

After implementing binary heap with binary search tree, token can be

decreased from 8k to 1k without much effects. With just 0.5% increase in WER,

significant amount(> 50%)on chip memory can be saved. Number of calls for each

function is reduced as number of tokens decreased. Search timings in array shows a

reduction of 57.5% when token count is reduced. Timings of other computationally

intense functions like GMM which takes large chunk of time in speech recognition

is also reduced. 23% reduction in timings for GMM are observed.

Future works include the implementation of speech using neural net-

works instead of HMM-GMM scoring.

REFERENCES
1. Michael Price, James Glass and Anantha P. Chandrakasan, A 6 mW, 5,000-Word

Real-Time Speech Recognizer Using WFST Models. IEEE JOURNAL OF SOLID-STATE
CIRCUITS, VOL. 50, NO. 1, 2015.

2. Patrick J. Bourke, A Low-Power Hardware Architecture for Speech Recognition Search.
PHD-THESIS, MAY 2011.

3. A. M. Mansour, A. M. El-Sawy, M. S. Aziz, and A. T. Sayed A New Hardware Im-
plementation of Base 2 Logarithm for FPGA.International Journal of Signal Processing
Systems Vol. 3, No. 2, December 2015

4. Xilinx. SDSoC Profiling and Optimization Methodology Guide(UG1235). Xilinx(v2018.3)
User Guide, 2019.

5. Xilinx. SDx Pragma Reference Guide(UG1253). Xilinx(v2018.2) User Guide, 2018.

38

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	INTRODUCTION
	Introduction to ASR
	Motivation
	Organization of Thesis

	FEATURE EXTRACTION
	MFCCs
	Mel-Filter Bank Processing
	Calculating mel filterbank
	Architecture Explained

	Logarithm
	Logarithm Architecture

	Discrete Cosine Transform (DCT)
	Cepstral Mean and Variance Normalization(CMVN)
	Splicing
	Linear Discriminant Analysis (LDA)

	VERILOG IMPLEMENTATION OF FEATURE EXTRACTION
	Communication between modules
	Mel-Filter Bank Processing
	Implementation

	Logarithm
	Implementation

	DCT
	Implementation

	Results
	Timing results
	Resources

	 SEQUENTIAL IMPLEMENTATION OF FEATURE EXTRACTION IN SDSoC
	Overview of SDSoC and Zedboard
	Optimisation Techniques
	Optimisation 1: Read all constants from external memory
	Optimisation 2 : Array Mapping
	Optimisation 3: Combine Coefficients in external memory into single array
	Optimisation 4: Limit the multipliers

	Results

	VITERBI DECODING
	Viterbi search
	HMM-GMM scoring
	Problems in Implementation

	Binary Search Tree
	Hash Maps vs Binary Search Tree
	Memory Mapping
	Search and Insert in Binary tree
	Delete in Binary tree
	Odd Even Binary tree

	Max Heap
	Results

	CONCLUSION

