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ABSTRACT

KEYWORDS: qualitative clustering, NP-hardness, multicut

In this paper, we introduce and study the ROBUST-CORRELATION-CLUSTERING problem:

given a graph G = (V,E) where every edge is either labeled + or − (denoting similar or

dissimilar pairs of vertices), and a parameter m, the goal is to delete a set D of m vertices,

and partition the remaining vertices V \D into clusters to minimize the cost of the clustering,

which is the sum of the number of + edges with end-points in different clusters and the number

of − edges with end-points in the same cluster. This generalizes the classical CORRELATION-

CLUSTERING problem which is the special case when m = 0. Correlation clustering is an

important problem when we have (only) qualitative information about the similarity or dissim-

ilarity of pairs of points, and ROBUST-CORRELATION-CLUSTERING equips this model the

capability to handle noise in the datasets.

In this work, our main result is a constant-factor bi-criteria algorithm for ROBUST-CORRELATION-

CLUSTERING on complete graphs (where our solution is O(1)-approximate w.r.t the cost while

however discarding O(1)m points as outliers), and also complement this by showing that no ap-

proximation is possible if we do not violate the outlier budget. A nice feature of our algorithm

is that it first runs a particular CORRELATION-CLUSTERING algorithm ACNAlg Ailon et al.

(2005), and then does a simple post-processing by deleting O(m) vertices from the clustering

output by ACNAlg. This in fact suggests that the ACNAlg algorithm is inherently robust to out-

liers! We then consider general graphs, and show (O(log n), O(log2 n)) bi-criteria algorithms

while also showing a hardness of αMC on both the cost and the outlier violation, where αMC is

the NP-hardness factor for the MINIMUM-MULTICUT problem.
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CHAPTER 1

Introduction

Clustering is one of the most widely used tools in various scientific disciplines (such as biology,

computer science, machine learning and operations research to name a few) due to its wide

applicability in these domains. Broadly speaking, the goal of clustering is to partition a given

dataset into a number of clusters such that data items in the same cluster are more alike each

other than data items in different clusters. In many application domains, the data items are

represented as points in a metric space, and the distance between the corresponding vectors is

used as a measure of (dis)similarity. In such cases, clustering formulations such as k-median or

k-means are the de-facto standards to utilize. However, there are also quite a few application

domains where the information available to us is simply whether different pairs of data items

are similar or dissimilar to each other. Examples of such settings where there is only qualitative

information include data items being web-pages on the internet, a collection of people on a

social network or even a group of proteins. Motivated by such settings, Bansal et al. Bansal

et al. (2004) formulated a problem known as correlation clustering (in fact, a similar problem

was implicitly studied by Ben-Dor et al.Ben-Dor and Yakhini (1999) as ’Cluster Editing’).

Problem 1.0.1 (CORRELATION-CLUSTERING). We are given a complete graph G = (V,
(
V
2

)
),

and a labelling of each edge as either positive or negative, denoting whether the end vertices of

the edge are similar to each otfher or dissimilar. In other words, the edge set
(
V
2

)
is partitioned

into E+∪̇E− where E+ denotes the similar pairs and E− denotes dissimiliar pairs. The goal

is to compute a partition C = {C1, C2, . . . , Cr} of V (so V = ∪̇1≤i≤rCi is a disjoint union

of the Ci’s) to minimize the cost of the clustering, which is the total number of E+ edges with

end-points in different clusters and E− edges with end-points in the same cluster.

In addition to the problem requiring only qualitative (dis)similarity information between

pairs of data points, another nice modeling aspect of this problem is that the number of clusters

is not specified as part of the input, and rather, left to the optimization to infer. This makes it



a compelling problem when we do not have a priori knowledge of the number of clusters we

seek in the final partitioning.

Since being introduced formally as an optimization problem, there have been numerous

works trying to understand the computational complexity of the problem. Bansal et al. Bansal

et al. (2004) show that the problem is APX-hard (ruling out the design of PTASes unless P=NP)

and obtain a constant-factor approximation algorithm for this problem. Subsequently, there

have been a series of works (see, e.g., the survey by Wirth Wirth (2010)) getting better factors,

with the current best bound being a factor of 2.06 due to Chawla et al. Chawla et al. (2015).

Despite the simplicity and elegance of the various clustering formulations described thus

far, a significant shortcoming of most of them is that they are not robust to noisy points. For

example, the presence of a few outliers in the data set can completely change the cost and

structure of solutions obtained by running clustering algorithms for k-median, k-means, etc.

Indeed, this has prompted much recent study in the CS, ML and statistics communities of

robust versions of these problems Charikar et al. (2001); Chen (2008); Krishnaswamy et al.

(2018). Motivated by this observation, and the fact that real-world data sets are often noisy, we

investigate the robustness of correlation clustering.

Problem 1.0.2 (ROBUST-CORRELATION-CLUSTERING). The input to this problem is identical

to the correlation clustering instance as in Problem 1.0.1. Additionally, we are also given a

parameter m, which denotes the number of points we can discard while clustering. The goal is

to identify a set D ⊆ V of outliers of size m, and cluster the remaining points V \D to minimize

the cost of the resulting clustering, i.e., the total number of E+ edges (resp. E− edges) in V \D

with end-points in different clusters (resp. same cluster).

We note that CORRELATION-CLUSTERING problem also makes sense when the edge set

E+ ∪ E− is not the complete graph, since we often do not have complete information about

the (dis)similarity of each pair of points (it could be expensive or even impossible to obtain

such information like in the case of protein-protein interactions). Now the problem becomes

much harder, and the current best known algorithms have approximation guarantees of a factor

of O(log n). Moreover, there is an approximation-preserving reduction from the MINIMUM-

MULTICUT problem, for which the best known approximation is an O(log n) factor Charikar
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et al. (2005). In this paper, we also consider the ROBUST-CORRELATION-CLUSTERING prob-

lem on general graphs, analogous to the study of CORRELATION-CLUSTERING in general

graphs Charikar et al. (2005).

Problem 1.0.3 (ROBUST-CORRELATION-CLUSTERING on General Graphs). The input and

problem objective are identical to that in Problem 1.0.2, with the sole exception that the union

of E+ and E− need not be
(
V
2

)
.

1.1 Our Results

Having introduced the problem, the first question we address is whether the CORRELATION-

CLUSTERING objective is indeed susceptible to outliers in the dataset. That is, we seek to

understand whether the solution cost and/or structure can change a lot by the removal of a

few points in the dataset. Classical objectives such as k-median and k-means suffer from this

drawback even in the simplest of settings when we are promised that after removing some m

data-points, the optimal clustering of the remaining points would have 0 cost. In such cases,

solving k-means objective on the original instance could yield very different solutions than the

intended solution, which is the 0 cost (or perfect clustering).

Somewhat surprisingly, our first simple observation is that the correlation clustering objec-

tive is inherently robust to an extent, at least in the case when the cost of the clustering after

removing m outliers becomes 0. We show that in this case, the optimal correlation clustering

solution and the optimal robust correlation clustering solution are structurally identical upto

O(m) points.

Theorem 1.1.1. Consider an instance I of ROBUST-CORRELATION-CLUSTERING on com-

plete graphs such that Opt(I) = 0, i.e., there exists a set D∗ ⊆ V of m vertices deleting which,

the subgraph induced by V \ D∗ admits a perfect clustering C∗. Then, consider any optimal

solution C̃ to CORRELATION-CLUSTERING (Problem 1.0.1). There exists a set D̃ of O(m)

vertices s.t. the cost of C̃ \ D̃1 has objective function value 0.

This theorem in fact sets apart the correlation clustering objective from other clustering
1We somewhat abuse notation to let C \D to denote the clustering obtained by removing the points in D from

the clustering C

4



objectives such as k-means and k-median where an analogous statement to Theorem 1.1.1 does

not hold. Moreover, we believe that it is conceivable that a similar result is true even when

Opt(I) ̸= 0 when comparing the optimal solutions of the robust and non-robust problems.

Now, while this exhibits the robustness of correlation clustering w.r.t. optimal solutions, the

problem is APX-hard and hence we typically do not deal with optimal solutions. Hence, we

next consider the same question, but for approximation algorithms.

Theorem 1.1.2. There exists an instance I of ROBUST-CORRELATION-CLUSTERING on com-

plete graphs which satisfies the following properites: (a) Opt(I) = 0, i.e., there exists a set

D ⊆ V of m = O(
√
n) vertices deleting which, the subgraph induced by V \ D admits a

perfect clustering, and (b) there exists a constant-factor approximately optimal solution C to

the CORRELATION-CLUSTERING objective function (1.0.1), such that, for any set S of < n−1

vertices, the cost of the clustering C \ S is still non-zero.

This then provides sufficient motivation for undertaking this study, with the main focus

of whether we can design efficient approximation algorithms for ROBUST-CORRELATION-

CLUSTERING. Our first result in this direction is a negative result, which says that it is

in fact NP-hard to obtain any finite approximation algorithm for ROBUST-CORRELATION-

CLUSTERING, even on complete graphs. This is in stark contrast to Problem 1.0.1, where

we know very good constant-factor approximations.

Theorem 1.1.3. It is NP-hard to obtain any finite approximation factor for ROBUST-CORRELATION-

CLUSTERING on complete graphs, unless we violate the budget on the number of outliers to

delete.

We then turn our attention to obtaining bi-criteria approximation algorithms: an (a, b) bi-

criteria approximation for ROBUST-CORRELATION-CLUSTERING is one where the cost of our

solution is at most a times the optimal cost, and the number of points our solution discards is

at most b ·m.

Theorem 1.1.4. There is an efficient combinatorial bi-criteria (6, 6)-approximation algorithm

for ROBUST-CORRELATION-CLUSTERING on complete graphs.

A nice property of our algorithm in fact just executes a specific constant-factor approxima-

tion due to Ailon et al. Ailon et al. (2005) (henceforth called ACNAlg) for CORRELATION-
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CLUSTERING on our given instance, and then performs a simple post-processing on the re-

sulting clustering C which removes O(m) points. We use a randomized dual fitting argu-

ment building to bound the approximation ratio of the overall algorithm. We remark that

the post-processing is innately tied to the specific CORRELATION-CLUSTERING algorithm we

use, and we simply cannot replace it with any constant-factor approximation algorithm for

CORRELATION-CLUSTERING.

Our result in a sense says that ACNAlg is inherently robust to outliers. Indeed, note that if

Opt(I) is small, that means that there exists a clustering on the entire set of points for which

most of the mis-classified edges are incident on a few (m) vertices. And while this may not

be true of other CORRELATION-CLUSTERING algorithms, our proof says that this structure

is preserved in the solution output by ACNAlg, which is what we exploit to derive our final

ROBUST-CORRELATION-CLUSTERING algorithm.

Finally, we turn our attention to ROBUST-CORRELATION-CLUSTERING on general graphs.

Theorem 1.1.5. There is an efficient bi-criteria (O(log n), O(log2 n))-approximation algo-

rithm for ROBUST-CORRELATION-CLUSTERING on general graphs.

While the CORRELATION-CLUSTERING problem is equivalent to MINIMUM-MULTICUT

Demaine et al. (2006) and we can use any MINIMUM-MULTICUT algorithm to solve CORRELATION-

CLUSTERING, we show that one specific technique based on padded decompositions of metric

spaces is naturally the correct approach to solving the robust problem. Finally, we also show

hardness results on general graphs.

Theorem 1.1.6. It is NP-hard to obtain any bi-criteria (a, b)-approximation algorithm for

ROBUST-CORRELATION-CLUSTERING on general graphs for b < αMC or a < αMC where

αMC is the inapproximability factor for the MINIMUM-MULTICUT problem.

We leave it as an interesting open question to resolve the factor of violation in the number

of outliers: while the hardness shows that O(log n) is necessary unless we improve the ap-

proximability of the classical MINIMUM-MULTICUT problem, our algorithm gets a bound of

O(log2 n).
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1.2 Related Work

Since its introduction, CORRELATION-CLUSTERING has received much attention with focus

on designing better algorithms (see the survey of Wirth (2010)), faster algorithms in the parallel

and distributed Chierichetti et al. (2014) and streaming settings Ahn et al. (2015), stochastic/average-

case settings Makarychev et al. (2015), and applications Cohen and Richman (2001, 2002);

McCallum and Wellner (2003). There is also work on a related objective function of maximiz-

ing the number of classified edges Bansal et al. (2004). Being a maximization objective, it is

easier to design simple constant-factor approximation algorithms (like random partitions, etc.).

There are however, better SDP-based approximation algorithms Charikar et al. (2005); Swamy

(2004). Recently there has also been a large body of work on the crucial problem of noise-

resilient or robust clustering for distance-based clustering objectives such as k-means Chen

(2008); Krishnaswamy et al. (2018), and designing faster algorithms Chawla and Gionis (2013);

Rujeerapaiboon et al. (2019); Gupta et al. (2017), and parallel and distributed algorithms in this

model Chen et al. (2018); Li and Guo (2018). To the best of our knowledge, this is the first

work to study the CORRELATION-CLUSTERING problem from robustness point of view.

1.3 Paper Outline

We first describe the inherent robustness to outliers of optimal solutions for CORRELATION-

CLUSTERING in Chapter 2. We then consider ROBUST-CORRELATION-CLUSTERING for com-

plete graphs, and show our hardness of approximation in Chapter 3, followed by the combina-

torial algorithm in Chapter 5. Finally, in Section 5.4 and chapter 4, we turn our attention to the

case of general graphs and present our algorithm and hardness.

7



CHAPTER 2

Is the CORRELATION-CLUSTERING objective inherently

robust?

In this section, we show two simple but illuminating results. The first result explains how, in

contrast to problems like k-median and k-means, the vanilla correlation clustering objective is

in fact inherently robust to an extent, when solved optimally. The second result then shows

this not to be true when considering solutions which are only approximately optimal. We

remark that the second result combined with that fact that correlation clustering is APX-hard

Bansal et al. (2004) serves as a strong motivation for studying the ROBUST-CORRELATION-

CLUSTERING problem.

2.1 Inherent Robustness of Optimal Solutions for CORRELATION-

CLUSTERING

In this section, we exhibit the inherent robustness of the correlation clustering objective (1.0.1)

in a specialized scenario. Indeed, consider an instance I of ROBUST-CORRELATION-CLUSTERING

such that Opt(I) = 0, i.e., there exists a set of m points deleting which the remaining points

are perfectly clusterable, i.e., have 0 cost. Now, imagine we obtain an optimal CORRELATION-

CLUSTERING solution (Problem 1.0.1) to instance I. Our goal now is to investigate how these

solutions compare with the optimal solution to Problem 1.0.2. Indeed, we show that there exist

O(m) points, deleting which, the objective indeed becomes 0 for the optimal CORRELATION-

CLUSTERING clustering. This tells us that the optimal solutions to 1.0.2 and 1.0.1 are nearly

identical to each other (upto O(m) points), and hence, that the correlation clustering objective

is inherently robust, unlike traditional clustering objectives such as k-median and k-means.

Proof of Theorem 1.1.1. We begin by recalling the theorem statement and setting up notation.

Let I be an instance of ROBUST-CORRELATION-CLUSTERING such that Opt(I) = 0, i.e.,



there exists a set D∗ ⊆ V of m vertices deleting which, the subgraph induced by V \ D∗

admits a perfect clustering C∗. And consider any optimal solution C̃ to instance I w.r.t the

CORRELATION-CLUSTERING objective function (1.0.1). We would like to claim that there

exists a set D̃ of O(m) vertices such that C̃ \ D̃ is identical to C∗ \ D̃. We show this by showing

that the cost of the clustering C̃ \ D̃ is 0, and hence it must be the same as C∗ \ D̃.

To this end, let C∗ = {C∗
1 , C

∗
2 , . . . , C

∗
r} denote the optimal ROBUST-CORRELATION-CLUSTERING

clustering over vertices V \D∗, and let C̃ = {C̃1, C̃2, . . . , C̃s} denote the optimal CORRELATION-

CLUSTERING clustering over all vertices V . We divide the clusters in C̃ into two types:

(a) A cluster C̃ ∈ C̃ is a mixed cluster if it contains points from more than one cluster in

C∗, i.e., there exists i1, i2 s.t |C̃ ∩ C∗
i1
| > 0 and |C̃ ∩ C∗

i2
| > 0, and

(b) A cluster C̃ ∈ C̃ is an isolated cluster if it contains points from only one cluster in C∗.

We then show that the total number of points in mixed clusters is O(m), and can simply add

all such points to D̃. At this point, we would only be left with isolated clusters. Subsequently,

we show that two isolated clusters composed of points from the same cluster in C∗ also contain

at most O(m) points. Therefore, we once again add these points to D̃. Finally, we add whatever

remains of D∗ (at most m points) to D̃. It is easy to see that the resulting clustering C̃ \ D̃ =

C∗ \ D̃. The full proof is in Section 6.1.

2.2 Non-Robustness of Approximate Solutions

We next focus on approximation algorithms to CORRELATION-CLUSTERING, and show that

they need not be robust to outliers (Theorem 1.1.2). Indeed, consider the following instance

I = (V,E) of ROBUST-CORRELATION-CLUSTERING with n+
√
n points. Consider a

√
n×

√
n grid, such that all points lying on the same row are pairwise similar, i.e., belong to E+ while

any two points lying on different rows are dissimilar and belong to E−. To this arrangement,
√
n bad points are added, which are pairwise dissimilar to one another, but share a + edge with

each of the n points in the original
√
n×
√
n grid.

We first note that the optimal CORRELATION-CLUSTERING solution to I has cost Ω(n
√
n).

Indeed, consider any triangle u, v, w where u is a bad point, and v and w belong to different

9



rows. Note that there must at least be one mis-classified edge in this triangle in the optimal

solution. So, if we let B denote the set of all such bad triangles, the following is a valid lower

bound on OPT: min
∑

e∈t,t∈B ze s.t
∑

e∈t ze ≥ 1,∀t ∈ B. The dual of this is max
∑

t∈B yt s.t∑
t:e∈t,t∈B yt ≤ 1,∀e ∈ E. It is easy to see that the optimal value of the dual LP is at least

Ω(n
√
n) by setting yt = 1/n for all bad triangles in B. Now consider a clustering C which

clusters each column of the grid into a cluster, and puts the bad points in another cluster. The

overall cost of the clustering is O(n
√
n), which is a constant-factor approximation. Moreover,

note that the only way to get a 0 cost clustering from C (without altering the structure of C) is

by deleting all the n grid points.

10



CHAPTER 3

Hardness of ROBUST-CORRELATION-CLUSTERING on

complete graphs

In this section, we prove Theorem 1.1.3. The proof follows by an approximation preserving

reduction from vertex cover. Consider any unlabelled graph, G = (V,E) on n vertices. Let

vc(G) denote the set of vertices corresponding to the minimum vertex cover on G. We construct

the ROBUST-CORRELATION-CLUSTERING instance, IG from G as follows: for each vertex

v ∈ V , we create two points v1 and v2. For every vertex v ∈ V , we make the edge (v1, v2) ∈ E+.

Similarly, for any pair of vertices u, v ∈ V the edges (u2, v2), (u1, v2) and (u2, v1) all belong

to E−. Finally, we place edge (u1, v1) ∈ E+ if the edge (u, v) ∈ E, and in E− otherwise.

Note that the only mis-classified edges in the natural clustering C = {{v1, v2} :, v ∈ V }

obtained by grouping the vertices v1 and v2 for each v ∈ V are the (u1, v1) edges corresponding

to (u, v) ∈ E. Hence, if there is a vertex cover S for G of at most m vertices, we may simply

delete {u1 : u ∈ S} and obtain a clustering of 0 cost. Likewise, we can show that we can

efficiently recover a vertex cover for G of size m′ from any clustering which deletes m′ vertices

and has 0 cost. The formal proof is in Section 6.4.

Figure 3.1: Reducing vertex cover instance G to IG



CHAPTER 4

Hardness of ROBUST-CORRELATION-CLUSTERING on

General Graphs

Firstly, when m = 0, ROBUST-CORRELATION-CLUSTERING is simply CORRELATION-CLUSTERING,

for which is known NP-hardness of Ω(αMC) Charikar et al. (2005). We show that it is NP-hard

to get any (a, b)-approximation for ROBUST-CORRELATION-CLUSTERING with finite b when

a < αMC, for any m > 0.

Theorem 4.0.1. It is NP-hard to have an (a, b) bi-criteria approximation to ROBUST-CORRELATION-

CLUSTERING for any finite b and a < αMC.

Proof. The proof is via a reduction from MINIMUM-MULTICUT, similar to the proof for

CORRELATION-CLUSTERING in Charikar et al. (2005). Consider the MINIMUM-MULTICUT

instance problem I = {G(V,E), {(si, ti), 1 ≤ i ≤ k}}, where (si, ti), 1 ≤ i ≤ k represent k

source-sink pairs. We construct the ROBUST-CORRELATION-CLUSTERING problem instance

I∗ as follows. The edges in G become + edges in I∗. For each i, 1 ≤ i ≤ k, we add a negative

edge between (si, ti) of weight −W , for some large positive integer W , say W = n3. We can

make the instance unweighted by replacing a negative edge of weight−W by W parallel length

two paths; each path has a fresh intermediate vertex, with one + edge and one − edge. Clearly,

the minimum cost clustering must have (si, ti) in different clusters ∀1 ≤ i ≤ k. In addition,

introduce m more vertices which act like outliers, represented by set U = {u1, u2, . . . , um} in

I∗. Connect each ui, 1 ≤ i ≤ m to every vertex q, q ∈ V (I∗) \ U with an edge of weight −W

and an edge of weight W . We can make the instance unweighted by replacing the negative

edge as described before, and the positive edge of weight W by W parallel length two paths;

each path has a fresh intermediate vertex, with both edges +.

Due to the above construction, the vertices (q, ui), q ∈ V (I∗) \ U, 1 ≤ i ≤ k add a high

cost irrespective of whether they lie in the same cluster or not.



Hence, the optimal solution to ROBUST-CORRELATION-CLUSTERING on the problem in-

stance I∗ removes vertices u1, u2, · · · , um, and the corresponding optimal cost is same as the

MINIMUM-MULTICUT optimal cost on instance I.

We next establish that unless the budget of vertices to be removed is violated by a certain

factor, it is NP-hard to find any approximation to the cost of the optimal solution to ROBUST-

CORRELATION-CLUSTERING.

Theorem 4.0.2. It is NP-hard to find an (a, b) bi-criteria approximation to ROBUST-CORRELATION-

CLUSTERING for any finite a, and b < αMC.

Proof. The proof of this result once again follows via a reduction from MINIMUM-MULTICUT.

Indeed, consider the MINIMUM-MULTICUT instance problem I = {G(V,E), {(si, ti), 1 ≤ i ≤

k}}, where (si, ti), 1 ≤ i ≤ k represent k source-sink pairs. We now define an intermediate

problem which will simplify our overall reduction.

Definition 4.0.3 (VERTEX-MULTICUT). Given a problem instance I = {H, {(si, ti), 1 ≤ i ≤

k}}, where (si, ti), 1 ≤ i ≤ k represent k source-sink pairs, the VERTEX-MULTICUT problem

is to find the minimum set of vertices S ⊆ V (H) such that no source-sink pair lie in the same

connected component in the graph induced on V (H) \ S.

Lemma 4.0.4. There exists an approximation preserving reduction from MINIMUM-MULTICUT

to VERTEX-MULTICUT.

Proof. The idea is to reduce the MINIMUM-MULTICUT problem instance I to a VERTEX-

MULTICUT problem instance I ′ = {H(V ′, E ′), {(s′i, t′i), 1 ≤ i ≤ l}}. Consider the graph

G = (V,E) as defined above. Reduce each vertex vi ∈ V into a clique of large size, say n,

where n = |V |. Let clique(vi) = {vi1, vi2, . . . , vin}, where vi ∈ V, 1 ≤ i ≤ n represent the

clique in H . For every (si, ti), 1 ≤ i ≤ k source-sink pair in I, let each of (sia, tib) ∀1 ≤

a, b ≤ n be a source sink pair in instance I ′. Hence, instance I ′ will contain kn2 source-sink

pairs in comparison with the k pairs in I. We now define the edges in I ′. E ′ is composed of two
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components, ∪i≤nEclique(vi) and Eacross, where Eclique(vi) = {(via, vib), 1 ≤ i, a, b ≤ n, a ̸= b},

and Eacross = {(vij, vji) : (vi, vj) ∈ E}.

We now have a VERTEX-MULTICUT problem instance I ′. We claim that the reduction from I

to I ′ is an approximation preserving reduction. Let S denote the optimal solution to problem

instance I ′, that is, S denotes the optimal set of vertices to remove to disconnect the source-

sink pairs. Let vij ∈ S, 1 ≤ i, j ≤ n. Removing the edge (vi, vj) ∈ E in instance I is

equivalent to removing the vertex vij (or vji) in I ′ where (ui, vj) ∈ E ′. Hence solving the

VERTEX-MULTICUT problem solves MINIMUM-MULTICUT problem as well.

Lemma 4.0.5. There exists an approximation preserving reduction from VERTEX-MULTICUT

to approximating the budget of number of vertices to remove in ROBUST-CORRELATION-

CLUSTERING problem.

Proof. Given a VERTEX-MULTICUT problem instance I ′ = {H, {(si, ti)1 ≤ i ≤ k, }}, we

construct a ROBUST-CORRELATION-CLUSTERING problem instance I ′′. The edges in H be-

comes positive edges in I ′′. In addition, add a negative edge between each (si, ti) pair of weight

−W , for some large positive integer W , say W = n3. The graph can be made unweighted as

discussed in the proof to Theorem 4.0.1.

Consider the instance I ′′. The minimum set of vertices R such that the graph induced

on remaining vertices has a 0 cost clustering is identical to the optimal solution to the in-

stance I ′. From Lemma 4.0.4, it follows that if I ′ can be solved optimally, the underlying

MINIMUM-MULTICUT problem instance I can be solved optimally. Therefore from Theo-

rem 4.0.1 and lemma 4.0.4, it follows that it is NP-hard to violate the budget of number of

vertices to remove by a factor < αMC such that the cost of the output clustering is a finite

approximation to the optimal cost.
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CHAPTER 5

Algorithms for ROBUST-CORRELATION-CLUSTERING on

Complete Graphs

In this section, we design efficient and combinatorial bi-criteria approximation algorithms for

ROBUST-CORRELATION-CLUSTERING (Problem 1.0.2) and prove Theorem 1.1.4. We begin

by recalling the problem setup: we are given an instance I consisting of a graph (V,E+, E−)

on n points with E+∪E− =
(
V
2

)
. The goal is to identify a set of vertices D such that |D| = m,

and a clustering C over V \D such that the total cost is minimized. We start with the following

definition crucial to the design and analysis of our algorithm.

Definition 5.0.1 (Bad Triangles). A triplet (u, v, w) of points is said to be a bad triangle if

exactly two of the three edges among (u, v), (v, w), (u,w) belong to E+ and one to E−.

Note a bad triangle captures the smallest unit of inconsistency in the similarity information

among the points: either we delete one of the vertices as an outlier, or at least one of the edges

must be mis-classified. In what follows, let B denote the set of all bad triangles in the instance

I.

5.1 Recap of ACNAlg for CORRELATION-CLUSTERING Ailon

et al. (2005)

Since the first step of our algorithm is ACNAlg for correlation clustering, we first present these

details. In words, this very elegant algorithm picks a random unclustered vertex as a new cluster

center, includes all other unclustered vertices it is similar to in its cluster, and iterates till all

points are clustered.

Theorem 5.1.1. ACNAlg(V,E+, E−) is a 3 approximation for Problem 1.0.1.



Algorithm 1 ACNAlg(V,E+, E−)

Set U = V and C = ∅ ▷ initialize set of un-clustered points and set of cluster centers
while U ̸= Φ do

Sample v ∼ Unif(U) and update C ← C ∪ {v} ▷ random v is sampled as a cluster
center

Define Cv = {u ∈ U : (u, v) ∈ E+} ∪ {v} ▷ un-clustered vertices similar to v including
v

U ← U \ Cv

end while
Return: C = {Cv : v ∈ C}

Before we prove Theorem 5.1.1, we begin with some crucial observations about this al-

gorithm which will be useful in understanding our generalization to ROBUST-CORRELATION-

CLUSTERING.

Definition 5.1.2. A triangle (u, v, w) ∈ B is touched if there exists a point in the algorithm

execution when all three vertices u, v, w belong to the un-clustered set U and one of u, v, w

gets sampled as a cluster center.

Lemma 5.1.3. At the end of Algorithm 1, every mis-clasified edge (i.e., an E− edge which is

in a single cluster, or an E+ edge which goes across clusters) is associated with a unique bad

triangle which is touched. Moreover, the opposite vertex to the mis-classified edge must be

sampled as the cluster center.

We now prove Theorem 5.1.1. We remark that while this is directly not useful for us, we

will prove some lemmas which we will use in our final analysis.

Proof of Theorem 5.1.1. The first step is the following LP-based lower bound on Opt(I). In-

deed, we know that each bad triangle must have at least one mis-clasified edge, and so the LP

is simply a linear relaxation for finding a maximal set of disjoint bad triangles.
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Figure 5.1: Clustering output by ACNAlg (V,E+, E−)

maximize
∑
t∈B

zt, s.t., (LP1)

∑
t∈B:u,v∈t

zt ≤ 1, ∀e = (u, v) ∈ E,

zt ∈ [0, 1], ∀t ∈ B.

Now, for any triangle t ≡ (u, v, w) ∈ B, let touched(t) denote the indicator random variable

for whether triangle t is touched in the algorithm or not, and let pt = E[touched(t)]. Note that

by Lemma 5.1.3, we have that E[cost(C)] =
∑

t∈B pt, where cost(C) denotes the objective

value of the clustering C output by Algorithm 1.

The crux of the proof is the following lemma.

Lemma 5.1.4. The values {pt/3 : t ∈ B} form a feasible solution to the LP relaxation LP1.

Proof. To this end, consider any edge e = (u, v) and the set of bad trianglesBu,v = {(u, v, w) ∈

B} it is part of. Lemma 5.1.3 tells us that (u, v) will be mis-clasified if and only if one of these
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bad triangles t ≡ (u, v, w) ∈ Bu,v is touched, and the third vertex w must be picked as a

cluster center when the triangle is touched. Finally note that, for any triangle t ≡ (u, v, w),

the probability that w is picked as the cluster center conditioned on touched(t) is exactly 1/3,

since the algorithm selects the new cluster center uniformly at random from the un-clustered

vertices. Thus we have that: 1 ≥ P((u, v) is mis-clasified) =
∑

t∈Bu,v
pt/3, thereby showing

the LP feasibility of {pt/3}.

Lemma 5.1.4 coupled with the inequality bounding the cost E[cost(C)] ≤
∑

t pt then com-

pletes the proof.

5.2 Our Algorithm for ROBUST-CORRELATION-CLUSTERING

The first step of our final algorithm runs ACNAlg to compute a clustering C, which say has a set

X of mis-classified edges. In the second step, we fix the structure of the clustering C and simply

try to delete some O(m) vertices such that the number of edges in X which are not deleted is

minimized. This sub-problem is reminiscent of prize-collecting (or) partial vertex cover-type

problems for which there are simple combinatorial primal-dual algorithms. The crucial part of

the proof is to show that this strategy indeed works, i.e., the number of edges in X which are

not deleted is at most O(1)Opt. For this, we use a randomized duality-based argument building

on the proof of Lemma 5.1.3.

Throughout this section, we assume that we know the value Opt of the optimal solution for

the ROBUST-CORRELATION-CLUSTERING instance I; we can easily handle this assumption

using a standard guess-and-double strategy. Moreover, we also assume that Opt > m.1

5.3 Outline of Proof of Theorem 1.1.4

The starting point is the following primal-dual pair, where we have lifted the budget constraint

to the objective.
1Otherwise, we know that there exists 2m vertices deleting which, the remaining points are perfectly cluster-

able, i.e., there are no bad triangles. So we can simply solve a hitting set for all the bad triangles and obtain a set
of 6m vertices to hit all bad triangles.
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Algorithm 2 RCCAlg(V,E+, E−,m)

1: Initialization: Vr ← Φ ▷ Vr is the set of deleted/outlier vertices
2: Run ACNAlg(V,E+, E−) to get output clustering C
3: Let Btouch denote the set of bad triangles “touched” by ACNAlg;
4: Mark all bad triangles in Btouch as unfrozen
5: for all u ∈ V do
6: Let Bu denote the set of triangles t ∈ Btouch such that u ∈ t and u is not the cluster

center
7: end for
8: while ∃ an unfrozen triangle in Btouch do
9: Choose any unfrozen t ∈ Btouch

10: Raise ∆t until 1 or until for some vertex u,
∑

t∈Bu
∆t =

2Opt
m

11: for all u such that
∑

t∈Bu
∆t =

2Opt
m

do
12: Mark all {t ∈ Btouch : u ∈ t} as frozen
13: end for
14: end while
15: Define Vr =

{
u :
∑

t∈Bu
∆t =

2Opt
m

}
16: Return: Clustering C, Vr

Minimize
∑

(u,v)∈(V
2
)

zu,v +
Opt

m

∑
u

yu, s.t., (LP2)

yu + yv + yw + zu,v + zv,w + zu,w ≥ 1, ∀t = (u, v, w) ∈ B,

zu,v ∈ [0, 1], ∀(u, v) ∈
(
V

2

)
,

yu ∈ [0, 1], ∀u ∈ V.

Maximize
∑
t∈B

wt, s.t., (LP3)

∑
t∈B:u,v∈t

wt ≤ 1, ∀(u, v) ∈
(
V

2

)
, (5.1)

∑
t:u∈t

wt ≤
Opt

m
, ∀v ∈ V, (5.2)

wt ≥ 0, ∀v ∈ V.

Lemma 5.3.1. The value of an optimal solution to Equation (LP2) is at most 2 ·Opt where Opt
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is the objective value of an optimal solution to the ROBUST-CORRELATION-CLUSTERING

instance I.

Now, recall from Definition 5.1.2 the definition of touched triangles in the execution of

ACNAlg (V,E+, E−). We will use At to represent the event that triangle t is touched in some

iteration. Also recall the value pt, the probability that a triangle t ∈ B is touched during exe-

cution. Indeed, the proof of Theorem 5.1.1 proceeded by exhibiting showing that the solution

{pt : t ∈ B} satisfies equation eq. (5.1) and has expected cost equal to the dual objective.

This was sufficient for the CORRELATION-CLUSTERING problem. However, there is no rea-

son for this solution to satisfy equation eq. (5.2), which is needed in our case. Indeed, this is

where our primal-dual step comes in. At a high level, we consider all the edges mis-classified

by ACNAlg, and keep raising the dual variables ∆t of the unique bad triangle associated with

them that is touched (from Lemma 5.1.3) until either end-vertex becomes tight (i.e., total dual

reaches 2Opt/m). In this case, we freeze all the bad edges incident on such tight vertices and

proceed.

We then show that the collection {E[∆t/3]} satisfies all the dual constraints. Indeed, since

∆t is non-zero (and at most 1) only for triangles touched by ACNAlg, we have that {E[∆t/3]}

satisfies eq. (5.1) from Lemma 5.1.3. Moreover, {∆t/2} satisfies eq. (5.2) by definition even

without expectations taken. As a result, we can infer that {E[∆t/3]} is dual-feasible, and hence

the sum
∑

t∈B E[∆t] is at most O(1)Opt using weak duality.

It remains to show that the number of mis-classified edges is at most O(1)Opt, and also

that the number of vertices deleted is at most O(1)m. To see the first property, note that for

every edge mis-classified by ACNAlg, either ∆t = 1 for the unique bad triangle associated

with it, or the dual constraint for one of the end-points becomes tight. In the latter, this edge

will be deleted since we delete all tight vertices. Hence, the total number of mis-classified

edges which remains can be upper bounded by
∑

t ∆t, and hence the expected value is at

most O(1)Opt. Finally, to see the deletion bound, note that for every vertex deleted, we have

that
∑

t∈Bu
∆t = 2Opt/m, and also each ∆t can contribute to at most 2 vertices (it is a part

of exactly the Bu set for two vertices). Hence, we get that the expected number of vertices

deleted can be at most O(1)m, again using the fact that
∑

t∈B E[∆t/3]. The formal proof is
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in Section 6.2.

5.4 Algorithms for ROBUST-CORRELATION-CLUSTERING on

General Graphs

In this section, we prove Theorem 1.1.5. The starting point for our algorithm is the following

LP relaxation for ROBUST-CORRELATION-CLUSTERING:

Minimize
∑

(u,v)∈E+∪E−

zu,v, s.t., (LP4)

xu,v + xv,w ≥ xu,w, ∀u ̸= v ̸= w (5.3)

yu + yv + zu,v ≥ 1− xu,v, ∀(u, v) ∈ E− (5.4)

yu + yv + zu,v ≥ xu,v, ∀(u, v) ∈ E+ (5.5)∑
u

yu ≤ m, (5.6)

xu,v, zu,v, yu ∈ [0, 1]

In simple terms, on imposing integer constraints, LP4 asks to find a clustering {xu,v :

(u, v) ∈ E+ ∪E−}, but only charges a unit cost (zu,v = 1) for dissimilar (resp. similar) pairs of

points (u, v) placed in the same (resp. different) clusters, only if neither u nor v is deleted, i.e,

if yu = yv = 0. In addition, the metric constraint in (5.3) is present to ensure that any integer

solution to LP4 corresponds to a consistent clustering.

Lemma 5.4.1. The optimal solution {x∗, y∗, z∗} to the LP above has objective value at most

Opt(I), the cost of an optimal ROBUST-CORRELATION-CLUSTERING solution.

After solving the LP, we run the following padded decomposition scheme to partition the

metric x∗ to get clusters of diameter at most 0.25 using ∆ = 0.25.

Theorem 5.4.2 (Fakcharoenphol et al. (2004)). For any finite metric space (X, d) and param-

eter ∆ > 0, there exists a randomized algorithm PaddedClustering(X, d,∆) which outputs a

clustering C of points in X such that,
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• Every cluster C ∈ C has diameter at most ∆,

• For every x ∈ X and ρ ∈ (0,∆/8),

Prob(Ballρ(x) ⊈ C(x)) ≤ α(x)
ρ

∆
, (5.7)

where α(x) = O(log( |Ball∆(x)|
|Ball∆/8(x)|

)) = O(log n) and C(x) denotes the points in the same

cluster as x in C.

We also delete all vertices v such that y∗v ≥ 0.25 for deletion. This will suffice to handle

all the E− edges which are mis-classified at this point. Indeed, by the diameter property of

our clustering, we have that x∗
u,v for all u, v in a single cluster is at most 0.25, and hence

constraint eq. (5.4) implies that y∗u + y∗v + z∗u,v ≥ 0.75, and so, the total cost of E− edges which

are not deleted is at most 4
∑

e∈E−
ze.

Handling E+ edges is trickier, and it is here where we use the full power of the padded

decomposition scheme. Indeed, let Eb
+ denote the set of E+ edges which are mis-classified by

the padded decomposition clustering. Note that if an edge e ∈ E+ has large ze value, then this

can be charged to the LP cost. So it remains to handle the edges with small ze value which

get separated. However, note that such an edges being separated happens with low probability

due to the guarantees of the padded decomposition. To handle these edges, we scale each

ŷv = y∗v/rv variable, where rv is the radius of the smallest ball around v which gets separated

by the partitioning scheme, and then show that the ŷv variables form a feasible solution to the

vertex cover problem for the Eb
+ edges which have small ze values. To bound the number of

vertices delete, we again use the padded decomposition property to argue that the expected

value of ŷv is bounded by O(log2 n)y∗v , and so overall we get the O(log2 n)m bound on the

number of vertices deleted. Please refer to Section 6.3 for complete details of this algorithm

and analysis.
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CHAPTER 6

APPENDIX

6.1 Proof of Theorem 1.1.1

We begin by recalling the theorem statement and setting up notation. Let I be an instance of

ROBUST-CORRELATION-CLUSTERING such that Opt(I) = 0, i.e., there exists a set D∗ ⊆ V

of m vertices deleting which, the subgraph induced by V \ D∗ admits a perfect clustering

C∗. And consider any optimal solution C̃ to instance I w.r.t the CORRELATION-CLUSTERING

objective function (1.0.1). We would like to claim that there exists a set D̃ of O(m) vertices

such that C̃ \ D̃ is identical to C∗ \ D̃. We show this by showing that the cost of the clustering

C̃ \ D̃ is 0, and hence it must be the same as C∗ \ D̃.

To this end, let C∗ = {C∗
1 , C

∗
2 , . . . , C

∗
r} denote the optimal ROBUST-CORRELATION-CLUSTERING

clustering over vertices V \D∗, and let C̃ = {C̃1, C̃2, . . . , C̃s} denote the optimal CORRELATION-

CLUSTERING clustering over all vertices V . We divide the clusters in C̃ into two types:

(a) A cluster C̃ ∈ C̃ is a mixed cluster if it contains points from more than one cluster in C∗,

i.e., there exists i1, i2 s.t |C̃ ∩ C∗
i1
| > 0 and |C̃ ∩ C∗

i2
| > 0, and

(b) A cluster C̃ ∈ C̃ is an isolated cluster if it contains points from only one cluster in C∗.

We then show that the total number of points in mixed clusters is O(m), and can simply add

all such points to D̃. At this point, we would only be left with isolated clusters. Subsequently,

we show that two isolated clusters composed of points from the same cluster in C∗ can contain

at most O(m) points. Therefore, we once again add these points to D̃. Finally, we add all

the remaining set of at most m outliers to D̃. It is easy to see that the resulting clustering

C̃ \ D̃ = C∗ \D∗. These results are established in Lemmas 6.1.1 and 6.1.2.

Lemma 6.1.1. Let C̃ be a mixed cluster, and let X = C̃ ∩ D∗ denote its overlap with the

outlier set R∗ in the optimal ROBUST-CORRELATION-CLUSTERING clustering. Then we have

|C̃| ≤ O(1)|X|.



Proof. Since C̃ ∈ C̃ is a mixed cluster, there exists i1 ̸= i2 s.t |C̃ ∩C∗
i1
| > 0 and |C̃ ∩C∗

i2
| > 0.

Now, since C̃ is an optimal solution for CORRELATION-CLUSTERING, we have that the cost of

the clustering must increase when we consider the following clustering C̃1 = (C̃ \ C̃) ∪ (C̃ ∩

C∗
i1
) ∪ (C̃ \ C∗

i1
) formed by replacing C̃ with (C̃ ∩ C∗

i1
) and (C̃ \ C∗

i1
). since C∗ is an optimal

clustering with cost 0, we know that all the edges between C∗
i1

and C∗
i for i ̸= i1 belong to E−.

This, combined with the fact that the cost of this new clustering is more than that of C̃ gives us

the following inequality:

|C̃ ∩ C∗
i1
|

(∑
i ̸=i1

|C̃ ∩ C∗
i |

)
≤ |X||C̃ ∩ C∗

i1
|

=⇒
∑
i ̸=i1

|C̃ ∩ C∗
i | ≤ |X| (6.1)

A similar argument by replacing C̃ with (C̃ ∩C∗
i2
) and (C̃ \C∗

i2
) would yield

∑
i ̸=i2
|C̃ ∩C∗

i | ≤

|X|. Summing the two inequalities, we get that |C̃\X| ≤ 2|X|, and so |C̃| ≤ 3|X|, completing

the proof.

Lemma 6.1.2. Let C̃1, C̃2 be two isolated clusters containing points from the same cluster

C∗ ∈ C∗, and let X1 = C̃1 ∩ D∗ and X2 = C̃2 ∩ D∗ denote their intersections with the

outlier set R∗ in the optimal ROBUST-CORRELATION-CLUSTERING clustering. Then we have

|C̃1 ∪ C̃2| ≤ O(1)|X1 ∪X2|.

Proof. Since C̃ is an optimal solution w.r.t the CORRELATION-CLUSTERING objective, we

know that if we modify C̃ by moving the points C̃1 ∩ C∗ to cluster C̃2, the cost does not

decrease. This gives us the following inequality, which uses the fact that all edges within C∗

belong to E+ due to the fact that cost of C∗ is 0:

|C̃1 ∩ C∗||C̃2 ∩ C∗| ≤ (|X1|+ |X2|)|C̃1 ∩ C∗|

=⇒ |C̃2 ∩ C∗| ≤ |X1|+ |X2|

A similar argument would also give us |C̃1 ∩ C∗| ≤ |X1| + |X2|. Adding these inequalities

gives us |C̃1 ∩ C∗| + |C̃2 ∩ C∗| ≤ 2(|X1| + |X2|), and adding back X1 and X2 will incur an

additional cost of |X1|+ |X2|, hence completing the proof.
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6.2 ROBUST-CORRELATION-CLUSTERING on Complete Graphs

Proof of Lemma 5.1.3. Consider a stage of the algorithm when a vertex u gets chosen as a

cluster center. Then the newly mis-classified edges fall into three categories: (v, w) ∈ E− with

both (u, v) and (u,w) belonging to E+, or (v, w) ∈ E+ with (u, v) ∈ E+ and (u,w) ∈ E−, or

(v, w) ∈ E+ with (u,w) ∈ E+ and (u, v) ∈ E−. In all three cases we can associate the new

mis-classified edge (v, w) with the unique bad triangle (u, v, w) which gets touched.

6.2.1 Algorithms on Complete graphs

We now furnish the complete details of the proof of Theorem 1.1.4. Recall the algorithm

definition RCCAlg from Chapter 5. It will also be useful to recall from Definition 5.1.2 the

definition of touched triangles in the execution of ACNAlg (V,E+, E−). We will use At to

represent the event that triangle t is touched in some iteration. Also recall the value pt, the

probability that a triangle t ∈ B is touched during execution. We stress that the criterion for a

vertex u to be deleted in RCCAlg(V,E+, E−,m) is that,

∑
t∈Bu

∆t =
Opt

m
(6.2)

In other words, the vertex u is deleted if ∆t summed over bad triangles t = (u, v, w), condi-

tioned on t being touched by v or w.

Lemma 6.2.1. The cost of the clustering C returned by RCCAlg(V,E+, E−,m) accounted

over V \ Vr does not exceed
∑

t∈B 1(At)1(∆t = 1).

The proof of this result follows from the following claim.

Claim 6.2.2. Consider a bad triangle t = (u1, u2, u3) ∈ Btouch. Without loss of generality, let

u3 be the vertex chosen as cluster center in the iteration when t is touched during the execution

of ACNAlg (V,E+, E−). If ∆t is set as 0 in RCCAlg(V,E+, E−,m), then it necessarily means

that at least one of u1 and u2 are deleted.

Lemma 6.2.3. The collection {wt =
pt
3
1(∆t = 1)} satisfies equation (5.2).
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Proof. The proof of this statement follows by contradiction. Recall that a vertex v is deleted

if the sum of ∆t over all triangles t ∈ Bv equals 2Opt/m. Therefore, if both u1 and u2 are

undeleted, for i = 1, 2, ∑
t′∈Bui

wt′ <
2Opt

m
(6.3)

In addition, noting that Bu3 does not include the triangle t, we remark that the algorithm would

increase ∆t until the contraints in (6.3) become tight. This contradicts the initial assumption,

∆t = 0.

Proof of Lemma 6.2.1. From Claim 6.2.2, it follows that every t ∈ Btouch such that ∆t = 0

does not add to the cost of RCCAlg(V,E+, E−,m). Therefore,
∑

t∈Btouch
1(∆t = 1) is an

upper bound to the cost accrued by RCCAlg(V,E+, E−,m).

Lemma 6.2.4. The collection {wt =
pt
3
1(∆t = 1)} satisfies equation (5.1).

Proof. This constraint is satisfied for free from Lemma 5.1.4.

Proof of Lemma 6.2.3. Recall that a vertex u is deleted if the sum of ∆t’s over all triangles

t = (u, v, w) conditioned on t being touched by either of v or w, exceeds 2Opt/m. The

probability that a triangle t is touched by either v or w is 2pt/3. Therefore, for every u,

∑
t:u∈t

2pt
3
1(∆t = 1) ≤ 2Opt

m
.

Dividing both sides by 2 concludes the proof.

We next bound the cost of our solution.

Lemma 6.2.5. The expected cost of the solution output by RCCAlg(V,E+, E−,m)) is at most

6Opt.

Proof. From Lemma 6.2.1, it follows that the expected cost of RCCAlg(V,E+, E−,m)), de-

noted alg does not exceed
∑

t∈B pt1(∆t = 1). Recall that the dual solution we consider in LP3
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is wt = (pt/3)1(∆t = 1). By the duality of LP2, we get

E[alg] ≤ 3
∑
t∈B

pt
3
1(∆t = 1)

≤ 3Opt(LP2)

≤ 6Opt.

Lemma 6.2.6. The expected number of deleted vertices by RCCAlg(V,E+, E−,m) is ≤ 6m.

Proof. Recall for every vertex u ∈ V which is deleted,

∑
t=(u,v,w)∈B

1(t is touched by v or w)1(∆t = 1) =
2Opt

m
(6.4)

Summing (6.4) over the set of all deleted vertices, Vr, it follows that

∑
u∈Vr

∑
t=(u,v,w)∈B

1(t is touched by v or w)1(∆t = 1) =
2Opt

m
|Vr|.

Observe that for any touched triangle t, 1(∆t = 1) appears at most twice upon expanding the

LHS double summation. This is because, corresponding to the vertex u ∈ t which is chosen as

the cluster center 1(t is touched by v or w) would be 0. Therefore,

2
∑
t∈B

1(At)1(∆t = 1) ≥ 2Opt

m
|Vr|. (6.5)

Taking expectation on both sides of (6.5), it follows that,

Opt

m
E[|Vr|] ≤ 3

∑
t∈B

pt
3
1(∆t = 1)

≤ 3Opt(LP2). (6.6)

where the last inequality follows by the duality of LP2, and noting that {(pt/3)1(∆t = 1)} is

a feasible solution to LP3 as established in Lemmas 6.2.3 and 6.2.4. The proof concludes by

noting from Lemma 5.3.1 that Opt(LP2) ≤ 2Opt and simplifying (6.6).
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6.3 ROBUST-CORRELATION-CLUSTERING on General Graphs

In this section, we prove theorem 1.1.5. The starting point for our algorithm is the following

LP relaxation for ROBUST-CORRELATION-CLUSTERING:

Minimize
∑

(u,v)∈E+∪E−

zu,v, s.t., (LP4)

xu,v + xv,w ≥ xu,w, ∀u ̸= v ̸= w (6.7)

yu + yv + zu,v ≥ 1− xu,v, ∀(u, v) ∈ E− (6.8)

yu + yv + zu,v ≥ xu,v, ∀(u, v) ∈ E+ (6.9)∑
u

yu ≤ m, (6.10)

xu,v,∈ [0, 1], ∀u ̸= v

zu,v ∈ [0, 1], ∀(u, v) ∈ E+ ∪ E−

yu ∈ [0, 1], ∀u ∈ V

In simple terms, on imposing integer constraints, LP4 asks to find a clustering {xu,v :

(u, v) ∈ E+ ∪E−}, but only charges a unit cost (zu,v = 1) for dissimilar (resp. similar) pairs of

points (u, v) placed in the same (resp. different) clusters, only if neither u nor v is deleted, i.e,

if yu = yv = 0. In addition, the metric constraint in (6.7) is present to ensure that any integer

solution to LP4 corresponds to a consistent clustering.

Lemma 6.3.1. The optimal solution {x∗, y∗, z∗} to the LP above has objective value at most

Opt(I), the cost of an optimal ROBUST-CORRELATION-CLUSTERING solution. Moreover, we

may slightly perturb this solution to ensure that (a) min(u,v):x∗
u,v ̸=0 x

∗
u,v ≥ 1/n2 and minu:y∗u ̸=0 y

∗
u ≥

1/n2, i.e., the smallest non-zero values among x∗ and y∗ variables is at least 1/n2, and (b)

the perturbed solution has same objective value and satisfies all the LP inequalities except

eq. (6.10), which is satisfied up to
∑

u y
∗
u ≤ (m+ 1/n).

We require the lower bound on the x∗ and y∗ variables for technical reasons which will be-

come clear as the proof proceeds. However, for all practical purposes, the reader may assume

that it is just the optimal solution to the LP. We begin by observing that the one of the tech-
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niques of solving the CORRELATION-CLUSTERING problem is by reducing it to MINIMUM-

MULTICUT problem (in fact, up to constant factors, the CORRELATION-CLUSTERING problem

on general graphs is equivalent to MINIMUM-MULTICUT on general graphs in Demaine et al.

(2006)), and running the best known approximation to MINIMUM-MULTICUT to get O(log n)

approximations to CORRELATION-CLUSTERING. In our case, for ROBUST-CORRELATION-

CLUSTERING, just like how we used a specific approximation algorithm ACNAlg for CORRELATION-

CLUSTERING, it turns out that the right starting point for general graphs is the following beau-

tiful partitioning scheme for metric spaces known as padded decompositions. At a high level,

they randomly partition a metric space into regions of bounded diameter, such that the probabil-

ity of a ball of radius ρ around any vertex v being separated by the partitioning is proportional to

ρ. This generalizes the standard partitioning schemes which just guarantee that the probability

that any pair u, v being separated is proportional to d(u, v). While any scheme which satisfies

the latter suffices to get good algorithms for CORRELATION-CLUSTERING, we crucially use

the stronger property in our algorithm for ROBUST-CORRELATION-CLUSTERING.

Theorem 6.3.2 (Fakcharoenphol et al. (2004)). For any finite metric space (X, d) and param-

eter ∆ > 0, there exists a randomized algorithm PaddedClustering(X, d,∆) which outputs a

clustering C of points in X such that,

• Every cluster C ∈ C has diameter at most ∆,

• For every x ∈ X and ρ ∈ (0,∆/8),

Prob(Ballρ(x) ⊈ C(x)) ≤ α(x)
ρ

∆
, (6.11)

where α(x) = O(log( |Ball∆(x)|
|Ball∆/8(x)|

)) = O(log n) and C(x) denotes the set of points in the

same cluster as x in C.

6.3.1 Algorithms on General Graphs

Given a clustering C, recall that C(v) denotes the set of points in the same cluster as v.

Theorem 6.3.3. RCC-general(V,E+, E−,m) is a randomized (O(log n),O(log2 n)) bi-criteria

approximation for ROBUST-CORRELATION-CLUSTERING on general graphs.
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Algorithm 3 RCC-general(V,E+, E−,m)

1: Let {x∗, y∗, z∗} denote the (perturbed) optimal solution to LP4 obtained in Lemma 5.3.1
2: Compute C∗ = PaddedClustering(V, x∗, 0.25)
3: Define V −

b = {v ∈ V : ∃u ∈ C∗(v) such that (u, v) ∈ E−} ▷
candidate vertices for deletion:
have a − edge to at least one
other vertex in the same cluster.

4: Define V −
del = {v ∈ V −

b : y∗v ≥ 1/4}
5: Set V ′ ← V \ V −

del

6: Define V +
b = {v ∈ V ′ : ∃u ∈ V ′ \ C∗(v) such that (u, v) ∈ E+} ▷

candidate vertices for dele-
tion: have a + edge to at
least one vertex in a differ-
ent cluster.

7: For each v ∈ V +
b , define

ŷu
def
= 2r · y∗u, where

1

2r
< min

v∈V \C∗(v)
x∗
u,v ≤

1

2r−1

8: Define V +
del = {v ∈ V +

b : ŷv ≥ 1/3}
9: Return: Dalg = V −

del ∪ V +
del as outliers and the clustering Calg = C∗ \D

Proof. We begin by introducing some notation that will be useful for the analysis of the algo-

rithm. Consider the clustering C∗ output by PaddedClustering(V, x∗, 0.25) in RCC-general(V,E+, E−,m).

Define E−
b as the set of − edges between vertices in V in the same cluster in C∗,

E−
b

def
= {(u, v) ∈ E− : u ∈ C∗(v)}.

In addition, define E+
b to be the set of + edges between vertices in V ′ lying in different clusters

in C∗.

E+
b

def
= {(u, v) ∈ E+ : u ∈ V ′ \ C∗(v)}.

Let algcost denote the cost of the clustering output by RCC-general(V,E+, E−,m) and let

Vdel = V −
del ∪ V +

del denote the set of vertices deleted. Observe that any edge that contributes to

algcost belongs to either E+
b or E−

b and is not incident on any vertex in Vdel. Therefore, algcost

can be decomposed as

algcost ≤ alg−cost + alg+cost. (6.12)

where alg−cost denotes the cost associated with edges in E−
b that are not incident on vertices in
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V −
del, and alg+cost denotes the cost associated with edges in E+

b that are not incident on vertices

in V −
del ∪ V +

del.

Let Opt∗ denote the cost of the optimal solution to LP4. Subsequently, in Lemmas 6.3.6

and 6.3.11 respectively, we show that alg−cost is upper-bounded by 4Opt∗, while E
[
alg+cost

]
is

upper-bounded by O(log n)Opt∗.

On the other hand, to bound the number of vertices deleted by RCC-general(V,E+, E−,m),

we follow a similar strategy. Since,

|Vdel| = |V +
del|+ |V

−
del|, (6.13)

we separately upper bound V −
del and E[V +

del] in Lemmas 6.3.5 and 6.3.10 by 4m andO(log2 n)m

respectively. In conjunction with (6.13), this proves that RCC-general(V,E+, E−,m) does not

exceed the budget of the number of vertices to delete by more than a factor of O(log2 n).

Recall that the optimal solution of LP4 is denoted
(
{y∗u : u ∈ V } ,

{
x∗
u,v : (u, v) ∈

(
V
2

)}
,
{
z∗u,v : (u, v) ∈

(
V
2

)})
.

We begin by establishing some basic properties of the clustering C∗.

Claim 6.3.4. For any edge (u, v) ∈ E−
b ,

y∗u + y∗v + z∗u,v ≥ 0.75

Proof. Recall that E−
b denotes the set of dissimilar points in V that are placed in the same

cluster by C∗. Since, E−
b ⊆ E−, the optimal solution to LP4 must satisfy the negative edge-

constraint (6.8) for edge (u, v),

y∗u + y∗v + z∗u,v ≥ 1− x∗
u,v. (6.14)

From Theorem 6.3.2, the diameter of any cluster in PaddedClustering(X, d,∆) is at most ∆.

Since u and v belong to the same cluster in C∗ = PaddedClustering(V, x∗, 0.25), it follows that

x∗
u,v ≤ 0.25. Substituting this into (6.14) completes the proof.
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Lemma 6.3.5. The set of vertices, V −
del satisfies,

|V −
del| ≤ 4

∑
v∈V

y∗v ≤ 4m, (6.15)

Proof. Recall that V −
del is defined as the set of vertices, v ∈ V −

b such that y∗v ≥ 1/4. Therefore,

|V −
del| =

∑
v∈V −

b
1(y∗u ≥ 1/4). The proof concludes using the fact that 1(y∗u ≥ 1/4) ≤ 4y∗u and

relaxing the summation v ∈ V −
b to v ∈ V .

Lemma 6.3.6.

alg−cost ≤ 4
∑

(u,v)∈E−

z∗u,v

Recall that a vertex v belongs to V −
del only if y∗v ≥ 1/4. Since alg−cost accrues unit cost for

every edge in E−
b which is not incident on a vertex in V −

del, we have that,

alg−cost =
∑

(u,v)∈E−
b

1(y∗u ≤ 1/4, y∗v ≤ 1/4).

From Claim 6.3.4, it follows that for any edge (u, v) ∈ E+
b , if y∗u ≤ 1/4 and y∗v ≤ 1/4, then

z∗u,v must be at least 1/4. Therefore,

alg−cost ≤
∑

(u,v)∈E−
b

1(z∗u,v ≥ 1/4). (6.16)

Thereafter, by simplifying 1(z∗u,v ≥ 1/4) ≤ 4z∗u,v, it follows from (6.16) that,

alg−cost ≤ 4
∑

(u,v)∈E−
b

z∗u,v ≤ 4
∑

(u,v)∈E−

z∗u,v.

We now move onto the analysis of alg+cost and |V +
del|, which are slightly more involved. In

this respect, define

ẑu,v
def
=


z∗u,v
x∗
u,v

, v ̸∈ C∗(u),

0 otherwise.
(6.17)
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We demonstrate some useful facts about ẑu,v and ŷu, recall, which was defined previously as,

ŷu = 2r · y∗u, where, r :
1

2r
< min

v∈V \C∗(v)
x∗
u,v ≤

1

2r−1

Claim 6.3.7. For any edge (u, v) ∈ E+
b ,

E[ẑu,v] ≤ O(log n)z∗u,v

Proof. Observe that if two points belong to different clusters, then we must necessarily have

for ρ = x∗
u,v that Ballρ(u) ⊈ C(u)). Therefore, from Theorem 6.3.2,

Prob(u ̸∈ C∗(v)) ≤ O(log n)
x∗
u,v

0.25
.

Therefore, from the definition of ẑu,v in (6.17), it follows that,

E[ẑu,v] ≤ O(log n)
x∗
u,v

0.25

z∗u,v
x∗
u,v

+ 0

= O(log n)z∗u,v.

Claim 6.3.8. For any vertex v ∈ V −
b ,

E [ŷu] ≤ O(log2 n) · y∗u .

Proof. Observe that x∗
u,v ∈ [n−2, 1]. Therefore, r takes values from the set {0, 1, 2, . . . , 2 log n}.

By definition of ŷu,

E[ŷu] =
2 logn∑
r=0

2r (y∗u) Prob

(
1

2r
< min

v∈V \C∗(u)
x∗
u,v ≤

1

2r−1

)
,

≤
2 logn∑
r=0

2r (y∗u) Prob

(
min

v∈V \C∗(u)
x∗
u,v ≤

1

2r−1

)
. (6.18)

Observe that the event minv∈V \C∗(v) x
∗
u,v ≤ 2−(r−1) can only occur if the ball of radius 2−(r−1)
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centered at u lies entirely within C(u). Therefore, from Theorem 6.3.2, we have that,

Prob

(
min

v∈V \C∗(u)
x∗
u,v ≤

1

2r−1

)
≤ O(log n) 1

2r−1
.

Plugging this into (6.18) gives,

E[ŷu] ≤ O(log n)
2 logn∑
r=0

y∗u,

= O(log2 n) · y∗u.

Claim 6.3.9. For any edge (u, v) ∈ E+
b , we have that

ŷu + ŷv + ẑu,v ≥ 1 (6.19)

Proof. Observe that E+
b is a subset of E+. Therefore every (u, v) ∈ E+

b must satisfy the

positive edge-constraint (6.9) y∗u + y∗v + z∗u,v ≥ x∗
u,v. Dividing both sides by x∗

u,v, the proof

concludes by using the definitions of ŷu and ẑu,v.

Lemma 6.3.10. The set of vertices, V +
del satisfies,

E
[∣∣V +

del

∣∣] ≤ O(log2 n)m.

Proof. Recall that V +
del is defined as the set of vertices v ∈ V +

b such that ŷv ≥ 1/3. Therefore

|V +
del| =

∑
v∈V +

b
1(ŷv ≥ 1/3). Since 1(ŷv ≥ 1/3) ≤ 3ŷv, it follows that

|V +
del| ≤ 3

∑
v∈V +

b

ŷv (6.20)

Taking expectation on both sides of (6.20), and using Claim 6.3.8,

E[|V +
del|] ≤ O(log

2 n)
∑
v∈V +

b

y∗v .

The proof concludes by relaxing the summation v ∈ V +
b to v ∈ V , and using Lemma 6.3.1 to
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claim that
∑

v∈V y∗v ≤ m+ 1
n
≤ 2m.

Lemma 6.3.11.

E
[
alg+cost

]
≤ O(log n)

∑
(u,v)∈E+

z∗u,v.

Proof. alg+cost is the cost corresponding to edges in E+
b which are not incident on any vertex in

Vdel. Recall that a vertex v ∈ V ′ belongs to Vdel only if ŷv ≥ 1/3. Therefore,

alg+cost =
∑

(u,v)∈E+
b

1(ŷu ≤ 1/3, ŷv ≤ 1/3). (6.21)

From Claim 6.3.9, it follows that if both ŷu and ŷv are at most 1/3, then ẑu,v ≥ 1/3. Therefore,

from (6.21),

alg+cost ≤
∑

(u,v)∈E+
b

1(ẑu,v ≥ 1/3)
(i)

≤ 3
∑

(u,v)∈E+
b

ẑu,v,

where inequality (i) uses the fact that 1(ẑu,v ≥ 1/3) ≤ 3ẑu,v. Taking expectations on both

sides and using Claim 6.3.7 to upper bound E[ẑu,v] by O(log n)z∗u,v,

E[alg+cost] ≤ O(log n)
∑

(u,v)∈E+
b

z∗u,v.

Relaxing the summation to (u, v) ∈ E+ concludes the proof.

Having established these results, it is straightforward to show that RCC-general(V,E+, E−,m)

is an (O(log n),O(log2 n)) bi-criteria approximation for m-Robust Correlation Clustering on

general graphs.

Lemma 6.3.12.

algcost ≤ O(log n)
∑

(u,v)∈E+∪E−

z∗u,v.

Proof. The proof of this result is a direct consequence of substituting Lemmas 6.3.6 and 6.3.11

into (6.12).

Lemma 6.3.13. The expected number of vertices deleted by RCC-general(V,E+, E−,m) is

≤ O(log2 n)m.
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Proof. The proof of this result follows by using Lemmas 6.3.5 and 6.3.10 in conjunction with

(6.13).

6.4 Hardness of ROBUST-CORRELATION-CLUSTERING on com-

plete graphs

In this section, we furnish the complete details of the proof of Theorem 1.1.3. The proof follows

by an approximation preserving reduction from vertex cover. Consider any unlabelled graph,

G = (V,E) on n vertices. Let vc(G) denote the set of vertices corresponding to the minimum

vertex cover on G. We construct the ROBUST-CORRELATION-CLUSTERING instance IG from

G as follows: for each vertex v ∈ V , we create two points v1 and v2. For every vertex v ∈ V ,

we make the edge (v1, v2) ∈ E+. Similarly, for any pair of vertices u, v ∈ V the edges

(u2, v2), (u1, v2) and (u2, v1) all belong to E−. Finally, we place edge (u1, v1) ∈ E+ if the edge

(u, v) ∈ E, and in E− otherwise.

In Lemma 6.4.1, we show that the optimal clustering on instance IG has 0 cost if and only

if the budget of vertices to be deleted, m is at least |vc(G)|. Given a graph G and some m, since

it is NP-hard to decide if m ≥ b|vc(G)| or m ≤ |vc(G)| for b < αVC, it therefore follows that it

is NP-hard to decide if the optimal solution to IG has 0 cost unless b ≥ αVC. By contradiction,

this in turn rules out the existence of any efficient finite approximation factor algorithm to

ROBUST-CORRELATION-CLUSTERING in the cost of the clustering when b < αVC.

Lemma 6.4.1. For ROBUST-CORRELATION-CLUSTERING on IG, the cost of the optimal so-

lution is 0 if and only if m ≥ |vc(G)|.

Proof of Lemma 6.4.1. The proof of this statement follows from Claims 6.4.2 and 6.4.3.

Claim 6.4.2. If m ≥ |vc(G)| the optimal solution to IG has 0 cost.

Proof. In order to show this result, it suffices to construct an explicit clustering, C ′ such that the

minimum number of vertices that need to be removed from C ′ to bring its cost to 0 is |vc(G)|.

To this end, consider the clustering C ′ such that for each vertex v ∈ V , v1 and v2 together

form an independent cluster. Observe that for this clustering, each + edge separating two
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vertices v1 and u1 in IG, the contributes a unit cost. Removing the set of vertices {v1 : v ∈

vc(G)} from the instance IG is guaranteed to reduce the cost of the clustering C to 0 since every

edge that contributes a unit cost has at least one of its endpoints deleted.

Claim 6.4.3. If m < |vc(G)|, the optimal solution to IG has strictly positive cost.

In order to prove this result, we make the following claim.

Claim 6.4.4. For every pair of bad vertices (v1, u1), such that u1 and v1 are similar to each

other, at least one vertex must be removed from either {u1, u2} or {v1, v2} for the cost of any

clustering to be 0.

Proof. For the cost of any clustering to be 0, the 4 vertices in {u1, u2, v1, v2} must belong in

the same cluster since the pairs (u2, u1), (u1, v1) and (v1, v2) are similar. However, even in this

case u2 and v2 are dissimilar and a cost of at least 1 is incurred.

The proof of Claim 6.4.3 is straightforward using this result. This is because each pair of

points (u1, v1) that are similar, corresponds to an edge (u, v) ∈ E. So from Claim 6.4.4, for

every such edge (u, v) ∈ E at least one vertex from IG must be deleted. Therefore, it is not

possible to delete fewer than |vc(G)| vertices for there to exist a clustering of IG with 0 cost.
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